Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.520
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928510

ABSTRACT

The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health. This study is aimed at evaluating the effect of an aqueous extract of Gloiopeltis tenax (GTAE) on myogenesis and muscle atrophy caused by dexamethasone (DEX). The GTAE promoted myogenic differentiation, accompanied by an increase in peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) expression and mitochondrial content in myoblast cell culture. In addition, the GTAE alleviated the DEX-mediated myotube atrophy that is attributable to the Akt-mediated inhibition of the Atrogin/MuRF1 pathway. Furthermore, an in vivo study using a DEX-induced muscle atrophy mouse model demonstrated the efficacy of GTAE in protecting muscles from atrophy and enhancing mitochondrial biogenesis and function, even under conditions of atrophy. Taken together, this study suggests that the GTAE shows propitious potential as a nutraceutical for enhancing muscle function and preventing muscle wasting.


Subject(s)
Dexamethasone , Muscle Development , Muscular Atrophy , Plant Extracts , Animals , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Muscle Development/drug effects , Mice , Plant Extracts/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Cell Differentiation/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Cell Line , Muscle Proteins/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Mice, Inbred C57BL , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Rhodophyta
2.
Biomolecules ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927047

ABSTRACT

Acute pancreatitis (AP) entails pancreatic inflammation, tissue damage and dysregulated enzyme secretion, including pancreatic lipase (PL). The role of irisin, an anti-inflammatory and anti-apoptotic cytokine, in AP and exocrine pancreatic stress is unclear. We have previously shown that irisin regulates PL through the PPARγ-PGC1α-FNDC5 pathway. In this study, we investigated irisin and irisin's pathway on AP in in vitro (AR42J-B13) and ex vivo (rat primary acinar) models using molecular, biochemical and immunohistochemistry methodology. Pancreatitis induction (cerulein (cer)) resulted in a significant up-regulation of the PPARγ-PGC1α-FNDC5 axis, PL expression and secretion and endoplasmic reticulum (ER) stress unfolded protein response (UPR) signal-transduction markers (CHOP, XBP-1 and ATF6). Irisin addition in the cer-pancreatitis state resulted in a significant down-regulation of the PPARγ-PGC1α-FNDC5 axis, PPARγ nucleus-translocation and inflammatory state (TNFα and IL-6) in parallel to diminished PL expression and secretion (in vitro and ex vivo models). Irisin addition up-regulated the expression of pro-survival UPR markers (ATF6 and XBP-1) and reduced UPR pro-apoptotic markers (CHOP) under cer-pancreatitis and induced ER stress (tunicamycin), consequently increasing cells viability. Irisin's pro-survival effect under cer-pancreatitis state was abolished under PPARγ inhibition. Our findings suggest irisin as a potential therapeutic option for AP via its ability to up-regulate pro-survival UPR signals and activate the PPARγ-PGC1α-FNDC5 pathway.


Subject(s)
Acinar Cells , Cell Survival , Fibronectins , PPAR gamma , Pancreatitis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , Unfolded Protein Response , Fibronectins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/drug therapy , PPAR gamma/metabolism , Unfolded Protein Response/drug effects , Rats , Cell Survival/drug effects , Acinar Cells/metabolism , Acinar Cells/drug effects , Acinar Cells/pathology , Signal Transduction/drug effects , Endoplasmic Reticulum Stress/drug effects , Ceruletide , Male , Cell Line , Lipase/metabolism
3.
Neurotox Res ; 42(4): 30, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884699

ABSTRACT

Central nervous system oxygen toxicity (CNS-OT) is a complication of hyperbaric oxygen (HBO) treatment, with limited prevention and treatment options available. In this study, we aimed to explore the effect of polyethylene glycol 300 (PEG300) on CNS-OT and underlying mechanisms. Motor and cognitive functions of mice in normobaric conditions were evaluated by Morris water maze, passive active avoidance, and rotarod tests. HBO was applied at 6 atmospheres absolute (ATA) for 30 min after drug administration. The latency period of convulsion in mice was recorded, and hippocampal tissues were extracted for biochemical experiments. Our experimental results showed that PEG300 extended the convulsion latencies in CNS-OT mice, reduced oxidative stress and inflammation levels in hippocampal tissues. Furthermore, PEG300 preserved mitochondrial integrity and maintained mitochondrial membrane potential in hippocampal tissue by upregulating Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α). This protective effect was enhanced following the administration of ZLN005, an agonist of PGC-1a. Hence, our study suggests that PEG300 might exert protective effects by upregulating PGC-1α expression and preserving mitochondrial health, offering promising prospects for CNS-OT treatment.


