Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.635
Filter
1.
Chin J Dent Res ; 27(2): 169-174, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38953482

ABSTRACT

OBJECTIVE: To evaluate the effect of entrapment of curcumin within liposomal formulation and the sustained release attitude of the formulated liposomal gel on periodontal defects in diabetic patients in clinical and biochemical terms. METHODS: Thirty diabetic patients with periodontitis were randomly assigned to three equal groups and ten healthy participants were assigned as the control group. Group I was subjected to scaling and root planing (SRP) with application of sustained release liposomal curcumin gel. Group II was subjected to scaling and root planning with application of curcumin gel. Group III was subjected to scaling and root planning with application of placebo gel. Group IV (control group), no intervention was done. The following parameters were evaluated before treatment and after 6 and 12 weeks: plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL), tumour necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß) and total antioxidant capacity (TAC). RESULTS: All study groups showed improvement in clinical and biochemical parameters that are statistically significant. Upon comparing the results of treatment modalities, the highest improvement was achieved in group I followed by group II then group III. CONCLUSION: Sustained release liposomal curcumin gel enhanced the antioxidant capacity, decreased the inflammatory mediators and showed more improvement in clinical outcome for treatment of periodontitis in diabetic patients.


Subject(s)
Curcumin , Delayed-Action Preparations , Liposomes , Humans , Curcumin/therapeutic use , Curcumin/administration & dosage , Male , Female , Middle Aged , Adult , Dental Scaling , Periodontitis/drug therapy , Root Planing , Treatment Outcome , Tumor Necrosis Factor-alpha , Antioxidants/therapeutic use , Antioxidants/administration & dosage , Periodontal Index
2.
Int J Med Mushrooms ; 26(8): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-38967207

ABSTRACT

Ganoderma lucidum is a medicinal mushroom that has been used since ancient times. We studied whether chronic oral administration of G. lucidum extract withstands increases in levels of proinflammatory TNF-α and lipid peroxide (LPO), an indicator of oxidative stress, in the gingival tissues of periodontitis model rats. G. lucidum extract was initially examined for inhibition of in vitro oxidative stress, produced by Fenton's reagents in whole homogenates of fresh gum tissues from rats. Prior to in vivo and in vitro experiments with rats, G. lucidum extract was quantitatively tested for its total polyphenol and/or flavonoid contents and ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radicals. Chronic oral administration of G. lucidum extract (300 mg/kg BW) significantly decreased TNF-α and LPO levels in the gingival tissues of periodontitis model rats. G. lucidum extract also inhibited (P < 0.05) in vitro oxidative stress, as indicated by reduced levels of LPO in G. lucidum extract-preincubated gum tissue homogenates of fresh rats. The in vitro results were, thus, consistent with the in vivo inhibition of lipid peroxidation, DPPH free radical-scavenging effects, and the presence of total polyphenols/flavonoids in G. lucidum extract. Our results provide the evidence, at least partially, for the beneficial effects of G. lucidum on periodontitis, an inflammatory condition of gums which is associated with oxidative stress and preceded by infectious gum diseases.


Subject(s)
Gingiva , Oxidative Stress , Periodontitis , Reishi , Tumor Necrosis Factor-alpha , Animals , Oxidative Stress/drug effects , Periodontitis/drug therapy , Periodontitis/prevention & control , Tumor Necrosis Factor-alpha/metabolism , Reishi/chemistry , Gingiva/drug effects , Gingiva/metabolism , Rats , Male , Administration, Oral , Disease Models, Animal , Antioxidants/pharmacology , Antioxidants/administration & dosage , Rats, Wistar
3.
BMC Oral Health ; 24(1): 763, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965550

