Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51.981
1.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38823922

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Peyer's Patches , Smilax , Animals , Mice , RAW 264.7 Cells , Peyer's Patches/metabolism , Smilax/chemistry , Endocytosis , Pectins/chemistry , Pectins/metabolism , Macrophages/metabolism , Macrophages/drug effects , Phagocytosis/drug effects , Phagocytes/metabolism , Phagocytes/drug effects , Toll-Like Receptor 2/metabolism , Mice, Inbred BALB C , Male , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Administration, Oral
2.
AAPS PharmSciTech ; 25(5): 125, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834759

DOX liposomes have better therapeutic effects and lower toxic side effects. The targeting ability of liposomes is one of the key factors affecting the therapeutic effect of DOX liposomes. This study developed two types of targeted liposomes. Sialic acid (SA)-modified liposomes were designed to target the highly expressed Siglec-1 receptor on tumor-associated macrophages surface. Phosphatidylserine (PS)-modified liposomes were designed to promote phagocytosis by monocyte-derived macrophages through PS apoptotic signaling. In order to assess and compare the therapeutic potential of different targeted pathways in the context of anti-tumor treatment, we compared four phosphatidylserine membrane materials (DOPS, DSPS, DPPS and DMPS) and found that liposomes prepared using DOPS as material could significantly improve the uptake ability of RAW264.7 cells for DOX liposomes. On this basis, normal DOX liposomes (CL-DOX) and SA-modified DOX liposomes (SAL-DOX), PS-modified DOX liposomes (PS-CL-DOX), SA and PS co-modified DOX liposomes (PS-SAL-DOX) were prepared. The anti-tumor cells function of each liposome on S180 and RAW264.7 in vitro was investigated, and it was found that SA on the surface of liposomes can increase the inhibitory effect. In vivo efficacy results exhibited that SAL-DOX and PS-CL-DOX were superior to other groups in terms of ability to inhibit tumor growth and tumor inhibition index, among which SAL-DOX had the best anti-tumor effect. Moreover, SAL-DOX group mice had high expression of IFN-γ as well as IL-12 factors, which could significantly inhibit mice tumor growth, improve the immune microenvironment of the tumor site, and have excellent targeted delivery potential.


Doxorubicin , Liposomes , N-Acetylneuraminic Acid , Phosphatidylserines , Tumor-Associated Macrophages , Animals , Mice , N-Acetylneuraminic Acid/chemistry , RAW 264.7 Cells , Phosphatidylserines/metabolism , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Phagocytosis/drug effects , Drug Delivery Systems/methods , Apoptosis/drug effects
3.
Front Immunol ; 15: 1415573, 2024.
Article En | MEDLINE | ID: mdl-38835772

Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.


Dendritic Cells , Macrophages , Phagocytosis , Dendritic Cells/immunology , Humans , Phagocytosis/immunology , Animals , Macrophages/immunology , Apoptosis/immunology , Immune Tolerance , Efferocytosis
4.
Front Immunol ; 15: 1358853, 2024.
Article En | MEDLINE | ID: mdl-38835780

Introduction: Innate immunity is crucial to reducing parasite burden and contributing to survival in severe malaria. Monocytes are key actors in the innate response and, like macrophages, are plastic cells whose function and phenotype are regulated by the signals from the microenvironment. In the context of cerebral malaria (CM), monocyte response constitutes an important issue to understand. We previously demonstrated that decreased percentages of nonclassical monocytes were associated with death outcomes in CM children. In the current study, we postulated that monocyte phagocytosis function is impacted by the severity of malaria infection. Methods: To study this hypothesis, we compared the opsonic and nonopsonic phagocytosis capacity of circulant monocytes from Beninese children with uncomplicated malaria (UM) and CM. For the CM group, samples were obtained at inclusion (D0) and 3 and 30 days after treatment (D3, D30). The phagocytosis capacity of monocytes and their subsets was characterized by flow cytometry and transcriptional profiling by studying genes known for their functional implication in infected-red blood cell (iRBC) elimination or immune escape. Results: Our results confirm our hypothesis and highlight the higher capacity of nonclassical monocytes to phagocyte iRBC. We also confirm that a low number of nonclassical monocytes is associated with CM outcome when compared to UM, suggesting a mobilization of this subpopulation to the cerebral inflammatory site. Finally, our results suggest the implication of the inhibitory receptors LILRB1, LILRB2, and Tim3 in phagocytosis control. Discussion: Taken together, these data provide a better understanding of the interplay between monocytes and malaria infection in the pathogenicity of CM.