Subject(s)
Hippocampus , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Polyethylene Glycols , Up-Regulation , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Male , Polyethylene Glycols/toxicity , Polyethylene Glycols/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology , Oxygen/metabolism , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Oxidative Stress/drug effects , Oxidative Stress/physiology
4.
Physiol Rep ; 12(12): e16117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898524

ABSTRACT

This study aimed to investigate how intermittent hyperoxic exposure (three cycles of 21% O2 [10 min] and 30% O2 [15 min]) affects exercise performance in mice. Three hours after the acute exposure, there was an observed increase in mRNA levels of phosphofructokinase (Bayes factor [BF] ≥ 10), mitochondrial transcription factor-A (BF ≥10), PPAR-α (BF ≥3), and PPAR-γ (BF ≥3) in the red gastrocnemius muscle (Gr). Four weeks of exercise training under intermittent (INT), but not continuous (HYP), hyperoxia significantly (BF ≥30) increased maximal exercise capacity compared to normoxic exercise-trained (ET) group. INT group exhibited significantly higher activity levels of 3-hydroxyacyl-CoA-dehydrogenase (HAD) in Gr (BF = 7.9) compared to ET group. Pyruvate dehydrogenase complex activity levels were significantly higher in INT group compared to ET group in white gastrocnemius, diaphragm, and left ventricle (BF ≥3). NT-PGC1α protein levels in Gr (BF = 7.7) and HAD activity levels in Gr (BF = 6.9) and soleus muscles (BF = 3.3) showed a significant positive correlation with maximal work values. These findings suggest that exercise training under intermittent hyperoxia is a beneficial strategy for enhancing endurance performance by improving fatty acid and pyruvic acid utilization.


Subject(s)
Muscle, Skeletal , Physical Conditioning, Animal , Physical Endurance , Animals , Male , Muscle, Skeletal/metabolism , Mice , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Mice, Inbred C57BL , Hyperoxia/metabolism , Hyperoxia/physiopathology , PPAR alpha/metabolism , PPAR alpha/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Phosphofructokinases/metabolism , Phosphofructokinases/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins , Mitochondrial Proteins
5.
Sci Rep ; 14(1): 14438, 2024 06 23.
Article in English | MEDLINE | ID: mdl-38910141

ABSTRACT

Blood-brain barrier disruption is a critical pathological event in the progression of ischemic stroke (IS). Most studies regarding the therapeutic potential of neferine (Nef) on IS have focused on neuroprotective effect. However, whether Nef attenuates BBB disruption during IS is unclear. We here used mice underwent transient middle cerebral artery occlusion (tMCAO) in vivo and bEnd.3 cells exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro to simulate cerebral ischemia. We showed that Nef reduced neurobehavioral dysfunction and protected brain microvascular endothelial cells and BBB integrity. Molecular docking, short interfering (Si) RNA and plasmid transfection results showed us that PGC-1α was the most binding affinity of biological activity protein for Nef. And verification experiments were showed that Nef upregulated PGC-1α expression to reduce mitochondrial oxidative stress and promote TJ proteins expression, further improves the integrity of BBB in mice. Intriguingly, our study showed that neferine is a natural PGC-1α activator and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated Nef reduced mitochondria oxidative damage and ameliorates endothelial inflammation by inhibiting pyroptosis to improve BBB permeability through triggering a cascade reaction of PGC-1α via regulation of PGC-1α/NLRP3/GSDMD signaling pathway to maintain the integrity of BBB in ischemia/reperfusion injury.


Subject(s)
Benzylisoquinolines , Blood-Brain Barrier , Endothelial Cells , Ischemic Stroke , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Pyroptosis , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Pyroptosis/drug effects , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Benzylisoquinolines/pharmacology , Male , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mice, Inbred C57BL , Disease Models, Animal , Neuroprotective Agents/pharmacology
6.
CNS Neurosci Ther ; 30(6): e14692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872258