ABSTRACT

BACKGROUND: There is insufficient clinical and microbiological evidence to support the use of diode laser and air-polishing with erythritol as supplements to scaling and root planning(SRP). The aim of the current study is to evaluate the clinical and microbiologic efficacy of erythritol subgingival air polishing and diode laser in treatment of periodontitis. METHODS: The study encompassed twenty-four individuals seeking periodontal therapy and diagnosed with stage I and stage II periodontitis. Eight patients simply underwent SRP. Eight more patients had SRP followed by erythritol subgingival air polishing, and eight patients had SRP followed by diode laser application. At baseline and six weeks, clinical periodontal parameters were measured, including Plaque Index (PI), Gingival Index (GI), periodontal Probing Depth (PPD), and Clinical Attachment Level (CAL). The bacterial count of Aggregatibacter actinomycetemcomitans(A.A), Porphyromonas gingivalis (P.G) was evaluated at different points of time. RESULTS: The microbiological assessment revealed significant differences in the count of A.A. between the laser and erythritol groups immediately after treatment, indicating a potential impact on microbial levels. However, the microbial levels showed fluctuations over the subsequent weeks, without statistically significant differences. Plaque indices significantly decreased post-treatment in all groups, with no significant inter-group differences. Gingival indices decreased, and the laser group showed lower values than erythritol and control groups. PPD and CAL decreased significantly across all groups, with the laser group exhibiting the lowest values. CONCLUSION: The supplementary use of diode laser and erythritol air polishing, alongside SRP, represents an expedited periodontal treatment modality. This approach leads to a reduction in bacteria and improvement in periodontal health. TRIAL REGISTRATION: This clinical trial was registered on Clinical Trials.gov (Registration ID: NCT06209554) and released on 08/01/2024.


Subject(s)
Aggregatibacter actinomycetemcomitans , Bacterial Load , Dental Plaque Index , Dental Scaling , Erythritol , Lasers, Semiconductor , Periodontal Index , Porphyromonas gingivalis , Root Planing , Humans , Erythritol/therapeutic use , Female , Male , Porphyromonas gingivalis/isolation & purification , Porphyromonas gingivalis/drug effects , Adult , Dental Scaling/methods , Lasers, Semiconductor/therapeutic use , Bacterial Load/drug effects , Middle Aged , Aggregatibacter actinomycetemcomitans/isolation & purification , Aggregatibacter actinomycetemcomitans/drug effects , Root Planing/methods , Treatment Outcome , Periodontal Pocket/therapy , Periodontal Pocket/microbiology , Periodontal Attachment Loss/therapy , Periodontal Attachment Loss/microbiology , Periodontitis/microbiology , Periodontitis/therapy , Periodontitis/drug therapy , Follow-Up Studies , Air Abrasion, Dental/methods
4.
Clin Sci (Lond) ; 138(12): 725-739, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38840496

ABSTRACT

OBJECTIVES: Clinical studies have confirmed that galectin-3 (Gal-3) levels are significantly elevated in periodontitis patients. The present study aimed to explore the effects of Gal-3 inhibition on periodontal inflammation in vitro and in vivo. METHODS: Human gingival fibroblasts (HGFs) with or without Gal-3 knockdown were stimulated by lipopolysaccharide (LPS), and a ligation-induced mouse periodontitis model treated with a Gal-3 inhibitor was established. Hematoxylin-eosin (H&E) and immunohistochemistry (IHC) staining were used to evaluate Gal-3 levels in gingival tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect Gal-3, interleukin (IL)-6, IL-8, and C-C motif ligand 2 (CCL2) expression. Immunofluorescence and western blotting were used to detect NF-κB and ERK signaling pathway activation. Micro-computed tomography was used to analyse the degree of bone loss. RESULTS: Gal-3 was significantly up-regulated in inflamed gingival tissues and LPS-induced HGFs. Gal-3 knockdown markedly decreased LPS-induced IL-6, IL-8, and CCL2 expression and blocked NF-κB and ERK signaling pathway activation in HGFs. In the mouse periodontitis model, Gal-3 inhibition significantly alleviated IL-1ß and IL-6 infiltration in gingival tissue and mitigated periodontal bone loss. CONCLUSIONS: Gal-3 inhibition notably alleviated periodontal inflammation partly through blocking NF-κB and ERK signaling pathway activation.


Subject(s)
Fibroblasts , Galectin 3 , Gingiva , Lipopolysaccharides , Periodontitis , Animals , Humans , Male , Mice , Cells, Cultured , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/drug effects , Galectin 3/metabolism , Galectin 3/antagonists & inhibitors , Galectin 3/genetics , Gingiva/metabolism , Gingiva/pathology , Mice, Inbred C57BL , NF-kappa B/metabolism , Periodontitis/metabolism , Periodontitis/drug therapy , Signal Transduction/drug effects
5.
Clin Oral Investig ; 28(6): 354, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833009

