Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.932
Filter
1.
World J Microbiol Biotechnol ; 40(9): 262, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972951

ABSTRACT

Pseudomonas aeruginosa PR23 isolated from the hydrocarbon contaminated soil can tolerate and degrade mixture of polyaromatic hydrocarbons (PAHs) at an initial concentration of 1300 ppm. The degradation and intermediates formed were assessed by gas chromatography-mass spectrometry (GC-MS) analysis. The isolated strain was able to degrade 59.2% of the mixture of PAHs in 3 days and 71.6% by day 15. Effect of PAHs on protein expression in Pseudomonas aeruginosa PR23 was studied using nano LC-MS/MS. Thirty-six proteins showed a more than 2-fold increase in expression in the presence of mixture of PAHs. Out of these proteins, 7 proteins have been reported for their role in degradation of naphthalene, phenanthrene, and pyrene. The data revealed the presence of 16 proteins that were uniquely expressed in the presence of mixture of PAHs. A twin-arginine translocation signal peptide (Tat system), known for the transportation of folded proteins across the cell membrane, showed more than 8-fold increased expression in the presence of mixture of PAHs. These results indicate that the isolated strain adopts the conditions in the presence of mixture of PAHs by modulating its metabolic and physiological processes. These findings suggest that Pseudomonas aeruginosa PR23 may be a suitable candidate for use in the development of strategies for bioremediation of mixtures of PAHs.


Subject(s)
Bacterial Proteins , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons , Pseudomonas aeruginosa , Soil Microbiology , Soil Pollutants , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Gas Chromatography-Mass Spectrometry , Phenanthrenes/metabolism , Tandem Mass Spectrometry , Naphthalenes/metabolism
2.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Article in English | MEDLINE | ID: mdl-38957181

ABSTRACT

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Subject(s)
Gelatin , Glucosides , Human Umbilical Vein Endothelial Cells , Mesenchymal Stem Cells , Nanofibers , Neovascularization, Physiologic , Osteogenesis , Phenanthrenes , Phenols , Polyesters , Rats, Sprague-Dawley , Osteogenesis/drug effects , Animals , Nanofibers/chemistry , Gelatin/chemistry , Polyesters/chemistry , Glucosides/chemistry , Glucosides/pharmacology , Phenols/chemistry , Phenols/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/pharmacokinetics , Phenanthrenes/administration & dosage , Humans , Neovascularization, Physiologic/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Rats , Male , Bone Regeneration/drug effects , Membranes, Artificial , Coculture Techniques , Drug Liberation , Cell Differentiation/drug effects
3.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992615

ABSTRACT

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Subject(s)
Disease Models, Animal , Inflammasomes , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mice, Inbred C57BL , Mice, Knockout, ApoE , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Signal Transduction , Syk Kinase , Vasodilation , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Syk Kinase/metabolism , Matrix Metalloproteinase 2/metabolism , Phenanthrenes/pharmacology , Male , Matrix Metalloproteinase 9/metabolism , Vasodilation/drug effects , Hyperlipidemias/drug therapy , Hyperlipidemias/physiopathology , Vasodilator Agents/pharmacology , Phosphorylation , Mice , Aorta/drug effects , Aorta/physiopathology , Aorta/metabolism , Aorta/enzymology , Apolipoproteins E
4.
Environ Sci Pollut Res Int ; 31(31): 44415-44430, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954338

ABSTRACT

Chemical oxidation coupled with microbial remediation has attracted widespread attention for the removal of polycyclic aromatic hydrocarbons (PAHs). Among them, the precise evaluation of the feasible oxidant concentration of PAH-contaminated soil is the key to achieving the goal of soil functional ecological remediation. In this study, phenanthrene (PHE) was used as the target pollutant, and Fe2+-activated persulphate (PS) was used to remediate four types of soils. Linear regression analysis identified the following important factors influencing remediation: PS dosage and soil PHE content for PHE degradation, Fe2+ dosage, hydrolysable nitrogen (HN), and available phosphorus for PS decomposition. A comprehensive model of "soil characteristics-oxidation conditions-remediation effect" with a high predictive accuracy was constructed. Based on model identification, Pseudomonas aeruginosa GZ7, which had high PAHs degrading ability after domestication, was further applied to coupling repair remediation. The results showed that the optimal PS dose was 0.75% (w/w). The response relationship between soil physical, chemical, and biological indicators at the intermediate interface and oxidation conditions was analysed. Coupled remediation effects were clarified using microbial diversity sequencing. The introduction of Pseudomonas aeruginosa GZ7 stimulated the relative abundance of Cohnella, Enterobacter, Paenibacillus, and Bacillus, which can promote material metabolism and energy transformation during remediation.


