Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.438
Filter
1.
Biomolecules ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927038

ABSTRACT

The Actinopterygian and specifically the Teleostean peroxisome proliferator-activated receptors (PPARs) present an impressive variability and complexity in their structures, both at the gene and protein levels. These structural differences may also reflect functional divergence from their mammalian homologs, or even between fish species. This review, taking advantage of the data generated from the whole-genome sequencing of several fish species, highlights the differences in the primary structure of the receptors, while discussing results from the literature pertaining to the functions of fish PPARs and their activation by natural and synthetic compounds.


Subject(s)
Peroxisome Proliferator-Activated Receptors , Animals , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Fishes/genetics , Fishes/metabolism
2.
Ecotoxicol Environ Saf ; 280: 116548, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850705

ABSTRACT

Podophyllotoxin (PPT) is a lignan derived from the roots and stems of the Podophyllum plant. However, its enterotoxicity restricts its clinical application. The underlying mechanisms by which PPT exerts its action remain largely elusive. This study aimed to evaluate the molecular mechanisms underlying PPT-induced enterotoxicity utilizing the concept of toxicological evidence chain. Changes in body weight, behavior, and histopathological and biochemical markers in rats were observed. Additionally, microbiome, metabolome, and transcriptome analyses were integrated to identify potential microorganisms, metabolic markers, and major pathways using a co-occurrence network. Our findings suggested that PPT induced pathological changes in rats, including weight loss, diarrhea, and inflammation accompanied by increased levels of IFN-γ, IL-5, IL-6, GRO/KC, and IL-12p70. The decrease in butyrate levels in the PPT group may be related to the enrichment of Firmicutes. The reduction of butyrate levels may impair the expression of PPARγ, subsequently promoting Escherichia-Shigella proliferation. Additionally, the suppression of PPARs pathway may result in the increased production of inflammatory factors, contributing to enterotoxicity. This study offers a novel understanding of the molecular mechanisms underlying PPT-induced enterotoxicity, making a significant contribution to developing strategies to mitigate PPT toxicity and prevent associated diseases.


Subject(s)
Podophyllotoxin , Animals , Podophyllotoxin/toxicity , Rats , Male , Gastrointestinal Microbiome/drug effects , Rats, Sprague-Dawley , Peroxisome Proliferator-Activated Receptors/metabolism , PPAR gamma/metabolism , Microbiota/drug effects
3.
Phytomedicine ; 130: 155655, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38838636

ABSTRACT

BACKGROUND: The study of cardiotoxicity of drugs has become an important part of clinical safety evaluation of drugs. It is commonly known that podophyllotoxin (PPT) and its many derivatives and congeners are broad-spectrum pharmacologically active substances. Clinical cardiotoxicity of PPT and its derivatives has been raised, basic research on the mechanism of cardiotoxicity remains insufficient. PURPOSE: In present study, our group's innovative concept of toxicological evidence chain (TEC) was applied to reveal the cardiac toxicity mechanism of PPT by targeted metabolomics, TMT-based quantitative proteomics and western blot. METHODS: The injury phenotype evidence (IPE) acquired from the toxicity manifestations, such as weight and behavior observation of Sprague-Dawley rat. The damage to rat hearts were assessed through histopathological examination and myocardial enzymes levels, which were defined as Adverse Outcomes Evidence (AOE). The damage to rat hearts was assessed through histopathological examination and myocardial enzyme levels, which were defined as evidence of adverse outcomes.Overall measurements of targeted metabolomics based on energy metabolism and TMT-based quantitative proteomics were obtained after exposure to PPT to acquire the Toxic Event Evidence (TEE). The mechanism of cardiac toxicity was speculated based on the integrated analysis of targeted metabolomics and TMT-based quantitative proteomics, which was verified by western blot. RESULTS: The results indicated that exposure to PPT could result in significant elevation of myocardial enzymes and pathological alterations in rat hearts. In addition, we found that PPT caused disorders in cardiac energy metabolism, characterized by a decrease in energy metabolism fuels. TMT-based quantitative proteomics revealed that the PPAR (Peroxisome proliferators-activated receptor) signaling pathway needs further study. It is worth noting that PPT may suppress the expression of SIRT1, subsequently inhibiting AMPK, decreasing the expression of PGC-1α, PPARα and PPARγ. This results in disorders of glucose oxidation, glycolysis and ketone body metabolism. Additionally, the increase in the expression of p-IKK and p-IκBα, leads to the nuclear translocation of NF-κB p65 from the cytosol, thus triggering inflammation. CONCLUSION: This study comprehensively evaluated cardiac toxicity of PPT and initially revealed the mechanism of cardiotoxicity,suggesting that PPT induced disorders of energy metabolism and inflammation via SIRT1/PPAR/NF-κB axis, potentially contributing to cardiac injury.