ABSTRACT

OBJECTIVES: This single-center randomized, parallel design, clinical trial with a 2-week follow-up involved patients affected by periodontitis undergoing periodontal surgery. The aim was to evaluate periodontal surgical wound healing with the use of chlorhexidine-based mouth rinses versus an untreated control group. MATERIALS AND METHODS: Periodontal surgery was performed following a standardized protocol. Patients were randomly prescribed i) chlorhexidine (CHX) + anti-discoloration system (ADS) + hyaluronic acid (HA), ii) CHX + ADS or iii) no treatment (control group). Plaque score, gingival inflammation, and Early Healing Index (EHI), assessing the degree of wound closure and the presence of fibrin and necrosis, were evaluated at 3, 7 and 14 days after surgery. RESULTS: In total, 33 patients were enrolled. Patients were comparable at baseline for all measured clinical parameters. At 3-days wound healing was significantly improved in all patients treated with CHX + ADS-based mouth rinses with a lower EHI score at the interdental papillae compared with control group (p < 0.01). CHX + ADS + HA group presented improved healing across all time points in terms of EHI, plaque containment, and gingival inflammation when compared to control group (p < 0.01). CONCLUSIONS: The usage of CHX-ADS following periodontal surgery improved early wound healing, reduced plaque accumulation and gingival inflammation. During the early post-operative period the adjunct of HA further improved soft tissue closure. CLINICAL RELEVANCE: This study aims at evaluating the response of gingival tissues to mouth rinsing with chlorhexidine and anti-discoloration system (CHX + ADS) or CHX + ADS + hyaluronic acid (CHX + ADS + HA) versus no rinse in terms of healing of the periodontal surgical wound. CHX + ADS mouth rinses enhanced early soft tissue closure after periodontal surgery and contributed to the reduction in plaque accumulation and gingival inflammation. The adjunct of HA may be beneficial especially in the early post-operative period. CHX + ADS administration following periodontal surgery may improve soft tissue healing in the first two post-operative weeks.


Subject(s)
Chlorhexidine , Hyaluronic Acid , Mouthwashes , Wound Healing , Humans , Chlorhexidine/therapeutic use , Wound Healing/drug effects , Female , Male , Mouthwashes/therapeutic use , Middle Aged , Hyaluronic Acid/therapeutic use , Treatment Outcome , Anti-Infective Agents, Local/therapeutic use , Adult , Periodontitis/drug therapy , Periodontal Index , Dental Plaque Index
6.
ACS Appl Mater Interfaces ; 16(26): 33053-33069, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38899855

ABSTRACT

The primary pathology of periodontitis involves the gradual deterioration of periodontal tissues resulting from the inflammatory reaction triggered by bacterial infection. In this study, a novel drug for periodontal pocket injection, known as the Shed-Cu-HA hydrogel, was developed by incorporating copper ions (Cu2+) and Shed-derived exosomes (Shed-exo) inside the hyaluronic acid (HA) hydrogel. Suitable concentrations of Cu2+ and Shed-exo released from Shed-Cu-HA enhanced cell viability and cell proliferation of human periodontal ligament stem cells. Additionally, the Shed-Cu-HA demonstrated remarkable antibacterial effects against the key periodontal pathogen (Aa) owing to the synergistic effect of Cu2+ and HA. Furthermore, the material effectively suppressed macrophage inflammatory response via the IL-6/JAK2/STAT3 pathway. Moreover, the Shed-Cu-HA, combining the inflammation-regulating properties of HA with the synergistic osteogenic activity of Shed-exo and Cu2+, effectively upregulated the expression of genes and proteins associated with osteogenic differentiation. The experimental findings from a mouse periodontitis model demonstrated that the administration of Shed-Cu-HA effectively reduced the extent of inflammatory cell infiltration and bacterial infections in gingival tissues and facilitated the regeneration of periodontal bone tissues and collagen after 2 and 4 weeks of injection. Consequently, it holds significant prospects for future applications in periodontitis treatment.


Subject(s)
Anti-Bacterial Agents , Bone Regeneration , Copper , Exosomes , Hyaluronic Acid , Hydrogels , Osteogenesis , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Animals , Osteogenesis/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Mice , Copper/chemistry , Copper/pharmacology , Bone Regeneration/drug effects , Exosomes/metabolism , Exosomes/chemistry , Periodontal Ligament/drug effects , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Periodontitis/drug therapy , Periodontitis/pathology , Periodontitis/microbiology , Cell Survival/drug effects , Cell Proliferation/drug effects
7.
J Microencapsul ; 41(5): 327-344, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38829223