Subject(s)
Oxidation-Reduction , Phenanthrenes , Pseudomonas aeruginosa , Soil Pollutants , Soil , Phenanthrenes/metabolism , Soil/chemistry , Soil Microbiology , Environmental Restoration and Remediation/methods , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons , Sulfates/chemistry
5.
J Biochem Mol Toxicol ; 38(8): e23785, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39051181

ABSTRACT

An arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis in uremic patients, yet its dysfunction poses a significant clinical challenge. Venous stenosis, primarily caused by venous neointimal hyperplasia, is a key factor in the failure of vascular access. During vascular access dysfunction, endothelial cells (ECs) transform mechanical stimuli into intracellular signals and interact with vascular smooth muscle cells. Tanshinone IIA, an important compound derived from Salvia miltiorrhiza, has been widely used to treat cardiovascular diseases. However, its role in modulating ECs under uremic conditions remains incompletely understood. In this research, ECs were exposed to sodium tanshinone IIA sulfonate (STS) and subjected to shear stress and uremic conditions. The results indicate that STS can reduce the suppressive effects on the expression of NF-κB p65, JNK and Collagen I in uremia-induced ECs. Moreover, the downregulation of NF-κB p65, JNK and Collagen I can be enhanced through the inhibition of ERK1/2 and the upregulation of Caveolin-1. These findings suggest that tanshinone IIA may improve EC function under uremic conditions by targeting the Caveolin-1/ERK1/2 pathway, presenting tanshinone IIA as a potential therapeutic agent against AVF immaturity caused by EC dysfunction.


Subject(s)
Abietanes , Caveolin 1 , Uremia , Uremia/metabolism , Uremia/drug therapy , Uremia/pathology , Humans , Abietanes/pharmacology , Abietanes/therapeutic use , Caveolin 1/metabolism , MAP Kinase Signaling System/drug effects , Collagen Type I/metabolism , Transcription Factor RelA/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Phenanthrenes
6.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3061-3069, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041166

ABSTRACT

In order to study the toxic effect and mechanism of triptolide(TP) on the reproductive system of female rats with Ⅱ type collagen induced arthritis(CIA), 50 SD rats were randomly divided into normal control group, CIA model group, and three groups receiving TP tablets at clinically equivalent doses of 0. 5, 1, and 2 times, respectively(with TP dosages of 3. 75, 7. 5, and 15 µg·kg~(-1)·d~(-1)), each comprising 10 rats. Intragastric administration was started on the day after the first immunization, once a day, for 42 days.The results were taken on the 21st and 42nd days to calculate the uterine and ovarian organ indexes; pathological and morphological changes in uterus and ovaries were observed under a light microscope; and the levels of estradiol(E_2) and cytochrome P450A1(aromatase,CYP19A1) in ovarian homogenate were detected by ELISA. Furthermore, immunohistochemistry was employed to detect the expression levels of transforming growth factor ß3( TGFß3) pathway-related proteins, mothers against decapentaplegic homolog 3(Smad3) and steroidogenic factor-1(SF-1) in ovarian tissues. In vitro, the mouse Chinese hamster ovary(CHO) cell line was established, and after 24 hours of TP administration(30, 60, 120 nmol·L~(-1)), cell proliferation was detected by the thiazolyl blue tetrazolium bromide(MTT) method, apoptosis by the flow cytometry, and TGFß3, Smad3 and SF-1 protein expression in cells by the Western blot method, and the nuclear entry of SF-1 was detected by immunofluorescence. The results showed that compared with the CIA model group, all TP administration groups showed decreased number of uterine glands, total follicles, mature follicles, and corpus luteum on days 21 and 42 of administration, but there was no statistical difference, and only the administration of 2 times the clinically equivalent dose of TP could significantly increase the number of atretic follicles at 42 days of administration. TP at 3. 75 µg·kg-1·d-1significantly reduced the level of E_2 at 21 days of administration and the expression of TGFß3 and Smad3 factors in ovarian tissues,but had no significant effect on the rate-limiting enzyme in estrogen synthesis CYP19A1. TP at 7. 5 and 15 µg·kg~(-1)·d~(-1) significantly reduced the expression of SF-1 regardless of administration for 21 days or 42 days. TP can significantly promote ovarian cell apoptosis in vitro, with apoptosis mainly concentrated in the late stage of apoptosis after 24 hours of administration. In addition, 60 nmol·L~(-1) TP significantly reduced the protein expression of TGFß3, Smad3 and SF-1 in a dose-dependent manner. In summary, intragastric administration of TP at less than 2 times the clinically equivalent dose for 21 days and 42 days did not cause obvious reproductive damage to the uterus and ovarian tissues of CIA rats, and the number of atretic follicles changed significantly only when the 2 times the clinically equivalent dose was administered for 42 days. TP exerted reproductive toxicity in vivo on reproductive target organs and in vitro on ovarian cells by inhibiting the expression of TGFß3/Smad3/SF-1 pathway.