Malaria, Cerebral , Monocytes , Phagocytosis , Humans , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Monocytes/immunology , Male , Child, Preschool , Female , Child , Infant , Plasmodium falciparum/immunology , Opsonin Proteins/metabolism , Opsonin Proteins/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Immunity, Innate
5.
Sci Adv ; 10(23): eadl6083, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38838151

Hepatocellular carcinoma (HCC) acquires an immunosuppressive microenvironment, leading to unbeneficial therapeutic outcomes. Hyaluronan-mediated motility receptor (HMMR) plays a crucial role in tumor progression. Here, we found that aberrant expression of HMMR could be a predictive biomarker for the immune suppressive microenvironment of HCC, but the mechanism remains unclear. We established an HMMR-/- liver cancer mouse model to elucidate the HMMR-mediated mechanism of the dysregulated "don't eat me" signal. HMMR knockout inhibited liver cancer growth and induced phagocytosis. HMMRhigh liver cancer cells escaped from phagocytosis via sustaining CD47 signaling. Patients with HMMRhighCD47high expression showed a worse prognosis than those with HMMRlowCD47low expression. HMMR formed a complex with FAK/SRC in the cytoplasm to activate NF-κB signaling, which could be independent of membrane interaction with CD44. Notably, targeting HMMR could enhance anti-PD-1 treatment efficiency by recruiting CD8+ T cells. Overall, our data revealed a regulatory mechanism of the "don't eat me" signal and knockdown of HMMR for enhancing anti-PD-1 treatment.


CD47 Antigen , Carcinoma, Hepatocellular , Hyaluronan Receptors , Liver Neoplasms , Phagocytes , Phagocytosis , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Animals , Humans , Mice , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Phagocytes/metabolism , Phagocytes/immunology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Cell Line, Tumor , Signal Transduction , Tumor Microenvironment/immunology , Immune Evasion , NF-kappa B/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Knockout , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Tumor Escape
6.
Sci Adv ; 10(23): eadj3289, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38838160

Tissue stiffening is a predominant feature of fibrotic disorders, but the response of macrophages to changes in tissue stiffness and cellular context in fibrotic diseases remains unclear. Here, we found that the mechanosensitive ion channel Piezo1 was up-regulated in hepatic fibrosis. Macrophages lacking Piezo1 showed sustained inflammation and impaired spontaneous resolution of early liver fibrosis. Further analysis revealed an impairment of clearance of apoptotic cells by macrophages in the fibrotic liver. Macrophages showed enhanced efferocytosis when cultured on rigid substrates but not soft ones, suggesting stiffness-dependent efferocytosis of macrophages required Piezo1 activation. Besides, Piezo1 was involved in the efficient acidification of the engulfed cargo in the phagolysosomes and affected the subsequent expression of anti-inflammation genes after efferocytosis. Pharmacological activation of Piezo1 increased the efferocytosis capacity of macrophages and accelerated the resolution of inflammation and fibrosis. Our study supports the antifibrotic role of Piezo1-mediated mechanical sensation in liver fibrosis, suggesting that targeting PIEZO1 to enhance macrophage efferocytosis could induce fibrosis regression.