ABSTRACT

AIM: The work reports a novel nanophytosomal gel encapsulating Alpinia galanga (L.) Willd leaf essential oil to treat periodontal infections. METHODS: Alpinia oil-loaded nanophytosomes (ANPs) were formulated by lipid layer hydration technique and were evaluated by FESEM, cryo-TEM, loading efficiency, zeta potential, particle size, release profile etc. Selected ANPs-loaded gel (ANPsG) was evaluated by both in vitro and in vivo methods. RESULTS: Selected ANPs were spherical, unilamellar, 49.32 ± 2.1 nm size, 0.45 PDI, -46.7 ± 0.8 mV zeta potential, 9.8 ± 0.5% (w/w) loading, 86.4 ± 3.02% (w/w) loading efficiency with sustained release profile. ANPsG showed good spreadability (6.8 ± 0.3 gm.cm/sec), extrudability (79.33 ± 1.5%), viscosity (36522 ± 0.82 cps), mucoadhesive strength (44.56 ± 3.5 gf) with sustained ex vivo release tendency. Satisfied ZOI and MIC was observed for ANPsG against periodontal bacteria vs. standard/control. ANPsG efficiently treated infection in ligature induced periodontitis model. Key pharmacokinetic parameters like AUC, MRT, Vd were enhanced for ANPsG. CONCLUSION: ANPsG may be investigated for futuristic clinical studies.


Subject(s)
Alpinia , Gels , Oils, Volatile , Plant Leaves , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacokinetics , Oils, Volatile/pharmacology , Alpinia/chemistry , Animals , Gels/chemistry , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Periodontal Diseases/drug therapy , Male , Nanoparticles/chemistry , Rats , Periodontitis/drug therapy , Computer Simulation
8.
Int J Biol Macromol ; 273(Pt 1): 132924, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866282

ABSTRACT

The continuous stimulation of periodontitis leads to a decrease in the number of stem cells within the lesion area and significantly impairing their regenerative capacity. Therefore, it is crucial to promote stem cell homing and regulate the local immune microenvironment to suppress inflammation for the regeneration of periodontitis-related tissue defects. Here, we fabricated a novel multifunctional bilayer nanofibrous membrane using electrospinning technology. The dense poly(caprolactone) (PCL) nanofibers served as the barrier layer to resist epithelial invasion, while the polyvinyl alcohol/chitooligosaccharides (PVA/COS) composite nanofiber membrane loaded with calcium beta-hydroxy-beta-methylbutyrate (HMB-Ca) acted as the functional layer. Material characterization tests revealed that the bilayer nanofibrous membrane presented desirable mechanical strength, stability, and excellent cytocompatibility. In vitro, PCL@PVA/COS/HMB-Ca (P@PCH) can not only directly promote rBMSCs migration and differentiation, but also induce macrophage toward pro-healing (M2) phenotype-polarization with increasing the secretion of anti-inflammatory and pro-healing cytokines, thus providing a favorable osteoimmune environment for stem cells recruitment and osteogenic differentiation. In vivo, the P@PCH membrane effectively recruited host MSCs to the defect area, alleviated inflammatory infiltration, and accelerated bone defects repair. Collectively, our data indicated that the P@PCH nanocomposite membrane might be a promising biomaterial candidate for guided tissue regeneration in periodontal applications.


Subject(s)
Macrophages , Mesenchymal Stem Cells , Nanofibers , Nanofibers/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Animals , Macrophages/drug effects , Macrophages/immunology , Cell Differentiation/drug effects , Polyesters/chemistry , Periodontitis/therapy , Periodontitis/drug therapy , Membranes, Artificial , Regeneration/drug effects , Osteogenesis/drug effects , Cell Movement/drug effects , Tissue Scaffolds/chemistry , Mice , Rats , Humans , Polyvinyl Alcohol/chemistry
9.
Int J Biol Macromol ; 273(Pt 2): 133237, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38897513

ABSTRACT

This study investigates the incorporation of block natural rubber (NR) as a viscosity-inducing agent in NR oily liquids designed for drug delivery systems. A variety of liquids, encompassing natural oils, synthetic and non-oil liquids, and a eutectic mixture, were incorporated with NR using solvent displacement technique. Successful formulations were achieved for several oily liquids, with viscosity correlating to NR concentration. Particularly, a eutectic mixture of menthol and camphor exhibited optimal viscosity by direct dissolving enabling the development of transdermal ibuprofen delivery and injectable azithromycin for periodontitis treatment. NR prolonged the release of both drugs. The extended-release ibuprofen system holds promise for transdermal applications, while the azithromycin system displayed inhibitory effects against Staphylococcus aureus, Streptococcus mutans, and Porphyromonas gingivalis, suggesting potential for periodontitis treatment. Overall, this investigation advances the development of NR oily liquids as a versatile drug delivery system that can be applied both on the skin and for the local injection into the periodontal pocket, showcasing promise for various therapeutic applications.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Rubber , Rubber/chemistry , Viscosity , Periodontal Pocket/drug therapy , Periodontal Pocket/microbiology , Drug Liberation , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Ibuprofen/pharmacology , Azithromycin/administration & dosage , Humans , Animals , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Periodontitis/drug therapy , Periodontitis/microbiology
10.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892077

ABSTRACT

Periodontitis development arises from the intricate interplay between bacterial biofilms and the host's immune response, where macrophages serve pivotal roles in defense and tissue homeostasis. Here, we uncover the mitigative effect of copper chelator Tetrathiomolybdate (TTM) on periodontitis through inhibiting cuproptosis, a newly identified form of cell death which is dependent on copper. Our study reveals concurrent cuproptosis and a macrophage marker within murine models. In response to lipopolysaccharide (LPS) stimulation, macrophages exhibit elevated cuproptosis-associated markers, which are mitigated by the administration of TTM. TTM treatment enhances autophagosome expression and mitophagy-related gene expression, countering the LPS-induced inhibition of autophagy flux. TTM also attenuates the LPS-induced fusion of autophagosomes and lysosomes, the degradation of lysosomal acidic environments, lysosomal membrane permeability increase, and cathepsin B secretion. In mice with periodontitis, TTM reduces cuproptosis, enhances autophagy flux, and decreases Ctsb levels. Our findings underscore the crucial role of copper-chelating agent TTM in regulating the cuproptosis/mitophagy/lysosome pathway during periodontitis inflammation, suggesting TTM as a promising approach to alleviate macrophage dysfunction. Modulating cuproptosis through TTM treatment holds potential for periodontitis intervention.


Subject(s)
Autophagy , Chelating Agents , Copper , Lysosomes , Molybdenum , Periodontitis , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Mice , Periodontitis/drug therapy , Periodontitis/metabolism , Autophagy/drug effects , Molybdenum/pharmacology , Copper/metabolism , Chelating Agents/pharmacology , Lipopolysaccharides , Macrophages/metabolism , Macrophages/drug effects , Chelation Therapy/methods , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Male
11.
J Nanobiotechnology ; 22(1): 359, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907216

ABSTRACT

Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.


Subject(s)
Biocompatible Materials , Immunotherapy , Macrophages , Periodontitis , Humans , Periodontitis/drug therapy , Periodontitis/therapy , Biocompatible Materials/chemistry , Macrophages/immunology , Macrophages/drug effects , Animals , Immunotherapy/methods , Drug Delivery Systems/methods
12.
Lasers Med Sci ; 39(1): 155, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865020

ABSTRACT

The aim of this systematic review and meta-analysis (SRM) was to evaluate the effectiveness of the adjunctive use of antimicrobial photodynamic therapy (aPDT) in non-surgical periodontal treatment (NSPT) in subjects with Human Immunodeficiency Virus (HIV) and periodontitis. This SRM was registered in PROSPERO (CRD42023410180) and followed the guidelines of PRISMA 2020. Searches were performed in different electronic databases. Risk of bias was performed using the Cochrane Risk of Bias tool (RoB 2.0) for randomized clinical trials (RCT). Meta-analysis was performed using Rev Man software. The mean difference (MD) measure of effect was calculated, the random effect model was applied with a 95% confidence interval, and heterogeneity was tested by the I2 index. The certainty of the evidence was rated using GRADE. A total of 1118 records were screened, and four studies were included. There was a greater reduction in the microbial load of periodontopathogens after NSPT with aPDT. Meta-analysis showed that probing depth (post 3 and 6 months) and clinical attachment loss (post 6 months) were lower for the aPDT-treated group than the NSPT alone: MD -0.39 [-0.74; -0.05], p = 0.02; MD -0.70 [-0.99; -0.41], p < 0.0001; MD -0.84 [-1,34; -0.34], p = 0.0001, respectively. Overall, the studies had a low risk of bias and, the certainty of evidence was rated as moderate. It is suggested that aPDT is a promising adjuvant therapy, showing efficacy in the reduction of the microbial load and in some clinical parameters of individuals with periodontitis and HIV.