Subject(s)
Diterpenes , Epoxy Compounds , Ovary , Phenanthrenes , Rats, Sprague-Dawley , Uterus , Animals , Female , Diterpenes/pharmacology , Phenanthrenes/toxicity , Rats , Epoxy Compounds/toxicity , Epoxy Compounds/administration & dosage , Ovary/drug effects , Ovary/metabolism , Uterus/drug effects , Uterus/metabolism , Collagen Type II/metabolism , Smad3 Protein/metabolism , Smad3 Protein/genetics , Humans , Reproduction/drug effects , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Estradiol
7.
PLoS One ; 19(7): e0306418, 2024.
Article in English | MEDLINE | ID: mdl-39042616

ABSTRACT

The polycyclic aromatic hydrocarbon content of water (four surface water, six underground water (borehole water), seven sachet water), barbecued food and their fresh equivalents (barbecued beef, fish, plantain, pork, yam, chicken, chevon, potato, corn), oil (three palm oil, nine vegetable oil), and fresh vegetable samples (water leaf, bitter leaf, cabbage, carrot, cucumber, pumpkin, garlic, ginger, green leaf, Gnetum Africana, onion, pepper) were determined by GC-MS analysis. The current study also determined the estimated lifetime cancer risk from ingesting polycyclic aromatic hydrocarbon-contaminated food. The polycyclic aromatic hydrocarbon content of water, oil, vegetable, and food samples were within the United States Environmental Protection Agency/World Health Organization safe limits. The naphthalene, benzo(b)fluoranthene, and benzo(k)fluoranthene levels in surface water were significantly higher than in borehole samples (P = 0.000, 0.047, 0.047). Vegetable oils had higher anthracene and chrysene compared to palm oil (P = 0.023 and 0.032). Significant variations were observed in levels of naphthalene, acenaphthylene, phenanthrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene among the barbecued and fresh food samples (P <0.05). Barbecued pork, potato, and corn had significantly higher naphthalene compared to their fresh equivalents (P = 0.002, 0.017, and <0.001). Consumption of barbecued food and surface water may be associated with higher exposure risk to polycyclic aromatic hydrocarbons which may predispose to increased cancer health risk. The current work explores in depth the concentration of polycyclic aromatic hydrocarbons in different dietary categories that pose direct risk to humans via direct consumption. These findings add knowledge to support future considerations for human health.


Subject(s)
Neoplasms , Polycyclic Aromatic Hydrocarbons , Vegetables , Nigeria , Polycyclic Aromatic Hydrocarbons/analysis , Vegetables/chemistry , Humans , Risk Assessment , Neoplasms/epidemiology , Neoplasms/etiology , Food Contamination/analysis , Water/chemistry , Water/analysis , Gas Chromatography-Mass Spectrometry , Chrysenes/analysis , Phenanthrenes/analysis , Food Analysis , Water Pollutants, Chemical/analysis , Animals , Anthracenes , Naphthalenes
8.
Cell Biol Toxicol ; 40(1): 60, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073694

ABSTRACT

Triptolide (TP) is a major active and toxic composition of the Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), exhibiting various therapeutic bioactivities. Among the toxic effects, the hepatotoxicity of TP deserves serious attention. Previously, our research group proposed a new view of TP-related hepatotoxicity: hepatic hypersensitivity under lipopolysaccharide (LPS) stimulation. However, the mechanism of TP/LPS-induced hepatic hypersensitivity remains unclear. In this study, we investigated the mechanism underlying TP/LPS-induced hypersensitivity from the perspective of the inhibition of proteasome activity, activated endoplasmic reticulum stress (ERS)-related apoptosis, and the accumulation of reactive oxygen species (ROS). Our results showed that N-acetylcysteine (NAC), a common ROS inhibitor, decreased the expression of cleaved caspase-3 and cleaved PARP, which are associated with FLIP enhancement. Moreover, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was able to alleviate TP/LPS-induced hepatotoxicity by reducing ERS-related apoptosis protein expression (GRP78, p-eIF2α/eIF2α, ATF4, CHOP, cleaved caspase-3 and cleaved PARP) and ROS levels, with ATF4 being an indispensable mediator. In addition, the proteasome activity inhibitor MG-132 further aggravated ERS-related apoptosis, which indicated that the inhibition of proteasome activity also plays an important role in TP/LPS-related liver injuries. In summary, we propose that TP/LPS may upregulate the activation of ERS-associated apoptosis by inhibiting proteasome activity and enhancing ROS production through ATF4.