Ion Channels , Liver Cirrhosis , Macrophages , Phagocytosis , Ion Channels/metabolism , Ion Channels/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Animals , Macrophages/metabolism , Mice , Humans , Apoptosis , Mice, Inbred C57BL , Disease Models, Animal , Efferocytosis
7.
Front Immunol ; 15: 1383498, 2024.
Article En | MEDLINE | ID: mdl-38827743

This study investigates immune priming effects associated with granulocytes in crickets through a comprehensive analysis. Kaplan-Meier survival analysis reveals a significant contrast in survival rates, with the heat-killed Bacillus thuringiensis (Bt)-primed group exhibiting an impressive ~80% survival rate compared to the PBS buffer-primed group with only ~10% survival 60 hours post live Bt infection. Hemocyte analysis underscores elevated hemocyte counts, particularly in granulocytes of the killed Bt-primed group, suggesting a correlation between the heat-killed Bt priming and heightened immune activation. Microscopy techniques further explore granulocyte morphology, unveiling distinctive immune responses in the killed Bt-primed group characterized by prolonged immune activation, heightened granulocyte activity, phagocytosis, and extracellular trap formation, contributing to enhanced survival rates. In particular, after 24 hours of injecting live Bt, most granulocytes in the PBS buffer-primed group exhibited extracellular DNA trap cell death (ETosis), while in the killed Bt-primed group, the majority of granulocytes were observed to maintain highly activated extracellular traps, sustaining the immune response. Gene expression analysis supports these findings, revealing differential regulation of immune-related genes such as antibacterial humoral response, detection of bacterial lipopeptides, and cellular response to bacteria lipopeptides. Additionally, the heat-killed Bt-primed group, the heat-killed E. coli-primed group, and the PBS-primed group were re-injected with live Bt 2 and 9 days post priming. Two days later, only the PBS-primed group displayed low survival rates. After injecting live Bt 9 days later, the heat-killed E. coli-primed group surprisingly showed a similarly low survival rate, while the heat-killed Bt-primed group exhibited a high survival rate of ~60% after 60 hours, with actively moving and healthy crickets. In conclusion, this research provides valuable insights into both short-term and long-term immune priming effects in crickets, contributing to our understanding of invertebrate immunity with potential applications in public health.


Bacillus thuringiensis , Granulocytes , Gryllidae , Animals , Granulocytes/immunology , Gryllidae/immunology , Bacillus thuringiensis/immunology , Phagocytosis/immunology , Hemocytes/immunology , Extracellular Traps/immunology
8.
J Clin Invest ; 134(11)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38828721

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Macrophages , Phagocytosis , Receptors, Immunologic , Humans , Animals , Mice , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Macrophages/immunology , Macrophages/metabolism , T-Lymphocytes/immunology , Antigens, Differentiation/immunology , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , Antigens, Neoplasm/immunology , Cell Line, Tumor , Xenograft Model Antitumor Assays , CD47 Antigen/immunology , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism
9.
Nat Commun ; 15(1): 4724, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830855

Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.


Galectin 3 , Lipopolysaccharides , Mice, Inbred C57BL , Neutrophils , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Galectin 3/metabolism , Galectin 3/genetics , Neutrophils/immunology , Neutrophils/metabolism , Humans , Mice , Pseudomonas Infections/immunology , Male , Female , Respiratory Insufficiency/metabolism , Mice, Knockout , Phagocytosis , Immunity, Innate , Galectins/metabolism , Galectins/genetics
10.
Nat Commun ; 15(1): 3872, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719797

The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-ß (Aß) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aß plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aß1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aß clearance and accumulation of amyloid plaques.


Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Microglia , Phagocytosis , Plaque, Amyloid , Animals , Microglia/metabolism , Microglia/drug effects , Alzheimer Disease/metabolism , Alzheimer Disease/microbiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/metabolism , Female , Mice , Male , Bacteroides fragilis/metabolism , Gastrointestinal Microbiome , Humans , Mice, Inbred C57BL , Hippocampus/metabolism , Hippocampus/pathology
11.
Front Immunol ; 15: 1401294, 2024.
Article En | MEDLINE | ID: mdl-38720899