Subject(s)
NF-kappa B , Podophyllotoxin , Rats, Sprague-Dawley , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Podophyllotoxin/analogs & derivatives , Podophyllotoxin/pharmacology , Male , NF-kappa B/metabolism , Rats , Cardiotoxicity , Proteomics , Myocardium/metabolism , Myocardium/pathology , Peroxisome Proliferator-Activated Receptors/metabolism , Heart Injuries/chemically induced , Heart Injuries/metabolism , Signal Transduction/drug effects , Heart/drug effects , Metabolomics
4.
Discov Med ; 36(185): 1139-1153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926100

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD), and more specifically steatohepatitis may be associated with fat infiltration of skeletal muscles which is known as myosteatosis. Pan-peroxisome proliferator-activated receptor (PPAR) agonists have been shown to promote metabolic dysfunction-associated steatohepatitis (MASH) remission. However, the effect of PPAR agonists on myosteatosis remains to be determined. The aim of this review is to evaluate the effect that PPAR agonists alone or in combination, have on myosteatosis in the context of MASLD. METHODS: Original research reports concerning the impact of PPAR agonists on muscle fat in MASLD were screened from PUBMED and EMBASE databases following the PRISMA methodology. RESULTS: Eleven original manuscripts were included in this review. Two preclinical studies assessed the impact of the PPARα agonist on fat content in the quadriceps muscle and the liver by extracting triglycerides in rats fed a high-fat diet and in insulin-resistant mice. Both models showed muscle and liver triglyceride content reduction using WY14643. Fenofibrate had no significant impact on soleus intramyocellular lipids or liver fat content in insulin-resistant subjects based on proton magnetic resonance spectroscopy. Treatment with PPARδ agonists increased the expression of genes involved in fatty acid oxidation in two studies on muscle cell culture. PPARγ agonists were investigated in two preclinical studies and one clinical study using spectroscopy and computed tomography respectively. In the first preclinical study in Zucker diabetic fatty rats, rosiglitazone reduced muscle lipids and hepatic steatosis. In a second preclinical study using the same animal model, pioglitazone reduced tibialis anterior intramyocellular lipids. In contrast, computed tomography analyses in patients with type 2 diabetes revealed a surface area increase of low-density muscles (suggesting an increase in muscle fat content) after a one-year treatment with rosiglitazone. Varying combinations of PPAR agonists (cevoglitazar, fenofibrate/pioglitazone and muraglitazar) were evaluated in two preclinical studies and one clinical study. In rats, these treatments showed variable results for muscle and liver depending on the combinations studied. In type 2 diabetic patients, treatment with muraglitazar (a PPARα/γ agonist) reduced the intramyocellular lipid content of tibialis anterior as well as liver fat content following spectroscopy assessment. CONCLUSION: The combination of different PPAR agonists could have a positive impact on reducing myosteatosis, in addition to their effect on the liver. Some discrepancies could be explained by the different techniques used to assess muscle lipid content, the muscles assessed and the possible adipogenic effect of PPARγ agonists. Further clinical research is needed to fully assess the efficacy of these treatments on both MASLD progression and associated myosteatosis.


Subject(s)
Fatty Liver , Animals , Humans , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fatty Liver/pathology , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Rats , Mice , PPAR alpha/agonists , PPAR alpha/metabolism
5.
Diabetes Res Clin Pract ; 212: 111688, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697298