Subject(s)
Acetylcysteine , Apoptosis , Diterpenes , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Epoxy Compounds , Lipopolysaccharides , Phenanthrenes , Proteasome Endopeptidase Complex , Proteasome Inhibitors , Reactive Oxygen Species , Phenanthrenes/pharmacology , Phenanthrenes/toxicity , Diterpenes/pharmacology , Diterpenes/toxicity , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Lipopolysaccharides/toxicity , Epoxy Compounds/toxicity , Epoxy Compounds/pharmacology , Animals , Reactive Oxygen Species/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Acetylcysteine/pharmacology , Activating Transcription Factor 4/metabolism , Phenylbutyrates/pharmacology , Mice , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Liver/drug effects , Liver/pathology , Liver/metabolism , Caspase 3/metabolism , Male , Leupeptins
9.
J Exp Clin Cancer Res ; 43(1): 207, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054545

ABSTRACT

Targeted delivery and precise release of toxins is a prospective strategy for the treatment of triple-negative breast cancer (TNBC), yet the flexibility to incorporate both properties simultaneously remains tremendously challenging in the X-drug conjugate fields. As critical components in conjugates, linkers could flourish in achieving optimal functionalities. Here, we pioneered a pH-hypersensitive tumor-targeting aptamer AS1411-triptolide conjugate (AS-TP) to achieve smart release of the toxin and targeted therapy against TNBC. The multifunctional acetal ester linker in the AS-TP site-specifically blocked triptolide toxicity, quantitatively sustained aptamer targeting, and ensured the circulating stability. Furthermore, the aptamer modification endowed triptolide with favorable water solubility and bioavailability and facilitated endocytosis of conjugated triptolide by TNBC cells in a nucleolin-dependent manner. The integrated superiorities of AS-TP promoted the preferential intra-tumor triptolide accumulation in xenografted TNBC mice and triggered the in-situ triptolide release in the weakly acidic tumor microenvironment, manifesting striking anti-TNBC efficacy and virtually eliminated toxic effects beyond clinical drugs. This study illustrated the therapeutic potential of AS-TP against TNBC and proposed a promising concept for the development of nucleic acid-based targeted anticancer drugs.


Subject(s)
Aptamers, Nucleotide , Diterpenes , Epoxy Compounds , Phenanthrenes , Triple Negative Breast Neoplasms , Diterpenes/pharmacology , Diterpenes/therapeutic use , Diterpenes/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Epoxy Compounds/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Phenanthrenes/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Humans , Mice , Female , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
10.
Arch Microbiol ; 206(7): 296, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856816

ABSTRACT

Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.


Subject(s)
Bacillus subtilis , Biodegradation, Environmental , Petroleum , Wastewater , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Wastewater/microbiology , Wastewater/chemistry , Petroleum/metabolism , Petroleum/toxicity , Phenanthrenes/metabolism , Phenanthrenes/analysis , Phenanthrenes/toxicity , Naphthalenes/metabolism , Naphthalenes/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Sewage/microbiology , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Metals, Heavy/analysis
11.
Exp Biol Med (Maywood) ; 249: 10051, 2024.
Article in English | MEDLINE | ID: mdl-38881848

ABSTRACT

Podocyte injury or dysfunction can lead to proteinuria and glomerulosclerosis. Zonula occludens 1 (ZO-1) is a tight junction protein which connects slit diaphragm (SD) proteins to the actin cytoskeleton. Previous studies have shown that the expression of ZO-1 is decreased in chronic kidney disease (CKD). Thus, elucidation of the regulation mechanism of ZO-1 has considerable clinical importance. Triptolide (TP) has been reported to exert a strong antiproteinuric effect by inhibiting podocyte epithelial mesenchymal transition (EMT) and inflammatory response. However, the underlying mechanisms are still unclear. We found that TP upregulates ZO-1 expression and increases the fluorescence intensity of ZO-1 in a puromycin aminonucleoside (PAN)-induced podocyte injury model. Permeablity assay showed TP decreases podocyte permeability in PAN-treated podocyte. TP also upregulates the DNA demethylase TET2. Our results showed that treatment with the DNA methyltransferase inhibitors 5-azacytidine (5-AzaC) and RG108 significantly increased ZO-1 expression in PAN-treated podocytes. Methylated DNA immunoprecipitation (MeDIP) and hydroxymethylated DNA immunoprecipitation (hMeDIP) results showed that TP regulates the methylation status of the ZO-1 promoter. Knockdown of TET2 decreased ZO-1 expression and increased methylation of its promoter, resulting in the increase of podocyte permeability. Altogether, these results indicate that TP upregulates the expression of ZO-1 and decreases podocyte permeability through TET2-mediated 5 mC demethylation. These findings suggest that TP may alleviate podocyte permeability through TET2-mediated hydroxymethylation of ZO-1.