ABSTRACT

AIM: Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease characterized by progressive death of upper and lower motor neurons, leading to generalized muscle atrophy, paralysis, and even death. Mitochondrial damage and neuroinflammation play key roles in the pathogenesis of ALS. In the present study, the efficacy of A-1, a derivative of arctigenin with AMP-activated protein kinase (AMPK) and silent information regulator 1 (SIRT1) activation for ALS, was investigated. METHODS: A-1 at 33.3 mg/kg was administrated in SOD1G93A transgenic mice orally from the 13th week for a 6-week treatment period. Motor ability was assessed before terminal anesthesia. Muscle atrophy and fibrosis, motor neurons, astrocytes, and microglia in the spinal cord were evaluated by H&E, Masson, Sirius Red, Nissl, and immunohistochemistry staining. Protein expression was detected with proteomics analysis, Western blotting, and ELISA. Mitochondrial adenosine triphosphate (ATP) and malondialdehyde (MDA) levels were measured using an assay kit. RESULTS: A-1 administration in SOD1G93A mice enhanced mobility, decreased skeletal muscle atrophy and fibrosis, mitigated loss of spinal motor neurons, and reduced glial activation. Additionally, A-1 treatment improved mitochondrial function, evidenced by elevated ATP levels and increased expression of key mitochondrial-related proteins. The A-1 treatment group showed decreased levels of IL-1ß, pIκBα/IκBα, and pNF-κB/NF-κB. CONCLUSIONS: A-1 treatment reduced motor neuron loss, improved gastrocnemius atrophy, and delayed ALS progression through the AMPK/SIRT1/PGC-1α pathway, which promotes mitochondrial biogenesis. Furthermore, the AMPK/SIRT1/IL-1ß/NF-κB pathway exerted neuroprotective effects by reducing neuroinflammation. These findings suggest A-1 as a promising therapeutic approach for ALS.


Subject(s)
AMP-Activated Protein Kinases , Amyotrophic Lateral Sclerosis , Furans , Interleukin-1beta , Mice, Transgenic , NF-kappa B , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Mice , NF-kappa B/metabolism , AMP-Activated Protein Kinases/metabolism , Furans/pharmacology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Interleukin-1beta/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Lignans/pharmacology , Lignans/therapeutic use , Signal Transduction/drug effects , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Male , Motor Neurons/drug effects , Motor Neurons/pathology , Motor Neurons/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/metabolism
7.
BMC Genomics ; 25(1): 592, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867146

ABSTRACT

BACKGROUND: Intramuscular fat content is an important index reflecting the quality of mutton, which directly affects the flavor and tenderness of mutton. Livestock and poultry intramuscular fat content is influenced by genetics, nutritional level, and environmental factors. Key regulatory factors play a crucial role in intramuscular fat deposition. However, there is a limited amount of research on the identification and function of key genes involved in intramuscular fat content deposition specifically in sheep. RESULTS: Histological differences in the longest dorsal muscle of the small-tailed frigid sheep increased in diameter and decreased in several muscle fibers with increasing monthly age; The intramuscular fat content of the longest dorsal muscle of the small-tailed cold sheep varied with age, with a minimum of 1 month of age, a maximum of 6 months of age, and a minimum of 12 months of age. Transcriptomic sequencing and bioinformatics analysis revealed a large number of differential genes in the longest dorsal muscles of little-tailed billy goats of different months of age, which were enriched in multiple GO entries and KEGG pathways. Among them, the pathway associated with intramuscular fat was the AMPK signaling pathway, and the related genes were PPARGC1A and ADIPOQ; Immunohistochemical studies showed that PPARGC1A and ADIPOQ proteins were expressed in connective tissues, cell membranes, and, to a lesser extent, the cytoplasm of the longest dorsal muscle of the little-tailed frigid sheep; Real-time PCR and Western Blot validation showed that PPARGC1A and ADIPOQ were both expressed in the longest dorsal muscle of the little-tailed frigid sheep at different ages, and there were age differences in the amount of expression. The ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle, and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle; As inferred from the above results, the ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle (r = -0.793, P < 0.05); and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle r = 0.923, P < 0.05). CONCLUSIONS: Based on the above results, it can be inferred that the ADIPOQ gene is negatively correlated with the intramuscular fat content of the longest back muscle (r = -0.793, P < 0.05); the PPARGC1A gene is positively correlated with the intramuscular fat content of the longest back muscle (r = 0.923, P < 0.05).


Subject(s)
Adipose Tissue , Muscle, Skeletal , Animals , Sheep/genetics , Sheep/metabolism , Muscle, Skeletal/metabolism , Adipose Tissue/metabolism , Adiponectin/metabolism , Adiponectin/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Gene Expression Profiling , Transcriptome
8.
J Orthop Surg Res ; 19(1): 325, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822418