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Sphingolipids , Animals , Humans , Sphingolipids/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Phagocytosis , Phagocytes/immunology , Phagocytes/metabolism , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Cell Membrane/metabolism , Protein Binding
12.
Cell Death Dis ; 15(5): 305, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693109

Zebrafish is widely adopted as a grafting model for studying human development and diseases. Current zebrafish xenotransplantations are performed using embryo recipients, as the adaptive immune system, responsible for host versus graft rejection, only reaches maturity at juvenile stage. However, transplanted primary human hematopoietic stem/progenitor cells (HSC) rapidly disappear even in zebrafish embryos, suggesting that another barrier to transplantation exists before the onset of adaptive immunity. Here, using a labelled macrophage zebrafish line, we demonstrated that engraftment of human HSC induces a massive recruitment of macrophages which rapidly phagocyte transplanted cells. Macrophages depletion, by chemical or pharmacological treatments, significantly improved the uptake and survival of transplanted cells, demonstrating the crucial implication of these innate immune cells for the successful engraftment of human cells in zebrafish. Beyond identifying the reasons for human hematopoietic cell engraftment failure, this work images the fate of human cells in real time over several days in macrophage-depleted zebrafish embryos.


Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Macrophages , Zebrafish , Zebrafish/embryology , Animals , Macrophages/metabolism , Humans , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cell Transplantation/methods , Embryo, Nonmammalian/metabolism , Transplantation, Heterologous , Phagocytosis
13.
Sci Rep ; 14(1): 12157, 2024 05 28.
Article En | MEDLINE | ID: mdl-38802537

Annual variations in animal's physiological functions are an essential strategy to deal with seasonal challenges which also vary according to the time of year. Information regarding annual adaptations in the immune-competence to cope with seasonal stressors in reptiles is scarce. The present research plan was designed to analyze the presence of circannual immune rhythms in defense responses of the leucocytes in an ophidian, Natrix piscator. Peripheral blood leucocytes were obtained, counted, and superoxide anion production, neutrophil phagocytosis, and nitrite release were tested to assess the innate immune functions. Peripheral blood lymphocytes were separated by centrifugation (utilizing density gradient) and the cell proliferation was measured. The Cosinor rhythmometry disclosed the presence of significant annual rhythms in the number of leucocytes, superoxide anion production, nitric oxide production, and proliferation of stimulated lymphocytes. The authors found that respiratory burst activity and proliferative responses of lymphocytes were crucial immune responses that showed the annual rhythm. It was summarized that the immune function of the N. piscator is a labile attribute that makes the animal competent to cope with the seasonal stressor by adjustment in the potency of response.


Leukocytes , Phagocytosis , Seasons , Superoxides , Animals , Leukocytes/immunology , Leukocytes/metabolism , Superoxides/metabolism , Nitric Oxide/metabolism , Cell Proliferation , Respiratory Burst , Lymphocytes/immunology , Lymphocytes/metabolism , Immunity, Innate
14.
Cell Commun Signal ; 22(1): 295, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802814