ABSTRACT

Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD), mainly related to nutrition and lack of physical activity, are both very common conditions, share several disease pathways and clinical manifestations, and increasingly co-occur with disease progression. Insulin resistance is an upstream node in the biology of both conditions and triggers liver parenchymal injury, inflammation and fibrosis. Peroxisome proliferator-activated receptor (PPAR) nuclear transcription factors are master regulators of energy homeostasis - insulin signaling in liver, adipose and skeletal muscle tissue - and affect immune and fibrogenesis pathways. Among distinct yet overlapping effects, PPARα regulates lipid metabolism and energy expenditure, PPARß/δ has anti-inflammatory effects and increases glucose uptake by skeletal muscle, while PPARγ improves insulin sensitivity and exerts direct antifibrotic effects on hepatic stellate cells. Together PPARs thus represent pharmacological targets across the entire biology of MASH. Single PPAR agonists are approved for hypertriglyceridemia (PPARα) and T2D (PPARγ), but these, as well as dual PPAR agonists, have shown mixed results as anti-MASH treatments in clinical trials. Agonists of all three PPAR isoforms have the potential to improve the full disease spectrum from insulin resistance to fibrosis, and correspondingly to improve cardiometabolic and hepatic health, as has been shown (phase II data) with the pan-PPAR agonist lanifibranor.


Subject(s)
Diabetes Mellitus, Type 2 , Peroxisome Proliferator-Activated Receptors , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Fatty Liver/drug therapy , Insulin Resistance/physiology , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Animals
6.
Mol Metab ; 85: 101958, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763495

ABSTRACT

OBJECTIVE: The prevalence of metabolic diseases is increasing globally at an alarming rate; thus, it is essential that effective, accessible, low-cost therapeutics are developed. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that tightly regulate glucose homeostasis and lipid metabolism and are important drug targets for the treatment of type 2 diabetes and dyslipidemia. We previously identified LDT409, a fatty acid-like compound derived from cashew nut shell liquid, as a novel pan-active PPARα/γ/δ compound. Herein, we aimed to assess the efficacy of LDT409 in vivo and investigate the molecular mechanisms governing the actions of the fatty acid mimetic LDT409 in diet-induced obese mice. METHODS: C57Bl/6 mice (6-11-month-old) were fed a chow or high fat diet (HFD) for 4 weeks; mice thereafter received once daily intraperitoneal injections of vehicle, 10 mg/kg Rosiglitazone, 40 mg/kg WY14643, or 40 mg/kg LDT409 for 18 days while continuing the HFD. During treatments, body weight, food intake, glucose and insulin tolerance, energy expenditure, and intestinal lipid absorption were measured. On day 18 of treatment, tissues and plasma were collected for histological, molecular, and biochemical analysis. RESULTS: We found that treatment with LDT409 was effective at reversing HFD-induced obesity and associated metabolic abnormalities in mice. LDT409 lowered food intake and hyperlipidemia, while improving insulin tolerance. Despite being a substrate of both PPARα and PPARγ, LDT409 was crucial for promoting hepatic fatty acid oxidation and reducing hepatic steatosis in HFD-fed mice. We also highlighted a role for LDT409 in white and brown adipocytes in vitro and in vivo where it decreased fat accumulation, increased lipolysis, induced browning of WAT, and upregulated thermogenic gene Ucp1. Remarkably, LDT409 reversed HFD-induced weight gain back to chow-fed control levels. We determined that the LDT409-induced weight-loss was associated with a combination of increased energy expenditure (detectable before weight loss was apparent), decreased food intake, increased systemic fat utilization, and increased fecal lipid excretion in HFD-fed mice. CONCLUSIONS: Collectively, LDT409 represents a fatty acid mimetic that generates a uniquely favorable metabolic response for the treatment of multiple abnormalities including obesity, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and diabetes. LDT409 is derived from a highly abundant natural product-based starting material and its development could be pursued as a therapeutic solution to the global metabolic health crisis.


Subject(s)
Diet, High-Fat , Fatty Acids , Mice, Inbred C57BL , Obesity , Animals , Mice , Obesity/metabolism , Obesity/drug therapy , Diet, High-Fat/adverse effects , Male , Fatty Acids/metabolism , Fatty Liver/metabolism , Fatty Liver/drug therapy , PPAR alpha/metabolism , PPAR alpha/agonists , Lipid Metabolism/drug effects , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Liver/metabolism , Liver/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology
7.
Ecotoxicol Environ Saf ; 279: 116448, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38754199