ABSTRACT

OBJECTIVE: Muscle wasting frequently occurs following joint trauma. Previous research has demonstrated that joint distraction in combination with treadmill exercise (TRE) can mitigate intra-articular inflammation and cartilage damage, consequently delaying the advancement of post-traumatic osteoarthritis (PTOA). However, the precise mechanism underlying this phenomenon remains unclear. Hence, the purpose of this study was to examine whether the mechanism by which TRE following joint distraction delays the progression of PTOA involves the activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), as well as its impact on muscle wasting. METHODS: Quadriceps samples were collected from patients with osteoarthritis (OA) and normal patients with distal femoral fractures, and the expression of PGC-1α was measured. The hinged external fixator was implanted in the rabbit PTOA model. One week after surgery, a PGC-1α agonist or inhibitor was administered for 4 weeks prior to TRE. Western blot analysis was performed to detect the expression of PGC-1α and Muscle atrophy gene 1 (Atrogin-1). We employed the enzyme-linked immunosorbent assay (ELISA) technique to examine pro-inflammatory factors. Additionally, we utilized quantitative real-time polymerase chain reaction (qRT-PCR) to analyze genes associated with cartilage regeneration. Synovial inflammation and cartilage damage were evaluated through hematoxylin-eosin staining. Furthermore, we employed Masson's trichrome staining and Alcian blue staining to analyze cartilage damage. RESULTS: The decreased expression of PGC-1α in skeletal muscle in patients with OA is correlated with the severity of OA. In the rabbit PTOA model, TRE following joint distraction inhibited the expressions of muscle wasting genes, including Atrogin-1 and muscle ring finger 1 (MuRF1), as well as inflammatory factors such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in skeletal muscle, potentially through the activation of PGC-1α. Concurrently, the production of IL-1ß, IL-6, TNF-α, nitric oxide (NO), and malondialdehyde (MDA) in the synovial fluid was down-regulated, while the expression of type II collagen (Col2a1), Aggrecan (AGN), SRY-box 9 (SOX9) in the cartilage, and superoxide dismutase (SOD) in the synovial fluid was up-regulated. Additionally, histological staining results demonstrated that TRE after joint distraction reduced cartilage degeneration, leading to a significant decrease in OARSI scores.TRE following joint distraction could activate PGC-1α, inhibit Atrogin-1 expression in skeletal muscle, and reduce C-telopeptides of type II collagen (CTX-II) in the blood compared to joint distraction alone. CONCLUSION: Following joint distraction, TRE might promote the activation of PGC-1α in skeletal muscle during PTOA progression to exert anti-inflammatory effects in skeletal muscle and joint cavity, thereby inhibiting muscle wasting and promoting cartilage regeneration, making it a potential therapeutic intervention for treating PTOA.


Subject(s)
Disease Progression , Muscle, Skeletal , Muscular Atrophy , Osteoarthritis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Rabbits , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Osteoarthritis/etiology , Osteoarthritis/metabolism , Osteoarthritis/prevention & control , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Male , Humans , Physical Conditioning, Animal/physiology , Female , Disease Models, Animal
9.
Eur J Pharmacol ; 977: 176737, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38866362

ABSTRACT

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing worldwide in recent years, causing severe economic and social burdens. Therefore, the lack of currently approved drugs for anti-NAFLD has gradually gained attention. SIRT1, as a member of the sirtuins family, is now the most widely studied in the pathophysiology of many metabolic diseases, and has great potential for preventing and treating NAFLD. Natural products such as Diosgenin (DG) have the potential to be developed as clinical drugs for the treatment of NAFLD due to their excellent multi-target therapeutic effects. In this study, we found that DG can activate the SIRT1/PGC-1α pathway and upregulate the expression of its downstream targets nuclear respiratory factor 1 (NRF1), complex IV (COX IV), mitofusin-2 (MFN2), and PPARα (perox-isome proliferator-activated receptor α) in SD rats induced by high-fat diet (HFD) and HepG2 cells caused by free fatty acids (FFAs, sodium oleate: sodium palmitate = 2:1). Conversely, the levels of dynamin-related protein 1 (DRP1) and inflammatory factors, including NF-κB p65, IL6, and TNFα, were downregulated both in vitro and in vivo. This improved mitochondrial dysfunction, fatty acid oxidation (FAO), lipid accumulation, steatosis, oxidative stress, and hepatocyte inflammation. Subsequently, we applied SIRT1 inhibitor EX527 and SIRT1 agonist SRT1720 to confirm further the necessity of activating SIRT1 for DG to exert therapeutic effects on NAFLD. In summary, these results further demonstrate the potential therapeutic role of DG as a SIRT1 natural agonist for NAFLD. (Graphical Abstracts).