Subject(s)
HIV Infections , Periodontitis , Photochemotherapy , Humans , Photochemotherapy/methods , HIV Infections/complications , HIV Infections/drug therapy , Periodontitis/therapy , Periodontitis/drug therapy , Periodontitis/microbiology , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/administration & dosage
13.
J Mater Chem B ; 12(25): 6005-6032, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38869470

ABSTRACT

Periodontitis is an immune-inflammatory disease caused by dental plaque, and deteriorates the periodontal ligament, causes alveolar bone loss, and may lead to tooth loss. To treat periodontitis, antibacterial and anti-inflammation approaches are required to reduce bone loss. Thus, appropriate drug administration methods are significant. Due to their "syringeability", biocompatibility, and convenience, injectable hydrogels and associated methods have been extensively studied and used for periodontitis therapy. Such hydrogels are made from natural and synthetic polymer materials using physical and/or chemical cross-linking approaches. Interestingly, some injectable hydrogels are stimuli-responsive hydrogels, which respond to the local microenvironment and form hydrogels that release drugs. Therefore, as injectable hydrogels are different and highly varied, we systematically reviewed the periodontal treatment field from three perspectives: raw material sources, cross-linking methods, and stimuli-responsive methods. We then discussed current challenges and opportunities for the translation of hydrogels to clinic, which may guide further injectable hydrogel designs for periodontitis.


Subject(s)
Hydrogels , Periodontitis , Periodontitis/drug therapy , Hydrogels/chemistry , Humans , Animals , Injections , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
14.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892350

ABSTRACT

Periodontitis is an inflammatory disease caused by Porphyromonas gingivalis (P. gingivalis) in the oral cavity. This periodontal disease causes damage to the periodontal ligament and alveolar bone and can cause tooth loss, but there is no definite treatment yet. In this study, we investigated the possibility of using no-ozone cold plasma to safely treat periodontitis in the oral cavity. First, human gingival fibroblasts (HGFs) were treated with P. gingivalis-derived lipopolysaccharide (PG-LPS) to induce an inflammatory response, and then the anti-inflammatory effect of NCP was examined, and a study was conducted to identify the mechanism of action. Additionally, the anti-inflammatory effect of NCP was verified in rats that developed an inflammatory response similar to periodontitis. When NCP was applied to PG-LPS-treated HGFs, the activities of inflammatory proteins and cytokines were effectively inhibited. It was confirmed that the process of denaturing the medium by charged particles of NCP is essential for the anti-inflammatory effect of NCP. Also, it was confirmed that repeated treatment of periodontitis rats with NCP effectively reduced the inflammatory cells and osteoclast activity. As a result, this study suggests that NCP can be directly helpful in the treatment of periodontitis in the future.


Subject(s)
Anti-Inflammatory Agents , Fibroblasts , Gingiva , Lipopolysaccharides , Periodontitis , Porphyromonas gingivalis , Animals , Periodontitis/microbiology , Periodontitis/drug therapy , Rats , Anti-Inflammatory Agents/pharmacology , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Ozone/pharmacology , Plasma Gases/pharmacology , Plasma Gases/therapeutic use , Male , Cytokines/metabolism , Disease Models, Animal , Nitric Oxide/metabolism , Cells, Cultured
15.
Int J Oral Sci ; 16(1): 38, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734708

ABSTRACT

Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm. The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress. Sinensetin (Sin) is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities. Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms. We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells (PDLCs) under inflammatory conditions. Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo. By molecular docking, we identified Bach1 as a strong binding target of Sin, and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays. Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter, subsequently upregulating the expression of the key antioxidant factor HO-1. Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects. Additionally, we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1, thereby inducing HO-1 expression and inhibiting oxidative stress. Overall, Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Flavonoids , Oxidative Stress , Periodontitis , Ubiquitination , Animals , Humans , Male , Rats , Antioxidants/pharmacology , Basic-Leucine Zipper Transcription Factors/drug effects , Basic-Leucine Zipper Transcription Factors/metabolism , Blotting, Western , Chromatin Immunoprecipitation , Disease Models, Animal , Molecular Docking Simulation , Oxidative Stress/drug effects , Periodontal Ligament/drug effects , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Periodontitis/drug therapy , Periodontitis/prevention & control , Periodontitis/metabolism , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Ubiquitination/drug effects , Flavonoids/pharmacology
16.
J Nanobiotechnology ; 22(1): 287, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797862