ABSTRACT

Evodiae Fructus (EF), an herbal medicine, possesses remarkable anti-inflammatory and analgesic properties. It exhibits insecticidal activity as a potent insecticide candidate. However, the toxic characteristics of EF and the underlying mechanisms have not been comprehensively elucidated comprehensively. Thus, we comprehensively explored the toxic components of EF and established the relationship between the therapeutic and toxic effects of EF, encouraging its therapeutic use. We found that evodiamine (EVO), one of the main ingredients of EF, can truly reflect its analgesic properties. In phenotype observation trials, low doses of EVO (< 35 ng/mL) exhibited distinct analgesic activity without any adverse effects in zebrafish. However, EVO dose-dependently led to gross morphological abnormalities in the liver, followed by pericardial edema, and increased myocardial concentrations. Furthermore, the toxic effects of EVO decreased after processing in liver microsomes but increased after administering CYP450 inhibitors in zebrafish, highlighting the prominent effect of CYP450s in EVO-mediated hepatotoxicity. EVO significantly changed the expression of genes enriched in multiple pathways and biological processes, including lipid metabolism, inflammatory response, tight junction damage, and cell apoptosis. Importantly, the PPAR/PI3K/AKT/NF-кB/tight junction-mediated apoptosis pathway was confirmed as a critical functional signaling pathway inducing EVO-mediated hepatotoxicity. This study provided a typical example of the overall systematic evaluation of traditional Chinese medicine (TCM) and its active ingredients with significant therapeutic effects and simultaneous toxicities, especially metabolic toxicities.


Subject(s)
Apoptosis , Evodia , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quinazolines , Zebrafish , Animals , Quinazolines/toxicity , Apoptosis/drug effects , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Evodia/chemistry , Signal Transduction/drug effects , Peroxisome Proliferator-Activated Receptors/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167206, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718848

ABSTRACT

The long noncoding RNA growth arrest-specific 5 (lncRNA Gas5) is implicated in various kidney diseases. In this study, we investigated the lncRNA Gas5 expression profile and its critical role as a potential biomarker in the progression of chronic kidney disease. Subsequently, we assessed the effect of lncRNA Gas5 deletion on renal fibrosis induced by unilateral ureteral obstruction (UUO). The results indicated that loss of lncRNA Gas5 exacerbates UUO-induced renal injury and extracellular matrix deposition. Notably, the deletion of lncRNA Gas5 had a similar effect on control mice. The fibrogenic phenotype observed in mice lacking lncRNA Gas5 correlates with peroxisome proliferator-activated receptor (PPAR) signaling pathway activation and aberrant cytokine and chemokine reprogramming. Single-cell RNA sequencing analysis revealed key transcriptomic features of fibroblasts after Gas5 deletion, revealing heterogeneous cellular states suggestive of a propensity for renal fibrosis. Our findings indicate that lncRNA Gas5 regulates the differentiation and activation of immune cells and the transcription of key genes in the PPAR signaling pathway. These data offer novel insights into the involvement of lncRNA Gas5 in renal fibrosis, potentially paving the way for innovative diagnostic and therapeutic targets.


Subject(s)
Fibrosis , RNA, Long Noncoding , Single-Cell Analysis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Fibrosis/genetics , Mice , Gene Expression Profiling , Male , Ureteral Obstruction/pathology , Ureteral Obstruction/genetics , Ureteral Obstruction/metabolism , Kidney/pathology , Kidney/metabolism , Transcriptome , Signal Transduction/genetics , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Mice, Knockout , Fibroblasts/metabolism , Fibroblasts/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/metabolism
9.
Food Funct ; 15(10): 5485-5495, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38690748

ABSTRACT

Ginsenoside Rk1, one kind of ginsenoside, is a minor ginsenoside found in Panax ginseng and used as traditional Chinese medicine for centuries. It exhibits anti-tumor and anti-aggregation effects. However, little research has been done on its effect on endothelial function. This study investigated whether ginsenoside Rk1 improved endothelial dysfunction in diabetes and the underlying mechanisms in vivo and in vitro. Male C57BL/6 mice were fed with a 12 week high-fat diet (60% kcal % fat), whereas treatment groups were orally administered with ginsenoside Rk1 (10 and 20 mg per kg per day) in the last 4 weeks. Aortas isolated from C57BL/6 mice were induced by high glucose (HG; 30 mM) and co-treated with or without ginsenoside Rk1 (1 and 10 µM) for 48 h ex vivo. Moreover, primary rat aortic endothelial cells (RAECs) were cultured and stimulated by HG (44 mM) to mimic hyperglycemia, with or without the co-treatment of ginsenoside Rk1 (10 µM) for 48 h. Endothelium-dependent relaxations of mouse aortas were damaged with elevated oxidative stress and downregulation of three isoforms of peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-ß/δ, and PPAR-γ, as well as endothelial nitric oxide synthase (eNOS) phosphorylation due to HG or high-fat diet stimulation, which also existed in RAECs. However, after the treatment with ginsenoside Rk1, these impairments were all ameliorated significantly. Moreover, the vaso-protective and anti-oxidative effects of ginsenoside Rk1 were abolished by PPAR antagonists (GSK0660, GW9662 or GW6471). In conclusion, this study reveals that ginsenoside Rk1 ameliorates endothelial dysfunction and suppresses oxidative stress in diabetic vasculature through activating the PPAR/eNOS pathway.