Subject(s)
Diosgenin , Liver , Non-alcoholic Fatty Liver Disease , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Sirtuin 1/metabolism , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Humans , Male , Rats , Liver/drug effects , Liver/metabolism , Liver/pathology , Hep G2 Cells , Signal Transduction/drug effects , Diosgenin/pharmacology , Diosgenin/therapeutic use , Diosgenin/analogs & derivatives , Diet, High-Fat/adverse effects , Oxidative Stress/drug effects , Lipid Metabolism/drug effects
10.
Redox Biol ; 74: 103230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875959

ABSTRACT

α-Ketoglutarate (AKG), a crucial intermediate in the tricarboxylic acid cycle, has been demonstrated to mitigate hyperlipidemia-induced dyslipidemia and endothelial damage. While hyperlipidemia stands as a major trigger for non-alcoholic fatty liver disease, the protection of AKG on hyperlipidemia-induced hepatic metabolic disorders remains underexplored. This study aims to investigate the potential protective effects and mechanisms of AKG against hepatic lipid metabolic disorders caused by acute hyperlipidemia. Our observations indicate that AKG effectively alleviates hepatic lipid accumulation, mitochondrial dysfunction, and loss of redox homeostasis in P407-induced hyperlipidemia mice, as well as in palmitate-injured HepG2 cells and primary hepatocytes. Mechanistic insights reveal that the preventive effects are mediated by activating the AMPK-PGC-1α/Nrf2 pathway. In conclusion, our findings shed light on the role and mechanism of AKG in ameliorating abnormal lipid metabolic disorders in hyperlipidemia-induced fatty liver, suggesting that AKG, an endogenous mitochondrial nutrient, holds promising potential for addressing hyperlipidemia-induced fatty liver conditions.


Subject(s)
AMP-Activated Protein Kinases , Hyperlipidemias , Ketoglutaric Acids , NF-E2-Related Factor 2 , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , Animals , Hyperlipidemias/metabolism , Hyperlipidemias/drug therapy , Hyperlipidemias/complications , Mice , Oxidative Stress/drug effects , Humans , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Signal Transduction/drug effects , Hep G2 Cells , Mitochondria/metabolism , Mitochondria/drug effects , Male , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/drug therapy , Fatty Liver/prevention & control , Fatty Liver/pathology , Disease Models, Animal , Liver/metabolism , Liver/drug effects , Liver/pathology
11.
J Exp Clin Cancer Res ; 43(1): 180, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937832

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by its high metastatic potential, which results in poor patient survival. Cancer-associated fibroblasts (CAFs) are crucial in facilitating TNBC metastasis via induction of mitochondrial biogenesis. However, how to inhibit CAF-conferred mitochondrial biogenesis is still needed to explore. METHODS: We investigated metastasis using wound healing and cell invasion assays, 3D-culture, anoikis detection, and NOD/SCID mice. Mitochondrial biogenesis was detected by MitoTracker green FM staining, quantification of mitochondrial DNA levels, and blue-native polyacrylamide gel electrophoresis. The expression, transcription, and phosphorylation of peroxisome-proliferator activated receptor coactivator 1α (PGC-1α) were detected by western blotting, chromatin immunoprecipitation, dual-luciferase reporter assay, quantitative polymerase chain reaction, immunoprecipitation, and liquid chromatography-tandem mass spectrometry. The prognostic role of PGC-1α in TNBC was evaluated using the Kaplan-Meier plotter database and clinical breast cancer tissue samples. RESULTS: We demonstrated that PGC-1α indicated lymph node metastasis, tumor thrombus formation, and poor survival in TNBC patients, and it was induced by CAFs, which functioned as an inducer of mitochondrial biogenesis and metastasis in TNBC. Shikonin impeded the CAF-induced PGC-1α expression, nuclear localization, and interaction with estrogen-related receptor alpha (ERRα), thereby inhibiting PGC-1α/ERRα-targeted mitochondrial genes. Mechanistically, the downregulation of PGC-1α was mediated by synthase kinase 3ß-induced phosphorylation of PGC-1α at Thr295, which associated with neural precursor cell expressed developmentally downregulated 4e1 recognition and subsequent degradation by ubiquitin proteolysis. Mutation of PGC-1α at Thr295 negated the suppressive effects of shikonin on CAF-stimulated TNBC mitochondrial biogenesis and metastasis in vitro and in vivo. CONCLUSIONS: Our findings indicate that PGC-1α is a viable target for blocking TNBC metastasis by disrupting mitochondrial biogenesis, and that shikonin merits potential for treatment of TNBC metastasis as an inhibitor of mitochondrial biogenesis through targeting PGC-1α.