Subject(s)
Dioxygenases , Diterpenes , Epoxy Compounds , Phenanthrenes , Podocytes , Zonula Occludens-1 Protein , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Zonula Occludens-1 Protein/metabolism , Phenanthrenes/pharmacology , Diterpenes/pharmacology , Epoxy Compounds/pharmacology , Dioxygenases/metabolism , Animals , DNA-Binding Proteins/metabolism , Mice , Proto-Oncogene Proteins/metabolism , Permeability/drug effects , Humans , DNA Methylation/drug effects
12.
Drug Deliv ; 31(1): 2354687, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38823413

ABSTRACT

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated death worldwide. Beside early detection, early diagnosis, and early surgery, it is urgent to try new strategies for the treatment of HCC. Triptolide (TPL) has been employed to treat HCC. However, its clinical applications were restricted by the narrow therapeutic window, severe toxicity, and poor water-solubility. In this study, we developed cancer cell membrane-camouflaged biomimetic PLGA nanoparticles loading TPL (TPL@mPLGA) with the homologous targeting property for the treatment of HCC. The TPL@mPLGA was successfully prepared with particle size of 195.5 ± 7.5 nm and zeta potential at -21.5 ± 0.2 mV with good stability. The drug loading (DL) of TPL@mPLGA was 2.94%. After Huh-7 cell membrane coating, the natural Huh-7 cell membrane proteins were found to be retained on TPL@mPLGA, thus endowing the TPL@mPLGA with enhanced accumulation at tumor site, and better anti-tumor activity in vitro and in vivo when compared with TPL or TPL@PLGA. The TPL@mPLGA showed enhanced anti-tumor effects and reduced toxicity of TPL, which could be adopted for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes , Epoxy Compounds , Liver Neoplasms , Nanoparticles , Phenanthrenes , Polylactic Acid-Polyglycolic Acid Copolymer , Diterpenes/administration & dosage , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Epoxy Compounds/chemistry , Epoxy Compounds/administration & dosage , Epoxy Compounds/pharmacology , Phenanthrenes/administration & dosage , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/pharmacokinetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Mice , Cell Membrane/drug effects , Particle Size , Drug Carriers/chemistry , Mice, Nude , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice, Inbred BALB C
13.
Immun Inflamm Dis ; 12(6): e1322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888462

ABSTRACT

INTRODUCTION: Triptolide (TP), a natural product derived from the herbal medicine Tripterygium wilfordii, exhibits potent immunosuppressive activity. However, the mechanisms underlying its effects in rheumatoid arthritis remain incompletely understood. METHODS: Collagen-induced arthritis (CIA) model was induced in Sprague-Dawley rats by immunization with bovine type II collagen, and TP was administrated as treatment. The therapeutic effect of TP was evaluated based on paw swelling, histopathology, and serum levels of inflammatory factors. Exosomes isolated from rat serum were characterized by transmission electron microscopy, dynamic light scattering, and western blot analysis. Proteomic profiling of exosomes was analyzed by direct DIA quantitative proteomics analysis. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes databases were employed for enrichment analysis related to molecular function, biological processes, and signaling pathways. Western blot analysis was used to analyze differentially expressed proteins. RESULTS: TP treatment ameliorated arthritic phenotypes in CIA rats as evidenced by reduced arthritis score, paw swelling, pathological injury severity scores, and serum levels of inflammatory cytokines. The proteomic analysis revealed that TP treatment significantly inhibited complement and coagulation cascades, interleukin-17 signaling pathway, and cholesterol metabolism, which were reactivated in CIA rats. Importantly, lipocalin 2 (LCN2) and myeloperoxidase (MPO) levels were markedly upregulated in the CIA group but suppressed upon TP administration. Furthermore, in synovial tissues, LCN2 and MPO expression levels were also elevated in the CIA group but decreased following TP treatment. CONCLUSION: Our findings demonstrate that TP alleviates CIA, possibly through modulation of exosomal LCN2 and MPO proteins.