Subject(s)
Endothelium, Vascular , Ginsenosides , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptors , Ginsenosides/pharmacology , Animals , Male , Mice , Rats , Peroxisome Proliferator-Activated Receptors/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Oxidative Stress/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Aorta/drug effects , Aorta/metabolism , Nitric Oxide Synthase Type III/metabolism , Panax/chemistry , Diet, High-Fat
10.
BMC Genomics ; 25(1): 450, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714918

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are a novel kind of non-coding RNAs proved to play crucial roles in the development of multiple diabetic complications. However, their expression and function in diabetes mellitus (DM)-impaired salivary glands are unknown. RESULTS: By using microarray technology, 663 upregulated and 999 downregulated circRNAs companied with 813 upregulated and 525 downregulated mRNAs were identified in the parotid glands (PGs) of type2 DM mice under a 2-fold change and P < 0.05 cutoff criteria. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of upregulated mRNAs showed enrichments in immune system process and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Infiltration of inflammatory cells and increased inflammatory cytokines were observed in diabetic PGs. Seven differently expressed circRNAs validated by qRT-PCR were selected for coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) networks analysis. PPAR signaling pathway was primarily enriched through analysis of circRNA-mRNA networks. Moreover, the circRNA-miRNA-mRNA networks highlighted an enrichment in the regulation of actin cytoskeleton. CONCLUSION: The inflammatory response is elevated in diabetic PGs. The selected seven distinct circRNAs may attribute to the injury of diabetic PG by modulating inflammatory response through PPAR signaling pathway and actin cytoskeleton in diabetic PGs.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Expression Profiling , Gene Regulatory Networks , Parotid Gland , RNA, Circular , Animals , RNA, Circular/genetics , Mice , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Parotid Gland/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Transcriptome , Gene Ontology , Male , Signal Transduction , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism
11.
Nat Commun ; 15(1): 3962, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730247

ABSTRACT

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis. With lanifibranor, triglycerides, HDL-C, apolipoproteins, insulin, HOMA-IR, HbA1c, fasting glucose (FG), hs-CRP, ferritin, diastolic BP and steatosis improved significantly, independent of diabetes status: most patients with prediabetes returned to normal FG levels. Significant adiponectin increases correlated with hepatic and CMH marker improvement; patients had an average weight gain of 2.5 kg, with 49% gaining ≥2.5% weight. Therapeutic benefits were similar regardless of weight change. Here, we show that effects of lanifibranor on liver histology in MASH are accompanied with CMH improvement, indicative of potential cardiovascular clinical benefits.


Subject(s)
Chalcones , Adult , Aged , Female , Humans , Male , Middle Aged , Adiponectin/metabolism , Adiponectin/blood , Blood Glucose/metabolism , Blood Glucose/drug effects , Blood Pressure/drug effects , Cardiovascular Diseases/drug therapy , Chalcones/therapeutic use , Chalcones/pharmacology , Fatty Liver/drug therapy , Fatty Liver/metabolism , Insulin Resistance , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Propionates , Triglycerides/blood , Triglycerides/metabolism
12.
New Microbiol ; 47(1): 68-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38700886