ABSTRACT

Periodontitis is a prevalent chronic inflammatory disease, which leads to gradual degradation of alveolar bone. The challenges persist in achieving effective alveolar bone repair due to the unique bacterial microenvironment's impact on immune responses. This study explores a novel approach utilizing Metal-Organic Frameworks (MOFs) (comprising magnesium and gallic acid) for promoting bone regeneration in periodontitis, which focuses on the physiological roles of magnesium ions in bone repair and gallic acid's antioxidant and immunomodulatory properties. However, the dynamic oral environment and irregular periodontal pockets pose challenges for sustained drug delivery. A smart responsive hydrogel system, integrating Carboxymethyl Chitosan (CMCS), Dextran (DEX) and 4-formylphenylboronic acid (4-FPBA) was designed to address this problem. The injectable self-healing hydrogel forms a dual-crosslinked network, incorporating the MOF and rendering its on-demand release sensitive to reactive oxygen species (ROS) levels and pH levels of periodontitis. We seek to analyze the hydrogel's synergistic effects with MOFs in antibacterial functions, immunomodulation and promotion of bone regeneration in periodontitis. In vivo and in vitro experiment validated the system's efficacy in inhibiting inflammation-related genes and proteins expression to foster periodontal bone regeneration. This dynamic hydrogel system with MOFs, shows promise as a potential therapeutic avenue for addressing the challenges in bone regeneration in periodontitis.


Subject(s)
Bone Regeneration , Chitosan , Drug Delivery Systems , Hydrogels , Metal-Organic Frameworks , Periodontitis , Periodontitis/drug therapy , Hydrogels/chemistry , Bone Regeneration/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Chitosan/chemistry , Chitosan/analogs & derivatives , Mice , Drug Delivery Systems/methods , Dextrans/chemistry , Male , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Delayed-Action Preparations/chemistry , Humans
17.
Clin Exp Dent Res ; 10(3): e908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798052

ABSTRACT

OBJECTIVE: Periodontitis is an inflammatory condition induced by subgingival bacterial dysbiosis, resulting in inflammatory-mediated destruction of tooth-supporting structures, potentially leading to the formation of infrabony defects. This case report describes the treatment of a patient who presented with a combination 1-2-wall defect on tooth 21. To maintain the residual periodontal attachment and minimize esthetic consequences, a regenerative approach was performed using recombinant human platelet-derived growth factor-BB (rh-PDGF-BB) and ß-tricalcium phosphate (ß-TCP). MATERIALS AND METHODS: At the time of postscaling/root planing reevaluation, a 34-year-old Asian male initially diagnosed with molar/incisor pattern stage III grade C periodontitis exhibited a 6-mm residual probing depth on the mesiopalatal aspect of tooth 21. Periodontal regenerative surgery was performed using rh-PDGF-BB with ß-TCP, without the use of a membrane. RESULTS: At the 1-year follow-up, a significant reduction in probing depth and radiographic evidence of bone fill were observed. Additionally, re-entry surgery for implant placement at site tooth 23 confirmed bone fill in the defect on tooth 21. CONCLUSION: These results demonstrate the efficacy of rh-PDGF-BB with ß-TCP in enhancing periodontal regeneration and support its use as a treatment option when treating poorly contained infrabony defects in the esthetic zone.


Subject(s)
Becaplermin , Calcium Phosphates , Guided Tissue Regeneration, Periodontal , Humans , Male , Calcium Phosphates/therapeutic use , Adult , Becaplermin/therapeutic use , Guided Tissue Regeneration, Periodontal/methods , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Alveolar Bone Loss/surgery , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/pathology , Periodontitis/surgery , Periodontitis/drug therapy , Proto-Oncogene Proteins c-sis/therapeutic use , Bone Regeneration/drug effects , Esthetics, Dental
18.
J Control Release ; 370: 600-613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735394

