Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 884
Filter
1.
Open Biol ; 14(6): 230349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862017

ABSTRACT

Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.


Subject(s)
COVID-19 , Endothelial Cells , Pericytes , SARS-CoV-2 , Pericytes/virology , Pericytes/metabolism , Pericytes/pathology , Humans , Animals , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , COVID-19/virology , COVID-19/pathology , Mice , Endothelial Cells/virology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Risk Factors , Lipopolysaccharides/pharmacology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Inflammation/virology , Inflammation/pathology
2.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902234

ABSTRACT

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Astrocytes , Blood-Brain Barrier , Pericytes , Smad3 Protein , Vascular Endothelial Growth Factor A , Zebrafish , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Astrocytes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Animals , Pericytes/metabolism , Pericytes/pathology , Male , Induced Pluripotent Stem Cells/metabolism , Female , Aged , Transcriptome , Brain/metabolism , Brain/pathology , Brain/blood supply , Aged, 80 and over , Disease Models, Animal
3.
Commun Biol ; 7(1): 693, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844781

ABSTRACT

Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.


Subject(s)
Cell Proliferation , Cyclic GMP , Forkhead Box Protein O3 , Natriuretic Peptide, C-Type , Pericytes , Signal Transduction , Humans , Pericytes/metabolism , Pericytes/pathology , Natriuretic Peptide, C-Type/metabolism , Cyclic GMP/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Male , Female , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Middle Aged , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Adult , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Cells, Cultured
4.
Sci Prog ; 107(2): 368504241257126, 2024.
Article in English | MEDLINE | ID: mdl-38863331

ABSTRACT

Pericytes (PCs) are versatile cells integral to the microcirculation wall, exhibiting specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, maintaining homeostasis, and aiding tissue repair process. Given their involvement in numerous disease-related pathological and physiological processes, the regulation of PCs has emerged as a focal point of research. Adenomyosis is characterized by the presence of active endometrial glands and stroma encased by an enlarged and proliferative myometrial layer, further accompanied by fibrosis and new blood vessel formation. This distinct pathological condition might be intricately linked with PCs. This article comprehensively reviews the markers associated with PCs, their contributions to angiogenesis, blood flow modulation, and fibrotic processes. Moreover, it provides a comprehensive overview of the current research on adenomyosis pathophysiology, emphasizing the potential correlation and future implications regarding PCs and the development of adenomyosis.


Subject(s)
Adenomyosis , Pericytes , Adenomyosis/pathology , Adenomyosis/physiopathology , Pericytes/pathology , Humans , Female , Neovascularization, Pathologic/pathology , Animals , Fibrosis/pathology , Endometrium/pathology , Endometrium/blood supply , Myometrium/pathology , Biomarkers/metabolism
5.
Biomed Pharmacother ; 176: 116870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850658

ABSTRACT

Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.


Subject(s)
Pericytes , Pericytes/pathology , Humans , Animals , Intracranial Arteriosclerosis/pathology , Intracranial Arteriosclerosis/physiopathology , Vasa Vasorum/pathology , Vasa Vasorum/physiopathology , Cerebral Arteries/pathology
6.
Alzheimer Dis Assoc Disord ; 38(2): 107-111, 2024.
Article in English | MEDLINE | ID: mdl-38752577