Subject(s)
Glycogen Synthase Kinase 3 beta , Naphthoquinones , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Animals , Phosphorylation , Glycogen Synthase Kinase 3 beta/metabolism , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Female , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Mice, SCID , Neoplasm Metastasis , Mice, Inbred NOD , Mitochondria/metabolism , Xenograft Model Antitumor Assays
12.
Mol Biol (Mosk) ; 58(1): 78-87, 2024.
Article in Russian | MEDLINE | ID: mdl-38943581

ABSTRACT

Stress can play a significant role in arterial hypertension and many other complications of cardiovascular diseases. Considerable attention is paid to the study of the molecular mechanisms involved in the body response to stressful influences, but there are still many blank spots in understanding the details. ISIAH rats model the stress-sensitive form of arterial hypertension. ISIAH rats are characterized by genetically determined enhanced activities of the hypothalamic-pituitary-adrenocortical and sympathetic-adrenomedullary systems, suggesting a functional state of increased stress reactivity. For the first time, the temporal expression patterns of Fos and several related genes were studied in the hypothalamus of adult male hypertensive ISIAH rats after a single exposure to restraint stress for 30, 60, or 120 min. Fos transcription was activated and peaked 1 h after the start of restraint stress. The time course of Fos activation coincided with that of blood pressure increase after stress. Activation of hypothalamic neurons also alters the transcription levels of several transcription factor genes (Jun, Nr4a3, Jdp2, and Ppargc1a), which are associated with the development of cardiovascular diseases. Because Fos induction is a marker of brain neuron activation, activation of hypothalamic neurons and an increase in blood pressure were concluded to accompany increased stress reactivity of the hypothalamic-pituitary-adrenocortical and sympathoadrenal systems in hypertensive ISIAH rats during short-term restraint.


Subject(s)
Gene Expression Regulation , Hypertension , Hypothalamus , Animals , Hypertension/metabolism , Hypertension/genetics , Hypertension/pathology , Rats , Hypothalamus/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Restraint, Physical , Stress, Psychological/metabolism , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Blood Pressure/genetics , Stress, Physiological/genetics , Neurons/metabolism , Neurons/pathology
13.
Sci Adv ; 10(26): eadn4508, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38924407

ABSTRACT

Once considered as a "metabolic waste," lactate is now recognized as a major fuel for tricarboxylic acid (TCA) cycle. Our metabolic flux analysis reveals that skeletal muscle mainly uses lactate to fuel TCA cycle. Lactate is transported through the cell membrane via monocarboxylate transporters (MCTs) in which MCT1 is highly expressed in the muscle. We analyzed how MCT1 affects muscle functions using mice with specific deletion of MCT1 in skeletal muscle. MCT1 deletion enhances running performance, increases oxidative fibers while decreasing glycolytic fibers, and enhances flux of glucose to TCA cycle. MCT1 deficiency increases the expression of mitochondrial proteins, augments cell respiration rate, and elevates mitochondrial activity in the muscle. Mechanistically, the protein level of PGC-1α, a master regulator of mitochondrial biogenesis, is elevated upon loss of MCT1 via increases in cellular NAD+ level and SIRT1 activity. Collectively, these results demonstrate that MCT1-mediated lactate shuttle plays a key role in regulating muscle functions by modulating mitochondrial biogenesis and TCA flux.


Subject(s)
Citric Acid Cycle , Lactic Acid , Monocarboxylic Acid Transporters , Muscle, Skeletal , Organelle Biogenesis , Symporters , Animals , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Muscle, Skeletal/metabolism , Symporters/metabolism , Symporters/genetics , Lactic Acid/metabolism , Mice , Mitochondria/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Knockout , Glycolysis
14.
Cell Death Dis ; 15(6): 385, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824126

ABSTRACT

Drusen, the yellow deposits under the retina, are composed of lipids and proteins, and represent a hallmark of age-related macular degeneration (AMD). Lipid droplets are also reported in the retinal pigment epithelium (RPE) from AMD donor eyes. However, the mechanisms underlying these disease phenotypes remain elusive. Previously, we showed that Pgc-1α repression, combined with a high-fat diet (HFD), induce drastic AMD-like phenotypes in mice. We also reported increased PGC-1α acetylation and subsequent deactivation in the RPE derived from AMD donor eyes. Here, through a series of in vivo and in vitro experiments, we sought to investigate the molecular mechanisms by which PGC-1α repression could influence RPE and retinal function. We show that PGC-1α plays an important role in RPE and retinal lipid metabolism and function. In mice, repression of Pgc-1α alone induced RPE and retinal degeneration and drusen-like deposits. In vitro inhibition of PGC1A by CRISPR-Cas9 gene editing in human RPE (ARPE19- PGC1A KO) affected the expression of genes responsible for lipid metabolism, fatty acid ß-oxidation (FAO), fatty acid transport, low-density lipoprotein (LDL) uptake, cholesterol esterification, cholesterol biosynthesis, and cholesterol efflux. Moreover, inhibition of PGC1A in RPE cells caused lipid droplet accumulation and lipid peroxidation. ARPE19-PGC1A KO cells also showed reduced mitochondrial biosynthesis, impaired mitochondrial dynamics and activity, reduced antioxidant enzymes, decreased mitochondrial membrane potential, loss of cardiolipin, and increased susceptibility to oxidative stress. Our data demonstrate the crucial role of PGC-1α in regulating lipid metabolism. They provide new insights into the mechanisms involved in lipid and drusen accumulation in the RPE and retina during aging and AMD, which may pave the way for developing novel therapeutic strategies targeting PGC-1α.