ABSTRACT

We aimed to investigate the role of Synbiotic preparations on the interaction of gut microbiota with AD development. APP/PS1 mice were randomized into APP/PS1 and Synbiotics groups, and C57BL/6J mice were used as wild type (WT) control group. The mice in the Synbiotics group and the APP/PS1 group were given Synbiotics and xylo-oligosaccharides for 3 months, respectively. The mice in the WT group were given the same amount of normal saline. Cognitive function was measured. Positron emission computed tomography/magnetic resonance imaging (PET/MRI) was used to detect fasting blood glucose level. Immunohistochemical assay, ELISA, western blot and qRT-PCR were carried out to detect inflammatory factors. DNA extraction of fecal sample was performed to carry out sequencing. Bioinformatics analysis, metabolites sample preparation and Liquid Chromatograph Mass Spectrometer (LC/MS) analysis were also performed. Synbiotics treatment can significantly ameliorate learning and memory competence by inhibiting Aß protein deposition. Different bacteria in the intestine were significantly improved and changes in gut microbiota can affect the intestinal metabolism to affect multiple potential pathways after Synbiotics treatment. Synbiotics treatment can activate peroxisome proliferator activated receptor (PPARs) signaling pathway and significantly reduce neuroinflammation in APP/PS1 mice brains. Synbiotics treatment can effectively reduce neuro-inflammatory response through the regulation of intestinal microflora to delay AD development.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Gastrointestinal Microbiome , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptors , Synbiotics , Animals , Mice , Synbiotics/administration & dosage , Peroxisome Proliferator-Activated Receptors/metabolism , Disease Progression , Signal Transduction , Male , Mice, Transgenic
13.
Aging (Albany NY) ; 16(10): 8980-8997, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38814181

ABSTRACT

Hypertension is a complex disease with unknown causes. Therefore, it's crucial to deeply study its molecular mechanism. The hypertension dataset was obtained from Gene Expression Omnibus data base (GEO), and miRNA regulating central hub genes was screened via weighted gene co-expression network (DEGs) and gene set enrichment (GSEA). Cell experiments validated TSR2's role and the PPAR signaling pathway through western blotting. 500 DEGs were identified for hypertension, mainly enriched in actin cross-linking, insulin signaling, PPAR signaling, and protein localization. Eight hub genes (SEC61G, SRP14, Liy AR, NIP7, SDAD1, POLR1D, DYNLL2, TSR2) were identified. Four hub genes (LYAR, SDAD1, POLR1D, TSR2) exhibited high expression levels in the hypertensive tissue samples, while showing low expression levels in the normal tissue samples. This led us to speculate that they may have relevant regulatory effects on hypertension. When TSR2 was knocked down in the hypertension peripheral blood mononuclear cells (PBMC) model, the critical proteins in the PPAR signaling pathway (FABP, PPAR, PLTP, ME1, SCD1, CYP27, FABP1, OLR1, CPT-1, PGAR, CAP, ADIPO, MMP1, UCP1, ILK, PDK1 UBC AQP7) were downregulated. This also occurred in the hypertension peripheral blood mononuclear cells (PBMC) + TSR2_ OV model. TSR2 is highly expressed in individuals with hypertension and may play a significant role in the development of hypertension through the PPAR signaling pathway. TSR2 could serve as a molecular target for the early diagnosis and precise treatment of hypertension, providing a valuable direction for the mechanism research of this condition.


Subject(s)
Hypertension , Signal Transduction , Hypertension/genetics , Hypertension/metabolism , Humans , Signal Transduction/genetics , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Gene Regulatory Networks , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation
14.
Sci Total Environ ; 931: 172795, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38677429

ABSTRACT

The ubiquitous presence of micro-and nanoplastics (MNPs) in the environment and everyday products has attracted attention due to their hazardous risks. However, the effects of MNPs on reproduction and the underlying mechanisms remain unclear. The present study investigated the impact of polystyrene (PS) nanoplastics of 80, 200 and 500 nm diameters on zebrafish reproduction at an environmentally relevant concentration of 0.5 mg/L. Exposure to PS delayed spermatogenesis and caused aberrant follicular growth, resulting in dysgenesis in F0 adults and impacting F1 embryo development. Notably, the reproductive toxicity exhibited size-dependency, with the 500 nm PS being the most detrimental. Combined analyses of transcriptomics and metabolomics in ovary tissue revealed that treatment with 500 nm PS affected the peroxisome proliferator-activated receptor (PPAR) signaling pathway, dysregulated lipid transport, binding and activity processes, and led to dysgenesis in zebrafish. Specifically, the ovulatory dysfunction induced by PS exposure resembled clinical manifestations of polycystic ovary syndrome (PCOS) and can be attributed to lipid metabolism disorder involving glycerophospholipid, sphingolipid, arachidonic acid, and alpha-linolenic acid. Collectively, our results provide new evidence revealing the molecular mechanisms of PS-induced reproductive toxicity, highlighting that MNPs may pose a risk to female reproductive health.