ABSTRACT

The sulfate radical (SO4•-), known for its high reactivity and long lifespan, has emerged as a potent antimicrobial agent. Its exceptional energy allows for the disruption of vital structures and metabolic pathways in bacteria that are usually inaccessible to common radicals. Despite its promising potential, the efficient generation of this radical, particularly through methods involving enzymes and photocatalysis, remains a substantial challenge. Here, we capitalized on the peroxidase (POD)-mimicking activity and photocatalytic properties of cerium oxide (CeO2) nanozymes, integrating these properties with the enhanced concept of plasma gold nanorod (GNR) to develop a half-encapsulated core@shell GNRs@CeO2 Janus heterostructure impregnated with persulfate. Under near-infrared irradiation, the GNRs generate hot electrons, thereby boosting the CeO2's enzyme-like activity and initiating a potent reactive oxygen species (ROS) storm. This distinct nanoarchitecture facilitates functional specialization, wherein the heterostructure and efficient light absorption ensured continuous hot electron flow, not only enhancing the POD-like activity of CeO2 for the production of SO4•- effectively, but also contributing a significant photothermal effect, disrupting periodontal plaque biofilm and effectively eradicating pathogens. Furthermore, the local temperature elevation synergistically enhances the POD-like activity of CeO2. Transcriptomics analysis, as well as animal experiments of the periodontitis model, have revealed that pathogens undergo genetic information destruction, metabolic disorders, and pathogenicity changes in the powerful ROS system, and profound therapeutic outcomes in vivo, including anti-inflammation and bone preservation. This study demonstrated that energy transfer to augment nanozyme activity, specifically targeting ROS generation, constitutes a significant advancement in antibacterial treatment.


Subject(s)
Cerium , Gold , Nanocomposites , Periodontitis , Sulfates , Cerium/chemistry , Cerium/pharmacology , Animals , Periodontitis/drug therapy , Nanocomposites/chemistry , Gold/chemistry , Sulfates/chemistry , Reactive Oxygen Species/metabolism , Catalysis , Nanotubes/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Male , Mice , Biofilms/drug effects , Porphyromonas gingivalis/drug effects
19.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785151

ABSTRACT

Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti­inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase­1 (HO­1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription­quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)­2, TNF­α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ­2, TNF­α, RANKL and OPG. Following HO­1 knockdown, the same treatment was performed. The expression of COX­2 in rat gingival tissue was observed by immunohistochemistry. One­way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. With increase of Oroxylin A dose, the expression of HO­1 was gradually upregulated. When HO­1 was knocked down, Oroxylin A did not downregulate the expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. Immunohistochemical results showed that expression of COX­2 was downregulated by Oroxylin A, and the expression of TNF­α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS­induced RGFs and had a good inhibitory effect on periodontitis in rats.


Subject(s)
Cyclooxygenase 2 , Fibroblasts , Flavonoids , Periodontitis , RANK Ligand , Animals , Rats , Flavonoids/pharmacology , Periodontitis/metabolism , Periodontitis/drug therapy , Periodontitis/pathology , RANK Ligand/metabolism , RANK Ligand/genetics , Male , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Lipopolysaccharides , Gingiva/metabolism , Gingiva/drug effects , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cells, Cultured , Rats, Sprague-Dawley
20.
J Photochem Photobiol B ; 256: 112926, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714001

ABSTRACT

Periodontitis, a chronic infectious disease leading to gingival atrophy and potential tooth loss through alveolar bone resorption, is closely linked to the oral microbiome. Fusobacterium nucleatum, known to facilitate late-stage bacterial colonization in the oral microbiome, plays a crucial role in the onset of periodontitis. Controlling F. nucleatum abundance is vital for preventing and treating periodontal disease. Photodynamic therapy combined with 5-aminolevulinic acid (ALA-PDT) has been reported to be bactericidal against Pseudomonas aeruginosa and Staphylococcus aureus. We aimed to investigate the bactericidal potential of ALA-PDT against F. nucleatum, which was evaluated by examining the impact of varying 5-ALA concentrations, culture time, and light intensity. After ALA-PDT treatment, DNA was extracted from interdental plaque samples collected from 10 volunteers and sequenced using the Illumina MiSeq platform. To further elucidate the bactericidal mechanism of ALA-PDT, porphyrins were extracted from F. nucleatum following cultivation with 5-ALA and subsequently analyzed using fluorescence spectra. ALA-PDT showed a significant bactericidal effect against F. nucleatum. Its bactericidal activity demonstrated a positive correlation with culture time and light intensity. Microbiota analysis revealed no significant alteration in α-diversity within the ALA-PDT group, although there was a noteworthy reduction in the proportion of the genus Fusobacterium. Furthermore, fluorescence spectral analysis indicated that F. nucleatum produced an excitable photosensitive substance following the addition of 5-ALA. Overall, if further studies confirm these results, this combined therapy could be an effective strategy for reducing the prevalence of periodontitis.


Subject(s)
Aminolevulinic Acid , Fusobacterium nucleatum , Periodontitis , Photochemotherapy , Photosensitizing Agents , Fusobacterium nucleatum/drug effects , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Humans , Periodontitis/microbiology , Periodontitis/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Adult , Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Female , Microbiota/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...