Subject(s)
Arthritis, Experimental , Diterpenes , Epoxy Compounds , Exosomes , Phenanthrenes , Proteomics , Rats, Sprague-Dawley , Animals , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Diterpenes/pharmacology , Diterpenes/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/immunology , Rats , Proteomics/methods , Exosomes/metabolism , Male , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Signal Transduction/drug effects , Disease Models, Animal
14.
Phytomedicine ; 130: 155767, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38833789

ABSTRACT

BACKGROUND: Due to its high incidence and elevated mortality, hepatocellular carcinoma (HCC) has emerged as a formidable global healthcare challenge. The intricate interplay between gender-specific disparities in both incidence and clinical outcomes has prompted a progressive recognition of the substantial influence exerted by estrogen and its corresponding receptors (ERs) upon HCC pathogenesis. Estrogen replacement therapy (ERT) emerged for the treatment of HCC by administering exogenous estrogen. However, the powerful side effects of estrogen, including the promotion of breast cancer and infertility, hinder the further application of ERT. Identifying effective therapeutic targets for estrogen and screening bioactive ingredients without E2-like side effects is of great significance for optimizing HCC ERT. METHODS: In this study, we employed an integrative approach, harnessing data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, clinical paraffin sections, adenoviral constructs as well as in vivo studies, to unveil the association between estrogen, estrogen receptor α (ESR1) and HCC. Leveraging methodologies encompassing molecular dynamics simulation and cellular thermal shift assay (CETSA) were used to confirm whether ESR1 is a molecular target of DHT. Multiple in vitro and in vivo experiments were used to identify whether i) ESR1 is a crucial gene that promotes DNA double-strand breaks (DSBs) and proliferation inhibition in HCC, ii) Dihydrotanshinone I (DHT), a quinonoid monomeric constituent derived from Salvia miltiorrhiza (Dan shen) exerts anti-HCC effects by regulating ESR1 and subsequent DSBs, iii) DHT has the potential to replace E2. RESULTS: DHT could target ESR1 and upregulate its expression in a concentration-dependent manner. This, in turn, leads to the downregulation of breast cancer type 1 susceptibility protein (BRCA1), a pivotal protein involved in the homologous recombination repair (HRR) process. The consequence of this downregulation is manifested through the induction of DSBs in HCC, subsequently precipitating a cascade of downstream events, including apoptosis and cell cycle arrest. Of particular significance is the comparative assessment of DHT and isodose estradiol treatments, which underscores DHT's excellent HCC-suppressive efficacy without concomitant perturbation of endogenous sex hormone homeostasis. CONCLUSION: Our findings not only confirm ESR1 as a therapeutic target in HCC management but also underscores DHT's role in upregulating ESR1 expression, thereby impeding the proliferation and invasive tendencies of HCC. In addition, we preliminarily identified DHT has the potential to emerge as an agent in optimizing HCC ERT through the substitution of E2.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , DNA Breaks, Double-Stranded , Estrogen Receptor alpha , Liver Neoplasms , Phenanthrenes , Carcinoma, Hepatocellular/drug therapy , Estrogen Receptor alpha/metabolism , Liver Neoplasms/drug therapy , Humans , Cell Proliferation/drug effects , Phenanthrenes/pharmacology , Animals , DNA Breaks, Double-Stranded/drug effects , Cell Line, Tumor , Mice, Nude , Male , Apoptosis/drug effects , Mice , Hep G2 Cells , Furans , Quinones
15.
Arch Microbiol ; 206(7): 328, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935150

ABSTRACT

Marine hydrocarbonoclastic bacteria can use polycyclic aromatic hydrocarbons as carbon and energy sources, that makes these bacteria highly attractive for bioremediation in oil-polluted waters. However, genomic and metabolic differences between species are still the subject of study to understand the evolution and strategies to degrade PAHs. This study presents Rhodococcus ruber MSA14, an isolated bacterium from marine sediments in Baja California, Mexico, which exhibits adaptability to saline environments, a high level of intrinsic pyrene tolerance (> 5 g L- 1), and efficient degradation of pyrene (0.2 g L- 1) by 30% in 27 days. Additionally, this strain demonstrates versatility by using naphthalene and phenanthrene as individual carbon sources. The genome sequencing of R. ruber MSA14 revealed a genome spanning 5.45 Mbp, a plasmid of 72 kbp, and three putative megaplasmids, lengths between 110 and 470 Kbp. The bioinformatics analysis of the R. ruber MSA14 genome revealed 56 genes that encode enzymes involved in the peripheral and central pathways of aromatic hydrocarbon catabolism, alkane, alkene, and polymer degradation. Within its genome, R. ruber MSA14 possesses genes responsible for salt tolerance and siderophore production. In addition, the genomic analysis of R. ruber MSA14 against 13 reference genomes revealed that all compared strains have at least one gene involved in the alkanes and catechol degradation pathway. Overall, physiological assays and genomic analysis suggest that R. ruber MSA14 is a new haloalkalitolerant and hydrocarbonoclastic strain toward a wide range of hydrocarbons, making it a promising candidate for in-depth characterization studies and bioremediation processes as part of a synthetic microbial consortium, as well as having a better understanding of the catabolic potential and functional diversity among the Rhodococci group.