Subject(s)
Lipid Droplets , Lipid Metabolism , Macular Degeneration , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Animals , Humans , Mice , Lipid Droplets/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Male , Oxidative Stress
15.
Article in English | MEDLINE | ID: mdl-38847150

ABSTRACT

BACKGROUND AND OBJECTIVE: Nitrate, as nitric oxide (NO) donor, has been suggested as a nutrition-based treatment for decreasing the risk of menopause-related obesity. This study aimed to specify the effects of chronic inorganic nitrate administration on uncoupling protein-1 (UCP-1), peroxisome proliferator-activated-receptor-947; (PPAR-947;) coactivator-1945; (PGC-1945;), and PPAR-947; expression in gonadal adipose tissue (GAT) of ovariectomized (OVX) rats. METHODS: Female rats were assigned to 3 groups: Control, OVX, and OVX+nitrate (n=7/group), which consumed water containing inorganic nitrate (100 mg/L) for 9 months. At month 9, GAT was used for the measurement of NO metabolites (NOx), mRNA levels of NO synthases (endothelial (eNOS), inducible (iNOS), neuronal (nNOS)), and mRNA and protein levels of UCP-1, PGC-1945;, and PPAR-947;. RESULTS: OVX rats had lower NOx concentration (45%) and eNOS (38%) and nNOS (30%) expression in GAT that was restored to normal values following nitrate administration. OVX rats had significantly lower mRNA and protein levels of UCP-1 (83% and 30%), PGC-1945; (65% and 39%), and PPAR-947; (66% and 34.5%) in GAT. Chronic inorganic nitrate administration in OVXrats increased mRNA and protein levels of UCP-1 (128% and 34%), PGC-1945; (115% and 43%), and PPAR-947; (236% and 38%), respectively. CONCLUSION: In OVX rats, chronic nitrate administration increased gene and protein levels of UCP-1, PGC-1945;, and PPAR-947; in GAT, indicating the anti-obesity effects of nitrate are partially mediated by the white adipose tissue (WAT) browning. Moreover, the stimulatory effect of inorganic nitrate on the WAT browning in OVX rats was associated with blunting the OVXinduced NO deficiency in GAT.


Subject(s)
Adipose Tissue, Brown , Nitrates , Ovariectomy , Rats, Wistar , Uncoupling Protein 1 , Animals , Female , Nitrates/administration & dosage , Nitrates/metabolism , Rats , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Nitric Oxide/metabolism , Gene Expression Regulation/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
16.
Gene ; 926: 148606, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38788813

ABSTRACT

Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.


Subject(s)
Gallic Acid , Liver , Mice, Obese , Obesity , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Animals , Mice , Gallic Acid/pharmacology , Male , Liver/metabolism , Liver/drug effects , Obesity/metabolism , Obesity/genetics , Obesity/drug therapy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Anxiety/drug therapy , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects , Sestrins
17.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727159

ABSTRACT

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Subject(s)
Glucosides , Lung Injury , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phenols , Sirtuin 1 , Animals , Mice , Glucosides/pharmacology , Glucosides/therapeutic use , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung Injury/drug therapy , Particle Size , Particulate Matter/toxicity , Particulate Matter/adverse effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/drug effects , Sirtuin 1/genetics , Sirtuin 1/metabolism
18.
Bone ; 185: 117132, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38789096

ABSTRACT

The mechanosensitivity of inflammation can alter cellular mechanotransduction. However, the underlying mechanism remains unclear. This study aims to investigate the metabolic mechanism of inflammation under mechanical force to guide tissue remodeling better. Herein, we found that inflammation hindered bone remodeling under mechanical force, accompanied by a simultaneous enhancement of oxidative phosphorylation (OXPHOS) and glycolysis. The control of metabolism direction through GNE-140 and Visomitin revealed that enhanced glycolysis might act as a compensatory mechanism to resist OXPHOS-induced osteoclastogenesis by promoting osteogenesis. The inhibited osteogenesis induced by inflammatory mechanical stimuli was concomitant with a reduced expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α knockdown impeded osteogenesis under mechanical force and facilitated osteoclastogenesis by enhancing OXPHOS. Conversely, PGC-1α overexpression attenuated the impairment of bone remodeling by inflammatory mechanical signals through promoting glycolysis. This process benefited from the PGC-1α regulation on the transcriptional and translational activity of lactate dehydrogenase A (LDHA) and the tight control of the extracellular acidic environment. Additionally, the increased binding between PGC-1α and LDHA proteins might contribute to the glycolysis promotion within the inflammatory mechanical environment. Notably, LDHA suppression effectively eliminated the bone repair effect mediated by PGC-1α overexpression within inflammatory mechanical environments. In conclusion, this study demonstrated a novel molecular mechanism illustrating how inflammation orchestrated glucose metabolism through glycolysis and OXPHOS to affect mechanically induced bone remodeling.