ABSTRACT

BACKGROUND: Blood-brain barrier (BBB) dysfunction is emerging as an important pathophysiologic factor in Alzheimer disease (AD). Cerebrospinal fluid (CSF) platelet-derived growth factor receptor-ß (PDGFRß) is a biomarker of BBB pericyte injury and has been implicated in cognitive impairment and AD. METHODS: We aimed to study CSF PDGFRß protein levels, along with CSF biomarkers of brain amyloidosis and tau pathology in a well-characterized population of cognitively unimpaired individuals and correlated CSF findings with amyloid-PET positivity. We performed an institutional review board (IRB)-approved cross-sectional analysis of a prospectively enrolled cohort of 36 cognitively normal volunteers with available CSF, Pittsburgh compound B PET/CT, Mini-Mental State Exam score, Global Deterioration Scale, and known apolipoprotein E ( APOE ) ε4 status. RESULTS: Thirty-six subjects were included. Mean age was 63.3 years; 31 of 36 were female, 6 of 36 were amyloid-PET-positive and 12 of 36 were APOE ε4 carriers. We found a moderate positive correlation between CSF PDGFRß and both total Tau (r=0.45, P =0.006) and phosphorylated Tau 181 (r=0.51, P =0.002). CSF PDGFRß levels were not associated with either the CSF Aß42 or the amyloid-PET. CONCLUSIONS: We demonstrated a moderate positive correlation between PDGFRß and both total Tau and phosphorylated Tau 181 in cognitively normal individuals. Our data support the hypothesis that BBB dysfunction represents an important early pathophysiologic step in AD, warranting larger prospective studies. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00094939.


Subject(s)
Alzheimer Disease , Biomarkers , Pericytes , tau Proteins , Humans , Female , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Male , Biomarkers/cerebrospinal fluid , Middle Aged , Cross-Sectional Studies , Aged , tau Proteins/cerebrospinal fluid , Pericytes/pathology , Positron-Emission Tomography , Amyloid beta-Peptides/cerebrospinal fluid , Blood-Brain Barrier , Receptor, Platelet-Derived Growth Factor beta/cerebrospinal fluid , Prospective Studies , Cohort Studies
7.
ACS Nano ; 18(22): 14348-14366, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768086

ABSTRACT

Pericyte dysfunction severely undermines cerebrovascular integrity and exacerbates neurodegeneration in Alzheimer's disease (AD). However, pericyte-targeted therapy is a yet-untapped frontier for AD. Inspired by the elevation of vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species (ROS) levels in pericyte lesions, we fabricated a multifunctional nanoprodrug by conjugating the hybrid peptide VLC, a fusion of the VCAM-1 high-affinity peptide VHS and the neuroprotective apolipoprotein mimetic peptide COG1410, to curcumin (Cur) through phenylboronic ester bond (VLC@Cur-NPs) to alleviate complex pericyte-related pathological changes. Importantly, VLC@Cur-NPs effectively homed to pericyte lesions via VLC and released their contents upon ROS stimulation to maximize their regulatory effects. Consequently, VLC@Cur-NPs markedly increased pericyte regeneration to form a positive feedback loop and thus improved neurovascular function and ultimately alleviated memory defects in APP/PS1 transgenic mice. We present a promising therapeutic strategy for AD that can precisely modulate pericytes and has the potential to treat other cerebrovascular diseases.


Subject(s)
Alzheimer Disease , Mice, Transgenic , Pericytes , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Pericytes/drug effects , Pericytes/metabolism , Pericytes/pathology , Mice , Reactive Oxygen Species/metabolism , Curcumin/pharmacology , Curcumin/chemistry , Prodrugs/pharmacology , Prodrugs/chemistry , Nanoparticles/chemistry , Vascular Cell Adhesion Molecule-1/metabolism , Humans , Peptides/chemistry , Peptides/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry
8.
J Med Virol ; 96(5): e29671, 2024 May.
Article in English | MEDLINE | ID: mdl-38747003

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Subject(s)
Blood-Brain Barrier , COVID-19 , Choroid Plexus , SARS-CoV-2 , Blood-Brain Barrier/virology , Animals , Choroid Plexus/virology , Choroid Plexus/pathology , COVID-19/virology , COVID-19/pathology , COVID-19/complications , COVID-19/physiopathology , Mice , Tight Junctions/virology , Disease Models, Animal , Angiotensin-Converting Enzyme 2/metabolism , Inflammation/virology , Humans , Pericytes/virology , Pericytes/pathology
9.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791110

ABSTRACT

Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth. Inhibiting the pericyte (PC) conditioning mechanisms in the GBM tumor microenvironment (TME) results in immunological activation and tumor disappearance. This underscores the pivotal role of PCs as a key cell in the TME, responsible for tumor-induced immunosuppression and enabling GBM cells to evade the immune system. Other cells within the TME, such as tumor-associated macrophages (TAMs) and microglia, have also been identified as contributors to this immunomodulation. In this paper, we will review the role of these three cell types in the immunosuppressive properties of the TME. Our conclusion is that the cellular heterogeneity of immunocompetent cells within the TME may lead to the misinterpretation of cellular lineage identification due to different reactive stages and the identification of PCs as TAMs. Consequently, novel therapies could be developed to disrupt GBM-PC interactions and/or PC conditioning through vascular co-option, thereby exposing GBMcs to the immune system.


Subject(s)
Brain Neoplasms , Pericytes , Tumor Microenvironment , Pericytes/immunology , Pericytes/pathology , Pericytes/metabolism , Humans , Tumor Microenvironment/immunology , Animals , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Glioma/immunology , Glioma/pathology , Glioma/metabolism , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/metabolism , Disease Progression , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
10.
Cell Mol Life Sci ; 81(1): 225, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769116

ABSTRACT

Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)ß controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRß is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.


Subject(s)
Endothelial Cells , Ischemic Stroke , Lymphokines , Pericytes , Platelet-Derived Growth Factor , Pericytes/metabolism , Pericytes/pathology , Animals , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Mice , Lymphokines/metabolism , Lymphokines/genetics , Platelet-Derived Growth Factor/metabolism , Humans , Endothelial Cells/metabolism , Male , Mice, Inbred C57BL , Brain/metabolism , Brain/pathology , Disease Models, Animal , Neovascularization, Physiologic , Cell Movement
11.
Front Biosci (Landmark Ed) ; 29(4): 141, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38682199

ABSTRACT

Pericytes, a specific type of mesenchymal cell that surround the basement membrane of pulmonary venules and capillaries. They are crucial pathological features observed in individuals with the severe lung disease of pulmonary fibrosis (PF). The presence of pericytes leads to inflammation and fibrosis in the lung interstitium and alveolar space due to the release of various cytokines and chemokines. Pericytes also stimulate the proliferation and activation of fibroblasts, thereby promoting the progression of PF. Previous studies examining the mechanism of action of pericytes have primarily focused on cell signal transduction pathways, cell growth and death processes, and the synthesis and breakdown of extracellular matrix (ECM). Notably, the transforming growth factor-ß (TGF-ß) and Wnt signaling pathways have been associated with the action of pericytes in driving the progression of PF. It is therefore clear that pericytes play an essential role in the development of PF, while also offering possible avenues for targeted therapeutic intervention against this condition. The current article provides a comprehensive review on how pericytes contribute to inflammatory responses, as well as their importance for understanding the mechanism of PF. In addition, this review discusses the potential use of pericyte-targeted approaches for the treatment of patients affected by this debilitating lung disease.


Subject(s)
Pericytes , Pulmonary Fibrosis , Pericytes/pathology , Pericytes/metabolism , Humans , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Animals , Transforming Growth Factor beta/metabolism , Signal Transduction , Extracellular Matrix/metabolism , Wnt Signaling Pathway
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631408

ABSTRACT

Mitochondrial dysregulation is pivotal in Alzheimer's disease (AD) pathogenesis. Calcium governs vital mitochondrial processes impacting energy conversion, oxidative stress, and cell death signaling. Disruptions in mitochondrial calcium (mCa2+) handling induce calcium overload and trigger the opening of mitochondrial permeability transition pore, ensuing energy deprivation and resulting in AD-related neuronal cell death. However, the role of mCa2+ in non-neuronal cells (microglia, astrocytes, oligodendrocytes, endothelial cells, and pericytes) remains elusive. This review provides a comprehensive exploration of mitochondrial heterogeneity and calcium signaling, offering insights into specific differences among various brain cell types in AD.