BACKGROUND: Colorectal cancer (CRC) commonly exhibits tolerance to cisplatin treatment, but the underlying mechanisms remain unclear. Within the tumor microenvironment, macrophages play a role in resisting the cytotoxic effects of chemotherapy by engaging in efferocytosis to clear apoptotic cells induced by chemotherapeutic agents. The involvement of extracellular vesicles (EVs), an intercellular communicator within the tumor microenvironment, in regulating the efferocytosis for the promotion of drug resistance has not been thoroughly investigated. METHODS: We constructed GFP fluorescent-expressing CRC cell lines (including GFP-CT26 and GFP-MC38) to detect macrophage efferocytosis through flow cytometric analysis. We isolated and purified CRC-secreted EVs using a multi-step ultracentrifugation method and identified them through electron microscopy and nanoflow cytometry. Proteomic analysis was conducted to identify the protein molecules carried by CRC-EVs. MFGE8 knockout CRC cell lines were constructed using CRISPR-Cas9, and their effects were validated through in vitro and in vivo experiments using Western blotting, immunofluorescence, and flow cytometric analysis, confirming that these EVs activate the macrophage αvß3-Src-FAK-STAT3 signaling pathway, thereby promoting efferocytosis. RESULTS: In this study, we found that CRC-derived EVs (CRC-EVs) enhanced macrophage efferocytosis of cisplatin-induced apoptotic CRC cells. Analysis of The Cancer Genome Atlas (TCGA) database revealed a high expression of the efferocytosis-associated gene MFGE8 in CRC patients, suggesting a poorer prognosis. Additionally, mass spectrometry-based proteomic analysis identified a high abundance of MFGE8 protein in CRC-EVs. Utilizing CRISPR-Cas9 gene edition system, we generated MFGE8-knockout CRC cells, demonstrating that their EVs fail to upregulate macrophage efferocytosis in vitro and in vivo. Furthermore, we demonstrated that MFGE8 in CRC-EVs stimulated macrophage efferocytosis by increasing the expression of αvß3 on the cell surface, thereby activating the intracellular Src-FAK-STAT3 signaling pathway. CONCLUSIONS: Therefore, this study highlighted a mechanism in CRC-EVs carrying MFGE8 activated the macrophage efferocytosis. This activation promoted the clearance of cisplatin-induced apoptotic CRC cells, contributing to CRC resistance against cisplatin. These findings provide novel insights into the potential synergistic application of chemotherapy drugs, EVs inhibitors, and efferocytosis antagonists for CRC treatment.


Colorectal Neoplasms , Extracellular Vesicles , Macrophages , Phagocytosis , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Macrophages/metabolism , Humans , Animals , Cell Line, Tumor , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction , Cisplatin/pharmacology , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/genetics , Efferocytosis
15.
Front Immunol ; 15: 1372904, 2024.
Article En | MEDLINE | ID: mdl-38742116

Introduction: The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods: To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results: The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion: These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.


Phagocytes , Phagocytosis , Recombinant Proteins , Animals , Phagocytosis/immunology , Phagocytes/immunology , Phagocytes/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Protein Binding , Strongylocentrotus purpuratus/immunology , Strongylocentrotus purpuratus/genetics , Immunity, Innate , Protein Isoforms/genetics , Protein Isoforms/immunology , Sea Urchins/immunology , Vibrio/immunology , Opsonin Proteins/metabolism , Opsonin Proteins/immunology
16.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731567

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Macrophages , Phagocytosis , Polygonatum , Polysaccharides , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Polygonatum/chemistry , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Phagocytosis/drug effects , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , RAW 264.7 Cells , Cytokines/metabolism , Cell Proliferation/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Molecular Weight
17.
Neuropathol Appl Neurobiol ; 50(3): e12982, 2024 Jun.
Article En | MEDLINE | ID: mdl-38742276

AIMS: Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS: This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS: We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS: Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.


Amyotrophic Lateral Sclerosis , Astrocytes , Disease Models, Animal , Matrix Metalloproteinase 9 , Mice, Transgenic , Microglia , Animals , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Microglia/metabolism , Microglia/pathology , Mice , Matrix Metalloproteinase 9/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Motor Neurons/pathology , Motor Neurons/metabolism , Phagocytosis/physiology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
18.
Bull Exp Biol Med ; 176(5): 607-611, 2024 Mar.
Article En | MEDLINE | ID: mdl-38730105

The study presents the killer functions of circulating neutrophils: myeloperoxidase activity, the ability to generate ROS, phagocytic activity, receptor status, NETosis, as well as the level of cytokines IL-2, IL-4, IL-6, IL-17A, and IL-18, granulocyte CSF, monocyte chemotactic protein 1, and neutrophil elastase in the serum of patients with uterine myoma and endometrial cancer (FIGO stages I-III). The phagocytic ability of neutrophils in uterine myoma was influenced by serum levels of granulocyte CSF and IL-2 in 54% of the total variance. The degranulation ability of neutrophils in endometrial cancer was determined by circulating IL-18 in 50% of the total variance. In uterine myoma, 66% of the total variance in neutrophil myeloperoxidase activity was explained by a model dependent on blood levels of IL-17A, IL-6, and IL-4. The risk of endometrial cancer increases when elevated levels of monocyte chemotactic protein 1 in circulating neutrophils are associated with reduced ability to capture particles via extracellular traps (96% probability).