Subject(s)
Bone Remodeling , Glycolysis , Inflammation , Osteogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Bone Remodeling/physiology , Inflammation/metabolism , Inflammation/pathology , Osteogenesis/physiology , Mice , Mice, Inbred C57BL , L-Lactate Dehydrogenase/metabolism , Oxidative Phosphorylation , Cellular Microenvironment , Male
19.
Tissue Cell ; 88: 102393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705086

ABSTRACT

BACKGROUND: The cognitive deficits observed after treatment with chemotherapeutic drugs are obvious clinical problems. For treating chemotherapy-induced cognitive deficits (CICD), the treatment modalities must target its underlying mechanisms. Specifically, cisplatin may activate glycogen synthase kinase-3ß (GSK-3ß), thereby enhancing neuronal apoptosis. 6-bromoindirubin-3'-oxime (6BIO) was not investigated previously in a model of CICD. Therefore, this investigation aimed to address the impacts of GSK3 inhibition on regulating cell signaling, which contributes to neurodegeneration and cognitive impairment. METHODS: Thirty adult male Wistar rats were randomly allocated into control groups, while two experimental groups were exposed to repeated cisplatin injections (2 mg/kg intraperitoneally (ip), twice weekly, nine injections), termed chemobrain groups. The rats in the two experimental groups were equally divided into the chemobrain group (untreated) and the chemobrain-6BIO group (treated with 6BIO at a dose of 8.5 µg/kg ip every two days, started after the last dose of cisplatin and continued for two weeks). RESULTS: Repeated exposure to cisplatin led to a marked decline in cognitive functions. GSK3 inhibition exerted neuroprotection by decreasing the expression of p-tau and amyloid ß, thereby improving cognition. 6BIO, the GSK-3ß inhibitor, restored mitochondrial biogenesis by augmenting the protein levels of PGC1-α and increasing the number of mitochondria in the cerebral cortex and hippocampus. CONCLUSION: 6BIO provided neuroprotection and exhibited anti-apoptotic and anti-oxidative effects in a rat model of chemobrain.


Subject(s)
Cisplatin , Glycogen Synthase Kinase 3 beta , Indoles , Organelle Biogenesis , Oximes , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats, Wistar , Animals , Oximes/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Indoles/pharmacology , Cisplatin/pharmacology , Male , Rats , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/chemically induced
20.
Neuroreport ; 35(10): 648-656, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38813901

ABSTRACT

Mitochondria play a crucial role in maintaining cellular energy supply and serve as a source of energy for repairing nerve damage following a stroke. Given that exercise has the potential to enhance energy metabolism, investigating the impact of exercise on mitochondrial function provides a plausible mechanism for stroke treatment. In our study, we established the middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats and implemented early exercise intervention. Neurological severity scores, beam-walking test score, and weight were used to evaluate neurological function. The volume of cerebral infarction was measured by MRI. Nerve cell apoptosis was detected by TUNEL staining. Mitochondrial morphology and structure were detected by mitochondrial electron microscopy. Mitochondrial function was assessed using membrane potential and ATP measurements. Western blotting was used to detect the protein expression of AMPK/PGC-1α/GLUT4. Through the above experiments, we found that early exercise improved neurological function in rats after MCAO, reduced cerebral infarction volume and neuronal apoptosis, promoted the recovery of mitochondrial morphology and function. We further examined the protein expression of AMPK/PGC-1α/GLUT4 signaling pathway and confirmed that early exercise was able to increase its expression. Therefore, we suggest that early exercise initiated the AMPK/PGC-1α/GLUT4 signaling pathway, restoring mitochondrial function and augmenting energy supply. This, in turn, effectively improved both nerve and body function in rats following ischemic stroke.


Subject(s)
AMP-Activated Protein Kinases , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Rats, Sprague-Dawley , Signal Transduction , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/physiology , Male , AMP-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/therapy , Brain Ischemia/metabolism , Rats , Disease Models, Animal , Apoptosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...