Subject(s)
Alzheimer Disease , Calcium Signaling , Calcium , Mitochondria , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Mitochondria/metabolism , Mitochondria/pathology , Calcium Signaling/physiology , Animals , Calcium/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Pericytes/metabolism , Pericytes/pathology , Microglia/metabolism , Microglia/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Oxidative Stress , Oligodendroglia/metabolism , Oligodendroglia/pathology , Mitochondrial Permeability Transition Pore/metabolism , Neurons/metabolism , Neurons/pathology
13.
Circ Res ; 134(10): 1240-1255, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38563133

ABSTRACT

BACKGROUND: Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS: In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS: Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFß (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS: Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.


Subject(s)
Fibroblasts , Fibrosis , Pericytes , RGS Proteins , Pericytes/metabolism , Pericytes/pathology , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , RGS Proteins/deficiency , Fibroblasts/metabolism , Fibroblasts/pathology , Mice , Cells, Cultured , Aging/metabolism , Aging/pathology , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Male , Coculture Techniques
14.
Microvasc Res ; 154: 104682, 2024 07.
Article in English | MEDLINE | ID: mdl-38521153

ABSTRACT

Dysfunctional pericytes and disruption of adherens or tight junctions are related to many microvascular diseases, including diabetic retinopathy. In this context, visualizing retinal vascular architecture becomes essential for understanding retinal vascular disease pathophysiology. Although flat mounts provide a demonstration of the retinal blood vasculature, they often lack a clear view of microaneurysms and capillary architecture. Trypsin and elastase digestion are the two techniques for isolating retinal vasculatures in rats, mice, and other animal models. Our observations in the present study reveal that trypsin digestion impacts the association between pericytes and endothelial cells. In contrast, elastase digestion effectively preserves these features in the blood vessels. Furthermore, trypsin digestion disrupts endothelial adherens and tight junctions that elastase digestion does not. Therefore, elastase digestion emerges as a superior technique for isolating retinal vessels, which can be utilized to collect reliable and consistent data to comprehend the pathophysiology of disorders involving microvascular structures.


Subject(s)
Mice, Inbred C57BL , Pancreatic Elastase , Pericytes , Retinal Vessels , Trypsin , Animals , Pancreatic Elastase/metabolism , Trypsin/metabolism , Retinal Vessels/metabolism , Retinal Vessels/pathology , Pericytes/metabolism , Pericytes/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Tight Junctions/metabolism , Mice , Male
15.
Am J Pathol ; 194(7): 1171-1184, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548268

ABSTRACT

Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored. We hypothesized that integrin-matrix interactions contribute to PC migration from the vascular wall and conversion into interstitial myofibroblasts. Herein, pro-inflammatory tumor necrosis factor α (TNFα) or a fibrotic growth factor [transforming growth factor ß1 (TGF-ß1)] were used to evaluate human PC inflammatory and fibrotic phenotypes by assessing their migration, matrix deposition, integrin expression, and subsequent effects on endothelial dysfunction. Both TNFα and TGF-ß1 treatment altered integrin expression and matrix protein deposition, but only fibrotic TGF-ß1 drove PC migration in an integrin-dependent manner. In addition, integrin-dependent PC migration was correlated to changes in EC angiopoietin-2 levels, a marker of vascular instability. Finally, there was evidence of changes in vascular stability corresponding to disease state in human systemic sclerosis skin. This work shows that TNFα and TGF-ß1 induce changes in PC integrin expression and matrix deposition that facilitate migration and reduce vascular stability, providing evidence that microvascular destabilization can be an early indicator of tissue fibrosis.


Subject(s)
Cell Movement , Fibrosis , Integrins , Pericytes , Scleroderma, Systemic , Transforming Growth Factor beta1 , Pericytes/metabolism , Pericytes/pathology , Humans , Transforming Growth Factor beta1/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Integrins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Microvessels/pathology , Microvessels/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Skin/pathology , Skin/metabolism , Skin/blood supply
16.
Biomed Pharmacother ; 174: 116436, 2024 May.
Article in English | MEDLINE | ID: mdl-38508081

ABSTRACT

In cancer immunotherapy, chimeric antigen receptors (CARs) targeting specific antigens have become a powerful tool for cell-based therapy. CAR-natural killer (NK) cells offer selective anticancer lysis with reduced off-tumor toxicity compared to CAR-T cells, which is beneficial in the heterogeneous milieu of solid tumors. In the tumor microenvironment (TME) of glioblastoma (GBM), pericytes not only support tumor growth but also contribute to immune evasion, underscoring their potential as therapeutic targets in GBM treatment. Given this context, our study aimed to target the GBM TME, with a special focus on pericytes expressing CD19, to evaluate the potential effectiveness of CD19 CAR-iNK cells against GBM. We performed CD19 CAR transduction in induced pluripotent stem cell-derived NK (iNK) cells. To determine whether CD19 CAR targets the TME pericytes in GBM, we developed GBM-blood vessel assembloids (GBVA) by fusing GBM spheroids with blood vessel organoids. When co-cultured with GBVA, CD19 CAR-iNK cells migrated towards the pericytes surrounding the GBM. Using a microfluidic chip, we demonstrated CD19 CAR-iNK cells' targeted action and cytotoxic effects in a perfusion-like environment. GBVA xenografts recapitulated the TME including human CD19-positive pericytes, thereby enabling the application of an in vivo model for validating the efficacy of CD19 CAR-iNK cells against GBM. Compared to GBM spheroids, the presence of pericytes significantly enhanced CD19 CAR-iNK cell migration towards GBM and reduced proliferation. These results underline the efficacy of CD19 CAR-iNK cells in targeting pericytes within the GBM TME, suggesting their potential therapeutic value for GBM treatment.


Subject(s)
Antigens, CD19 , Cell Movement , Glioblastoma , Induced Pluripotent Stem Cells , Killer Cells, Natural , Pericytes , Receptors, Chimeric Antigen , Tumor Microenvironment , Pericytes/metabolism , Pericytes/pathology , Humans , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Antigens, CD19/metabolism , Antigens, CD19/immunology , Animals , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Induced Pluripotent Stem Cells/metabolism , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Mice , Xenograft Model Antitumor Assays
17.
J Neurosci ; 44(22)2024 May 29.
Article in English | MEDLINE | ID: mdl-38548341

ABSTRACT

The neurovascular unit (NVU) includes multiple different cell types, including neurons, astrocytes, endothelial cells, and pericytes, which respond to insults on very different time or dose scales. We defined differential vulnerability among these cell types, using response to two different insults: oxygen-glucose deprivation (OGD) and thrombin-mediated cytotoxicity. We found that neurons are most vulnerable, followed by endothelial cells and astrocytes. After temporary focal cerebral ischemia in male rats, we found significantly more injured neurons, compared with astrocytes in the ischemic area, consistent with differential vulnerability in vivo. We sought to illustrate different and shared mechanisms across all cell types during response to insult. We found that gene expression profiles in response to OGD differed among the cell types, with a paucity of gene responses shared by all types. All cell types activated genes relating to autophagy, apoptosis, and necroptosis, but the specific genes differed. Astrocytes and endothelial cells also activated pathways connected to DNA repair and antiapoptosis. Taken together, the data support the concept of differential vulnerability in the NVU and suggest that different elements of the unit will evolve from salvageable to irretrievable on different time scales while residing in the same brain region and receiving the same (ischemic) blood flow. Future work will focus on the mechanisms of these differences. These data suggest future stroke therapy development should target different elements of the NVU differently.