Chemokine CCL2 , Endometrial Neoplasms , Interleukin-17 , Interleukin-6 , Neutrophils , Humans , Female , Neutrophils/metabolism , Neutrophils/immunology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/blood , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Interleukin-6/blood , Chemokine CCL2/blood , Interleukin-17/blood , Middle Aged , Interleukin-4/blood , Peroxidase/blood , Peroxidase/metabolism , Interleukin-18/blood , Uterine Neoplasms/blood , Uterine Neoplasms/immunology , Uterine Neoplasms/pathology , Granulocyte Colony-Stimulating Factor/blood , Granulocyte Colony-Stimulating Factor/metabolism , Phagocytosis , Leiomyoma/blood , Leiomyoma/immunology , Leiomyoma/pathology , Leiomyoma/metabolism , Cytokines/blood , Cytokines/metabolism , Leukocyte Elastase/blood , Leukocyte Elastase/metabolism , Adult , Extracellular Traps/metabolism , Extracellular Traps/immunology , Reactive Oxygen Species/metabolism , Aged , Interleukin-2
19.
Cell Death Dis ; 15(5): 324, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724533

Severe aplastic anemia (SAA) is a rare, fatal disease characterized by severe cytopenias and loss of hematopoietic stem cells (HSCs). Immune-mediated destruction and inflammation are known drivers of SAA, however, the underlying mechanisms driving persistent inflammation are unknown. Current treatments for SAA rely on immunosuppressive therapies or HSC transplantation, however, these treatments are not always effective. Using an established mouse model of SAA, we observed a significant increase in apoptotic cells within the bone marrow (BM) and impaired efferocytosis in SAA mice, relative to radiation controls. Single-cell transcriptomic analysis revealed heterogeneity among BM monocytes and unique populations emerged during SAA characterized by increased inflammatory signatures and significantly increased expression of Sirpa and Cd47. CD47, a "don't eat me" signal, was increased on both live and apoptotic BM cells, concurrent with markedly increased expression of signal regulatory protein alpha (SIRPα) on monocytes. Functionally, SIRPα blockade improved cell clearance and reduced accumulation of CD47-positive apoptotic cells. Lipidomic analysis revealed a reduction in the precursors of specialized pro-resolving lipid mediators (SPMs) and increased prostaglandins in the BM during SAA, indicative of impaired inflammation resolution. Specifically, 18-HEPE, a precursor of E-series resolvins, was significantly reduced in SAA-induced mice relative to radiation controls. Treatment of SAA mice with Resolvin E1 (RvE1) improved efferocytic function, BM cellularity, platelet output, and survival. Our data suggest that impaired efferocytosis and inflammation resolution contributes to SAA progression and demonstrate that SPMs, such as RvE1, offer new and/or complementary treatments for SAA that do not rely on immune suppression.


Anemia, Aplastic , CD47 Antigen , Eicosapentaenoic Acid , Animals , Anemia, Aplastic/pathology , Mice , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Apoptosis/drug effects , Phagocytosis/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Monocytes/metabolism , Monocytes/drug effects , Inflammation/pathology , Male , Efferocytosis
20.
Nat Commun ; 15(1): 4119, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750020

Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.


Mice, Inbred C57BL , Mice, Knockout , Neutrophils , Sepsis , Animals , Sepsis/immunology , Sepsis/drug therapy , Mice , Neutrophils/immunology , Neutrophils/metabolism , Phagocytosis , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Disease Models, Animal , Male , Neutrophil Infiltration/drug effects , Cecum/surgery , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Humans , Pore Forming Cytotoxic Proteins/metabolism , Ligation , Lipopolysaccharides , Shock, Septic/immunology
...