Subject(s)
Lipid Metabolism Disorders , Peroxisome Proliferator-Activated Receptors , Polystyrenes , Reproduction , Water Pollutants, Chemical , Zebrafish , Animals , Polystyrenes/toxicity , Peroxisome Proliferator-Activated Receptors/metabolism , Reproduction/drug effects , Lipid Metabolism Disorders/chemically induced , Water Pollutants, Chemical/toxicity , Female , Lipid Metabolism/drug effects , Male , Microplastics/toxicity
15.
Int J Oncol ; 64(5)2024 05.
Article in English | MEDLINE | ID: mdl-38577941

ABSTRACT

Glioma is the most common type of primary intracranial malignant tumor, and because of its high invasiveness and recurrence, its prognosis remains poor. The present study investigated the biological function of piggyBac transportable element derived 5 (PGBD5) in glioma. Glioma and para-cancerous tissues were obtained from five patients. Reverse transcription-quantitative PCR and western blotting were used to detect the expression levels of PGBD5. Transwell assay and flow cytometry were used to evaluate cell migration, invasion, apoptosis and cell cycle distribution. In addition, a nude mouse tumor transplantation model was established to study the downstream pathways of PGBD5 and the molecular mechanism was analyzed using transcriptome sequencing. The mRNA and protein expression levels of PGBD5 were increased in glioma tissues and cells. Notably, knockdown of PGBD5 in vitro could inhibit the migration and invasion of glioma cells. In addition, the knockdown of PGBD5 expression promoted apoptosis and caused cell cycle arrest in the G2/M phase, thus inhibiting cell proliferation. Furthermore, in vivo experiments revealed that knockdown of PGBD5 expression could inhibit Ki67 expression and slow tumor growth. Changes in PGBD5 expression were also shown to be closely related to the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In conclusion, interference with PGBD5 could inhibit the malignant progression of glioma through the PPAR pathway, suggesting that PGBD5 may be a potential molecular target of glioma.


Subject(s)
Brain Neoplasms , Glioma , Animals , Mice , Humans , Peroxisome Proliferator-Activated Receptors/metabolism , Up-Regulation , Cell Line, Tumor , Glioma/pathology , Transcription Factors/genetics , Brain Neoplasms/pathology , Cell Proliferation/genetics , Apoptosis/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Transposases/genetics , Transposases/metabolism
16.
Arch Pharm (Weinheim) ; 357(4): e2300631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574101

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a common liver disorder affecting a quarter of the global residents. Progression of NAFL into nonalcoholic steatohepatitis (NASH) may cause cirrhosis, liver cancer, and failure. Gut microbiota imbalance causes microbial components translocation into the circulation, triggering liver inflammation and NASH-related fibrosis. MicroRNAs (miRNAs) regulate gene expression via repressing target genes. Exosomal miRNAs are diagnostic and prognostic biomarkers for NAFL and NASH liver damage. Our work investigated the role of the gut microbiota in NAFLD pathogenesis via the lipopolysaccharide/toll-like receptor 4/Forkhead box protein O3 (LPS/TLR-4/FoxO3) pathway and certain miRNAs as noninvasive biomarkers for NAFL or its development to NASH. miRNA expression levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 50 NAFL patients, 50 NASH patients, and 50 normal controls. Plasma LPS, TLR-4, adiponectin, peroxisome proliferator-activated receptor γ (PPAR-γ), and FoxO3 concentrations were measured using enzyme-linked immunosorbent assay (ELISA). In NAFL and NASH patients, miR-122, miR-128, FoxO3, TLR-4, LPS, and PPAR-γ were upregulated while miR-200, miR-298, miR-342, and adiponectin were downregulated compared with the normal control. The examined miRNAs might distinguish NAFL and NASH patients from the normal control using receiver operating characteristic analysis. Our study is the first to examine these miRNAs in NAFLD. Our findings imply that these are potentially promising biomarkers for noninvasive early NAFL diagnosis and NASH progression. Understanding the LPS/TLR-4/FoxO3 pathway involvement in NAFL/NASH pathogenesis may aid disease management.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Lipopolysaccharides/pharmacology , Adiponectin/metabolism , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Structure-Activity Relationship , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , Liver/metabolism
17.
J Cell Mol Med ; 28(8): e18304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652093

ABSTRACT

Liver hepatocellular carcinoma (LIHC) is a significant global health issue with limited treatment options. In this study, single-cell RNA sequencing (scRNA-seq) data were used to explore the molecular mechanisms of LIHC development and identify potential targets for therapy. The expression of peroxisome proliferator-activated receptors (PPAR)-related genes was analysed in LIHC samples, and primary cell populations, including natural killer cells, T cells, B cells, myeloid cells, endothelial cells, fibroblasts and hepatocytes, were identified. Analysis of the differentially expressed genes (DEGs) between normal and tumour tissues revealed significant changes in gene expression in various cell populations. PPAR activity was evaluated using the 'AUCell' R software, which indicated higher scores in the normal versus the malignant hepatocytes. Furthermore, the DEGs showed significant enrichment of pathways related to lipid and glucose metabolism, cell development, differentiation and inflammation. A prognostic model was then constructed using 8 PPARs-related genes, including FABP5, LPL, ACAA1, PPARD, FABP4, PLIN1, HMGCS2 and CYP7A1, identified using least absolute shrinkage and selection operator-Cox regression analysis, and validated in the TCGA-LIHC, ICGI-LIRI and GSE14520 datasets. Patients with low-risk scores had better prognosis in all cohorts. Based on the expression of the eight model genes, two clusters of patients were identified by ConsensusCluster analysis. We also predicted small-molecule drugs targeting the model genes, and identified perfluorohexanesulfonic acid, triflumizole and perfluorononanoic acid as potential candidates. Finally, wound healing assay confirmed that PPARD can promote the migration of liver cancer cells. Overall, our study offers novel perspectives on the molecular mechanisms of LIHC and potential areas for therapeutic intervention, which may facilitate the development of more effective treatment regimens.


Subject(s)
Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Molecular Docking Simulation , Peroxisome Proliferator-Activated Receptors , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Prognosis , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Gene Expression Profiling , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
18.
Bioorg Med Chem Lett ; 106: 129770, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38677560

ABSTRACT

We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARß/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARß/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.


Subject(s)
Metabolic Syndrome , Quinolines , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Structure-Activity Relationship , Humans , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Dose-Response Relationship, Drug , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Animals , Mice
19.
J Ethnopharmacol ; 329: 118165, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588984

ABSTRACT

BACKGROUND: Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE: This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS: UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS: 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and ß-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION: XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.


Subject(s)
AMP-Activated Protein Kinases , Diet, High-Fat , Drugs, Chinese Herbal , Lipid Metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Drugs, Chinese Herbal/pharmacology , Lipid Metabolism/drug effects , AMP-Activated Protein Kinases/metabolism , Male , Mice , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptors/metabolism , Disease Models, Animal
20.
Food Chem Toxicol ; 188: 114632, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583503

ABSTRACT

PFOA is one of the most representative compounds in the family of perfluorinated organic compounds. Due to its varying toxicity, alternatives to PFOA are beginning to emerge. HFPO-TA is an alternative for PFOA. It is currently unclear whether HFPO-TA affects glucose and lipid metabolism. In this study, rats were used as an animal model to investigate the effects of HFPO-TA on liver glucose and lipid metabolism. We found that HFPO-TA can affect glucose tolerance. Through omics analysis and molecular detection, it was found that HFPO-TA mainly affects the PPAR signaling pathway in the liver of rats, inhibiting liver glycolysis while promoting glucose production. HFPO-TA not only promotes the synthesis of fatty acids in the liver, but also promotes the breakdown of fatty acids, which ultimately leads to the disruption of hepatic glucose and lipid metabolism. The effects of HFPO-TA on metabolism are discussed in this paper to provide a reference for the risk assessment of this PFOA substitute.


Subject(s)
Glucose , Lipid Metabolism , Liver , Metabolome , Peroxisome Proliferator-Activated Receptors , Signal Transduction , Transcriptome , Animals , Lipid Metabolism/drug effects , Liver/metabolism , Liver/drug effects , Signal Transduction/drug effects , Rats , Male , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Transcriptome/drug effects , Glucose/metabolism , Metabolome/drug effects , Rats, Sprague-Dawley , Fluorocarbons
SELECTION OF CITATIONS
SEARCH DETAIL
...