Subject(s)
Astrocytes , Endothelial Cells , Neurons , Rats, Sprague-Dawley , Animals , Male , Rats , Astrocytes/metabolism , Astrocytes/pathology , Endothelial Cells/metabolism , Neurons/metabolism , Brain/metabolism , Brain/pathology , Glucose/deficiency , Glucose/metabolism , Brain Ischemia/pathology , Brain Ischemia/metabolism , Brain Ischemia/genetics , Pericytes/metabolism , Pericytes/pathology , Neurovascular Coupling/physiology
18.
J Exp Clin Cancer Res ; 43(1): 83, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493151

ABSTRACT

BACKGROUND: Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS: Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS: Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION: The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Pericytes/metabolism , Pericytes/pathology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Angiogenesis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Cell Movement , Cell Line, Tumor , Cell Proliferation
19.
Alzheimers Res Ther ; 16(1): 56, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475929

ABSTRACT

BACKGROUND: Although abnormal accumulation of amyloid beta (Aß) protein is thought to be the main cause of Alzheimer's disease (AD), emerging evidence suggests a pivotal vascular contribution to AD. Aberrant amyloid ß induces neurovascular dysfunction, leading to changes in the morphology and function of the microvasculature. However, little is known about the underlying mechanisms between Aß deposition and vascular injuries. Recent studies have revealed that pericytes play a substantial role in the vasculopathy of AD. Additional research is imperative to attain a more comprehensive understanding. METHODS: Two-photon microscopy and laser speckle imaging were used to examine cerebrovascular dysfunction. Aß oligomer stereotactic injection model was established to explain the relationship between Aß and vasculopathy. Immunofluorescence staining, western blot, and real-time PCR were applied to detect the morphological and molecular alternations of pericytes. Primary cultured pericytes and bEnd.3 cells were employed to explore the underlying mechanisms. RESULTS: Vasculopathy including BBB damage, hypoperfusion, and low vessel density were found in the cortex of 8 to 10-month-old 5xFAD mice. A similar phenomenon accompanied by pericyte degeneration appeared in an Aß-injected model, suggesting a direct relationship between Aß and vascular dysfunction. Pericytes showed impaired features including low PDGFRß expression and increased pro-inflammatory chemokines secretion under the administration of Aß in vitro, of which supernatant cultured with bEND.3 cells led to significant endothelial dysfunction characterized by TJ protein deficiency. CONCLUSIONS: Our results provide new insights into the pathogenic mechanism underlying Aß-induced vasculopathy. Targeting pericyte therapies are promising to ameliorate vascular dysfunction in AD.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Cerebrovascular Disorders , Mice , Animals , Amyloid beta-Peptides/metabolism , Pericytes/pathology , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Alzheimer Disease/pathology , Cerebrovascular Disorders/complications
20.
EMBO J ; 43(8): 1519-1544, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528180

ABSTRACT

Pericytes and endothelial cells (ECs) constitute the fundamental components of blood vessels. While the role of ECs in tumor angiogenesis and the tumor microenvironment is well appreciated, pericyte function in tumors remains underexplored. In this study, we used pericyte-specific deletion of the nitric oxide (NO) receptor, soluble guanylate cyclase (sGC), to investigate via single-cell RNA sequencing how pericytes influence the vascular niche and the tumor microenvironment. Our findings demonstrate that pericyte sGC deletion disrupts EC-pericyte interactions, impairing Notch-mediated intercellular communication and triggering extensive transcriptomic reprogramming in both pericytes and ECs. These changes further extended their influence to neighboring cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) through paracrine signaling, collectively suppressing tumor growth. Inhibition of pericyte sGC has minimal impact on quiescent vessels but significantly increases the vulnerability of angiogenic tumor vessels to conventional anti-angiogenic therapy. In conclusion, our findings elucidate the role of pericytes in shaping the tumor vascular niche and tumor microenvironment and support pericyte sGC targeting as a promising strategy for improving anti-angiogenic therapy for cancer treatment.


Subject(s)
Neoplasms , Pericytes , Humans , Pericytes/pathology , Pericytes/physiology , Soluble Guanylyl Cyclase , Endothelial Cells/physiology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neoplasms/genetics , Neoplasms/pathology , Guanylate Cyclase , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...