Subject(s)
Biodegradation, Environmental , Genome, Bacterial , Genomics , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Rhodococcus , Rhodococcus/genetics , Rhodococcus/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Geologic Sediments/microbiology , Naphthalenes/metabolism , Phylogeny , Phenanthrenes/metabolism , Salt Tolerance , Pyrenes
16.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38913500

ABSTRACT

Soil microbial flora constitutes a highly diverse and complex microbiome on Earth, often challenging to cultivation, with unclear metabolic mechanisms in situ. Here, we present a pioneering concept for the in situ construction of functional microbial consortia (FMCs) and introduce an innovative method for creating FMCs by utilizing phenanthrene as a model compound to elucidate their in situ biodegradation mechanisms. Our methodology involves single-cell identification, sorting, and culture of functional microorganisms, resulting in the formation of a precise in situ FMC. Through Raman-activated cell sorting-stable-isotope probing, we identified and isolated phenanthrene-degrading bacterial cells from Achromobacter sp. and Pseudomonas sp., achieving precise and controllable in situ consortia based on genome-guided cultivation. Our in situ FMC outperformed conventionally designed functional flora when tested in real soil, indicating its superior phenanthrene degradation capacity. We revealed that microorganisms with high degradation efficiency isolated through conventional methods may exhibit pollutant tolerance but lack actual degradation ability in natural environments. This finding highlights the potential to construct FMCs based on thorough elucidation of in situ functional degraders, thereby achieving sustained and efficient pollutant degradation. Single-cell sequencing linked degraders with their genes and metabolic pathways, providing insights regarding the construction of in situ FMCs. The consortium in situ comprising microorganisms with diverse phenanthrene metabolic pathways might offer distinct advantages for enhancing phenanthrene degradation efficiency, such as the division of labour and cooperation or communication among microbial species. Our approach underscores the importance of in situ, single-cell precision identification, isolation, and cultivation for comprehensive bacterial functional analysis and resource exploration, which can extend to investigate MFCs in archaea and fungi, clarifying FMC construction methods for element recycling and pollutant transformation in complex real-world ecosystems.


Subject(s)
Biodegradation, Environmental , Isotope Labeling , Microbial Consortia , Phenanthrenes , Pseudomonas , Single-Cell Analysis , Soil Microbiology , Phenanthrenes/metabolism , Isotope Labeling/methods , Single-Cell Analysis/methods , Pseudomonas/metabolism , Pseudomonas/genetics , Achromobacter/metabolism , Achromobacter/genetics , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
17.
Pharm Res ; 41(7): 1493-1505, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38918308

ABSTRACT

PURPOSE: Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS: A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS: TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS: These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Rheumatoid , Diterpenes , Drug Liberation , Indoles , Nanoparticles , Phenanthrenes , Polymers , Silicon Dioxide , Animals , Silicon Dioxide/chemistry , Arthritis, Rheumatoid/drug therapy , Nanoparticles/chemistry , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Phenanthrenes/chemistry , Phenanthrenes/administration & dosage , Phenanthrenes/pharmacokinetics , Phenanthrenes/pharmacology , Rats , Diterpenes/administration & dosage , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Diterpenes/pharmacology , Indoles/administration & dosage , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/pharmacology , Polymers/chemistry , Porosity , Male , Epoxy Compounds/chemistry , Epoxy Compounds/administration & dosage , Glucosamine/chemistry , Glucosamine/administration & dosage , Rats, Sprague-Dawley , Drug Carriers/chemistry , Humans , Mice , Delayed-Action Preparations , Inflammation/drug therapy , Inflammation/prevention & control
18.
Pharmacol Res ; 206: 107275, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908615

ABSTRACT

Triptolide (TP) is the principal bioactive compound of Tripterygium wilfordii with significant anti-tumor, anti-inflammatory and immunosuppressive activities. However, its severe hepatotoxicity greatly limits its clinical use. The underlying mechanism of TP-induced liver damage is still poorly understood. Here, we estimate the role of the gut microbiota in TP hepatotoxicity and investigate the bile acid metabolism mechanisms involved. The results of the antibiotic cocktail (ABX) and fecal microbiota transplantation (FMT) experiment demonstrate the involvement of intestinal flora in TP hepatotoxicity. Moreover, TP treatment significantly perturbed gut microbial composition and reduced the relative abundances of Lactobacillus rhamnosus GG (LGG). Supplementation with LGG reversed TP-induced hepatotoxicity by increasing bile salt hydrolase (BSH) activity and reducing the increased conjugated bile acids (BA). LGG supplementation upregulates hepatic FXR expression and inhibits NLRP3 inflammasome activation in TP-treated mice. In summary, this study found that gut microbiota is involved in TP hepatotoxicity. LGG supplementation protects mice against TP-induced liver damage. The underlying mechanism was associated with the gut microbiota-BA-FXR axis. Therefore, LGG holds the potential to prevent and treat TP hepatotoxicity in the clinic.


Subject(s)
Bile Acids and Salts , Chemical and Drug Induced Liver Injury , Diterpenes , Epoxy Compounds , Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Receptors, Cytoplasmic and Nuclear , Animals , Diterpenes/pharmacology , Phenanthrenes/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Gastrointestinal Microbiome/drug effects , Epoxy Compounds/pharmacology , Bile Acids and Salts/metabolism , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Probiotics/therapeutic use , Probiotics/pharmacology , Fecal Microbiota Transplantation , Inflammasomes/metabolism , Signal Transduction/drug effects
19.
Phytochemistry ; 225: 114194, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897264

ABSTRACT

Ten undescribed diterpenoids (1-10) and three undescribed phenanthrene derivatives (11-13), together with seven known compounds, were isolated from the roots of Baliospermum solanifolium. Their structures were determined by a combination of spectroscopic data analysis, electronic circular dichroism calculations and single-crystal X-ray diffraction studies. Compounds 1-7 (baliosperoids A-G) represent the examples of 20-nor-ent-podocarpane class first discovered in nature. In particular, compound 7 possesses a unique 2,3-seco ring system incorporating γ-butanolide moiety. All isolates were assessed for their cytotoxic activities against HT-29, HCT-116, HCT-15, MCF-7, and A549 cell lines as well as their inhibitory effects on lipopolysaccharide-induced NO production in RAW264.7 cells. Compound 1, a 20-nor-ent-podocarpane-type diterpenoid possessing a Δ1,2 double bond, not only exhibited considerable proliferation inhibition against five human cancer cell lines, with IC50 values ranging from 4.13 to 23.45 µM, but also displayed the most potent inhibitory activity on NO production with IC50 value at the nanomolar level (0.63 ± 0.21 µM).


Subject(s)
Antineoplastic Agents, Phytogenic , Diterpenes , Drug Screening Assays, Antitumor , Nitric Oxide , Phenanthrenes , Plant Roots , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Humans , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/isolation & purification , Plant Roots/chemistry , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Animals , Molecular Structure , RAW 264.7 Cells , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Line, Tumor , Dose-Response Relationship, Drug , Molecular Conformation , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors
20.
Eur J Pharm Biopharm ; 201: 114389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945407

ABSTRACT

Liposomes represent one of the most extensively studied nano-carriers due to their potential in targeted drug delivery. However, the complex in vivo fate, particularly under pathological conditions, presents challenges for clinical translation of liposomal therapeutics. Liver serves as the most important organ for liposome accumulation and metabolism. Unfortunately, the fate of liposomes under pathological liver conditions has been significantly overlooked. This study aimed to investigate the in vivo pharmacokinetic profile and biodistribution profile of liposomes under drug-induced liver injury (DILI) conditions. Two classic DILI animal models, i.e. acetaminophen-induced acute liver injury (AILI) and triptolide-induced subacute liver injury (TILI), were established to observe the effect of pathological liver conditions on the in vivo performance of liposomes. The study revealed significant changes in the in vivo fate of liposomes following DILI, including prolonged blood circulation and enhanced hepatic accumulation of liposomes. Changes in the composition of plasma proteins and mononuclear phagocyte system (MPS)-related cell subpopulations collectively led to the altered in vivo fate of liposomes under liver injury conditions. Despite liver injury, macrophages remained the primary cells responsible for liposomes uptake in liver, with the recruited monocyte-derived macrophages exhibiting enhanced ability to phagocytose liposomes under pathological conditions. These findings indicated that high capture of liposomes by the recruited hepatic macrophages not only offered potential solutions for targeted delivery, but also warned the clinical application of patients under pathological liver conditions.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Diterpenes , Liposomes , Liver , Phenanthrenes , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Acetaminophen/pharmacokinetics , Mice , Male , Liver/metabolism , Liver/drug effects , Tissue Distribution , Phenanthrenes/pharmacokinetics , Phenanthrenes/administration & dosage , Phenanthrenes/toxicity , Diterpenes/pharmacokinetics , Diterpenes/administration & dosage , Epoxy Compounds/pharmacokinetics , Epoxy Compounds/administration & dosage , Macrophages/metabolism , Macrophages/drug effects , Disease Models, Animal , Drug Delivery Systems/methods , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL