Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.831
1.
Wei Sheng Yan Jiu ; 53(3): 441-454, 2024 May.
Article Zh | MEDLINE | ID: mdl-38839586

OBJECTIVE: To investigate the effects of long-term(7 days and 14 days) bisphenol S(BPS) exposure on the ERß-MAPK signaling pathway, hormone secretion phenotype and cell cycle in human normal ovarian epithelial cells IOSE 80 at actual human exposure level. METHODS: Physiologically based pharmacokinetic model combined with BPS levels in the serum of women along the Yangtze River in China was used to determine the dosing concentrations of BPS, and vehicle control and 17 ß-estradiol(E_2) control were used. Complete medium with corresponding concentrations(0, 6.79×10~(-6), 6.79×10~(-4), 6.79×10~(-2), 6.79 µmol/L BPS and 10 nmol/L E_2) was replaced every 2 days. mRNA expressions of estrogen receptor(ERß and GPR30), key genes in MAPK signaling pathway(P38/JNK/ERK signaling pathway) and gonadotropin-releasing hormone-related genes(GnRH-I, GnRH-II and GnRH-R) were measured by qPCR. The ERß-MAPK signaling pathway inhibitors were employed to detect the effect of long-term exposure to BPS on the cell cycle by flow cytometry. Dose-response relationship analysis was performed to calculate the benchmark does lower confidence limits. RESULTS: Compared to the vehicle control, after 7 days exposure to BPS, the ratio of G_2/M phase was significantly increased(P<0.05), and the mRNA expressions of GnRH-I, GnRH-II and GnRH-R were significantly decreased(P<0.05); after 14 days exposure to BPS, the mRNA expressions of ESR2, MAPK3, and MAPK9 were significantly increased(P<0.05), and the mRNA expressions of GnRH-II and GnRH-R were significantly decreased(P<0.05). The GnRH-II mRNA expression level of BPS treatment for 7 days; the G_0/G_1 phase ratio, MAPK3 and MAPK8 mRNA expression level of BPS exposure for 14 days; and the GnRH-I mRNA expression level after BPS treatment for 7 days and 14 days showed a good dose-response relationship but with poor fit. CONCLUSION: Long-term low-dose exposure to BPS may cause cell cycle arrest by activating the ERß-MAPK signaling pathway, and may lead to changes in the hormone secretion of IOSE 80 cells.


Epithelial Cells , Estrogen Receptor beta , MAP Kinase Signaling System , Ovary , Phenols , Sulfones , Humans , Phenols/toxicity , Female , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , MAP Kinase Signaling System/drug effects , Ovary/drug effects , Ovary/metabolism , Sulfones/toxicity , Cell Line
2.
Front Public Health ; 12: 1396147, 2024.
Article En | MEDLINE | ID: mdl-38846618

Introduction: Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods: Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results: Our study found that the median level of BPA was significantly higher in adults (9.63 µg/g creatinine) than in minors (6.63 µg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion: Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.


Benzhydryl Compounds , Environmental Exposure , Phenols , Sulfones , Humans , Phenols/urine , Phenols/analysis , Phenols/toxicity , Benzhydryl Compounds/urine , Benzhydryl Compounds/toxicity , Female , Male , Taiwan , Adult , Risk Assessment , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Child , Middle Aged , Adolescent , Sulfones/analysis , Young Adult , Aged , Child, Preschool , Tandem Mass Spectrometry , Environmental Monitoring , Surveys and Questionnaires , Environmental Pollutants/analysis
3.
J Environ Sci (China) ; 145: 13-27, 2024 Nov.
Article En | MEDLINE | ID: mdl-38844314

Increasing evidence indicates that disturbance of the clock genes, which leads to systemic endocrine perturbation, plays a crucial role in the pathogenesis of metabolic and liver diseases. Fluorene-9-bisphenol (BHPF) is utilized in the manufacturing of plastic materials but its biological effects on liver homeostasis remain unknown. The impacts and involved mechanisms of BHPF on the liver diseases, metabolism, and circadian clock were comprehensively studied by zebrafish and mouse models. The therapeutic effect of melatonin (MT) was also verified. Zebrafish and mouse models with either acute exposure (0.5 and 1 µmol/L, 1-4 days post-fertilization) or chronic oral exposure (0.5 and 50 mg/(kg·2 days), 30 days) were established with various BHPF concentrations. Herein, we identified a crucial role for estrogenic regulation in liver development and circadian locomotor rhythms damaged by BHPF in a zebrafish model. BHPF mice showed chaos in circadian activity through the imbalance of circadian clock component Brain and Muscle Aryl hydrocarbon receptor nuclear translocator-like 1 in the liver and brain. The liver sexual dimorphic alteration along with reduced growth hormone and estrogens played a critical role in damaged glucose metabolism, hepatic inflammation, and fibrosis induced by BHPF. Besides, sleep improvement by exogenous MT alleviated BHPF-related glucose metabolism and liver injury in mice. We proposed the pathogenesis of metabolic and liver disease resulting from BHPF and promising targeted therapy for liver metabolism disorders associated with endocrine perturbation chemicals. These results might play a warning role in the administration of endocrine-disrupting chemicals in everyday life and various industry applications.


Circadian Rhythm , Fluorenes , Zebrafish , Animals , Mice , Fluorenes/toxicity , Circadian Rhythm/drug effects , Liver Diseases/drug therapy , Phenols/toxicity
4.
Anim Sci J ; 95(1): e13966, 2024.
Article En | MEDLINE | ID: mdl-38845341

Prolonged exposure of bisphenol A (BPA) has adverse effects on in vitro maturation (IVM) of oocytes, but treatment with tauroursodeoxycholic acid (TUDCA) can improve the IVM and development of embryos. The purpose of this study was to investigate the effects of BPA and both BPA and TUDCA on IVM and parthenogenetic development of embryos. The results showed that BPA treatment adverse effects on the cumulus expansion index, survival rate, polar body rate, mitochondrial distribution of the oocytes after maturation culture, and that it also decreased the cleavage rate and blastocyst rate of embryos after parthenogenetic develpoment. In addition, BPA treatment upregulated expression of genes related to endoplasmic reticulum stress and apoptosis and increased the intracellular reactive oxygen species (ROS) level, while it decreased expression of genes related to cumulus expansion. However, the supplementation of TUDCA relieved these adverse effects of BPA except polar body rate, blastocyst rate, and expression of BCL2 and PTGS1. In conclusion, the supplementation of TUDCA can partly attenuate the negative effects of BPA on IVM and parthenogenetic development of embryos, possibly by modification of the expression of genes related to endoplasmic reticulum stress, apoptosis and cumulus expansion, intracellular ROS level, and mitochondrial distribution.


Apoptosis , Benzhydryl Compounds , Embryonic Development , Endoplasmic Reticulum Stress , In Vitro Oocyte Maturation Techniques , Oocytes , Parthenogenesis , Phenols , Reactive Oxygen Species , Taurochenodeoxycholic Acid , Animals , Phenols/toxicity , Taurochenodeoxycholic Acid/pharmacology , Oocytes/drug effects , Parthenogenesis/drug effects , Benzhydryl Compounds/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Embryonic Development/drug effects , Swine/embryology , Endoplasmic Reticulum Stress/drug effects , Female , Gene Expression/drug effects , Blastocyst/drug effects , Mitochondria/drug effects
5.
Environ Health Perspect ; 132(5): 57002, 2024 May.
Article En | MEDLINE | ID: mdl-38728218

BACKGROUND: Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period. OBJECTIVES: We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on repeated within-subject urine collections over pregnancy and infancy. METHODS: We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12 months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model. RESULTS: The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analysis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size within the mixture. CONCLUSIONS: This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been studied in this context. https://doi.org/10.1289/EHP13644.


Endocrine Disruptors , Parabens , Phenols , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Phthalic Acids/urine , Phenols/urine , Phenols/toxicity , Female , Infant , Pregnancy , Endocrine Disruptors/urine , Endocrine Disruptors/toxicity , Environmental Pollutants/urine , Male , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Longitudinal Studies , Child, Preschool , Anthropometry
6.
Toxicol Ind Health ; 40(7): 376-386, 2024 Jul.
Article En | MEDLINE | ID: mdl-38717040

Earlier research has demonstrated that developmental exposure to bisphenol A (BPA) has persistent impacts on both adult brain growth and actions. It has been suggested that BPA might obstruct the methylation coding of the genes in the brain. In this study, the methylation changes in the hippocampus tissue of male rat pups were examined following prenatal BPA exposure. Pregnant Sprague-Dawley rats were treated with either vehicle (tocopherol-stripped corn oil) or BPA (4, 40, or 400 µg/kg·body weight/day) throughout the entire duration of gestation and lactation. At 3 weeks of age, the male rat offspring were euthanized, and the hippocampus were dissected out for analysis. The expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and DNA demethylases (TET1, Gadd45a, Gadd45b, and Apobec1) were analyzed in the hippocampus by means of quantitative real-time polymerase chain reaction and Western blotting, respectively. The results showed that prenatal exposure to BPA upregulated the expression of enzymes associated with DNA methylation and demethylation processes in the hippocampus of male rat offspring. These findings suggest that prenatal exposure to a low dose of BPA could potentially disrupt the balance of methylation and demethylation in the hippocampus, thereby perturbing epigenetic modifications. This may represent a neurotoxicity mechanism of BPA.


Benzhydryl Compounds , DNA Methylation , Hippocampus , Phenols , Prenatal Exposure Delayed Effects , Rats, Sprague-Dawley , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Pregnancy , Male , DNA Methylation/drug effects , Female , Hippocampus/drug effects , Hippocampus/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Rats
7.
Cell Biol Toxicol ; 40(1): 37, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777957

Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.


Benzhydryl Compounds , Brain , DNA Methylation , Epigenesis, Genetic , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Epigenesis, Genetic/drug effects , Male , Mice , Brain/metabolism , Brain/drug effects , DNA Methylation/drug effects , Transcriptome/drug effects , Transcriptome/genetics , Mice, Inbred C57BL
8.
Int Braz J Urol ; 50(4): 480-488, 2024.
Article En | MEDLINE | ID: mdl-38743066

PURPOSE: To evaluate the morphological and stereological parameters of the testicles in mice exposed to bisphenol S and/or high-fat diet-induced obesity. MATERIAL AND METHODS: Forty adult male C57BL/6 mice were fed a standard diet (SC) or high-fat diet (HF) for a total of 12 weeks. The sample was randomly divided into 4 experimental groups with 10 mices as follows: a) SC - animals fed a standard diet; b) SC-B - animals fed a standard diet and administration of BPS (25 µg/kg of body mass/day) in drinking water; c) HF: animals fed a high-fat diet; d) HF-B - animals fed a high-fat diet and administration of BPS (25 µg/Kg of body mass/day) in drinking water. BPS administration lasted 12 weeks, following exposure to the SC and HF diets. BPS was diluted in absolute ethanol (0.1%) and added to drinking water (concentration of 25 µg/kg body weight/day). The animals were euthanized, and the testes were processed and stained with hematoxylin and eosin (H&E) for morphometric and stereological parameters, including density of seminiferous tubules per area, length density and total length of seminiferous tubules, height of the tunica albuginea and the diameter of the seminiferous tubules. The images were captured with an Olympus BX51 microscope and Olympus DP70 camera. The stereological analysis was done with the Image Pro and Image J programs. Means were statistically compared using ANOVA and the Holm-Sidak post-test (p<0.05). RESULTS: The seminiferous tubule density per area reduced in all groups when compared with SC samples (p<0.001): HF (40%), SC-B 3(2%), and HF-B (36%). Length density was reduced significantly (p<0.001) in all groups when compared with SC group: HF (40%), SC-B (32%), and HF-B (36%). The seminiferous tubule total length was reduced (p<0.001) when compared to f HF (28%) and SC-B (26%) groups. The tubule diameter increased significantly (p<0.001) only when we compared the SC group with SC (54%) an SC-B (25%) groups and the tunica thickness increased significantly only in HF group (117%) when compared with SC-B (20%) and HF-B 31%. CONCLUSION: Animals exposed to bisphenol S and/or high-fat diet-induced obesity presented important structural alterations in testicular morphology.


Benzhydryl Compounds , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Phenols , Testis , Male , Animals , Diet, High-Fat/adverse effects , Testis/drug effects , Testis/pathology , Phenols/toxicity , Obesity/chemically induced , Random Allocation , Seminiferous Tubules/drug effects , Seminiferous Tubules/pathology , Disease Models, Animal , Mice , Reproducibility of Results , Sulfones
9.
Ecotoxicol Environ Saf ; 278: 116412, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38691879

BACKGROUND: Bisphenol A (BPA) is an industrial chemical that is commonly found in daily consumer products. BPA is reportedly associated with lung diseases. However, the impact of BPA on pulmonary fibrosis (PF) and its possible mechanisms of action both remain unclear. METHODS: A PF mouse model was induced by bleomycin (BLM). Mouse lung fibroblasts (MLG 2908) and mouse alveolar epithelial cells (MLE-12) were treated with BPA to establish a PF cell model. Tissue staining, CCK-8 assays, western blot experiments and relevant indicator kits were used to detect and evaluate the effect of BPA on PF. RESULTS: BPA dose-dependently promoted oxidative stress and induced ferroptosis, leading to PF. The ferroptosis inhibitor Fer-1 partly attenuated the effect of BPA. In addition, among the two main cell types associated with the progression of PF, MLE-12 cells are more sensitive to BPA than are MLG 2908 cells, and BPA induces ferroptosis in MLE-12 cells. Furthermore, BPA promoted autophagy-mediated ferroptosis by activating the AMPK/mTOR signaling pathway, thereby exacerbating the progression of PF. The autophagy inhibitor CQ1 partly attenuated the effect of BPA. CONCLUSION: BPA promotes the progression of PF by promoting autophagy-dependent ferroptosis in alveolar epithelial cells, which provides a new theoretical basis for understanding BPA-induced PF.


Alveolar Epithelial Cells , Autophagy , Benzhydryl Compounds , Ferroptosis , Phenols , Pulmonary Fibrosis , Animals , Ferroptosis/drug effects , Phenols/toxicity , Benzhydryl Compounds/toxicity , Mice , Autophagy/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Bleomycin/toxicity , Cell Line , Mice, Inbred C57BL , Oxidative Stress/drug effects , Male , Disease Models, Animal , Signal Transduction/drug effects
10.
Food Chem Toxicol ; 188: 114713, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702036

Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.


Apoptosis , Benzhydryl Compounds , Granulosa Cells , Mitochondria , Phenols , Reactive Oxygen Species , Humans , Phenols/toxicity , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Female , Apoptosis/drug effects , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Cell Survival/drug effects , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Sulfones/toxicity , Sulfones/chemistry , Cell Line , Calcium/metabolism , Fluorocarbons
11.
Sci Total Environ ; 934: 173420, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38777049

Toxicological studies have demonstrated the hepatic toxicity of several bisphenol analogs (BPs), a prevalent type of endocrine disruptor. The development of Adverse Outcome Pathway (AOP) has substantially contributed to the rapid risk assessment for human health. However, the lack of in vitro and in vivo data for the emerging BPs has limited the hazard assessment of these synthetic chemicals. Here, we aimed to develop a new strategy to rapidly predict BPs' hepatotoxicity using network analysis coupled with machine learning models. Considering the structural and functional similarities shared by BPs with Bisphenol A (BPA), we first integrated hepatic disease related genes from multiple databases into BPA-Gene-Phenotype-hepatic toxicity network and subjected it to the computational AOP (cAOP). Through cAOP network and conventional machine learning approaches, we scored the hepatotoxicity of 20 emerging BPs and provided new insights into how BPs' structure features contributed to biologic functions with limited experimental data. Additionally, we assessed the interactions between emerging BPs and ESR1 using molecular docking and proposed an AOP framework wherein ESR1 was a molecular initiating event. Overall, our study provides a computational approach to predict the hepatotoxicity of emerging BPs.


Benzhydryl Compounds , Endocrine Disruptors , Machine Learning , Phenols , Phenols/toxicity , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Humans , Molecular Docking Simulation , Liver/drug effects , Adverse Outcome Pathways , Risk Assessment
12.
J Hazard Mater ; 472: 134518, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38749244

Nowadays, numerous environmental risk substances in soil worldwide have exhibited serious germination inhibition of crop seeds, posing a threat to food supply and security. This review provides a comprehensive summary and discussion of the inhibitory effects of environmental risk substances on seed germination, encompassing heavy metals, microplastics, petroleum hydrocarbons, salinity, phenols, essential oil, agricultural waste, antibiotics, etc. The impacts of species, concentrations, and particle sizes of various environmental risk substances are critically investigated. Furthermore, three primary inhibition mechanisms of environmental risk substances are elucidated: hindering water absorption, inducing oxidative damage, and damaging seed cells/organelles/cell membranes. To address these negative impacts, diverse effective coping measures such as biochar/compost addition, biological remediation, seed priming, coating, and genetic modification are proposed. In brief, this study systematically analyzes the negative effects of environmental risk substances on seed germination, and provides a basis for the comprehensive understanding and future implementation of efficient treatments to address this significant challenge and ensure food security and human survival.


Germination , Seeds , Soil Pollutants , Germination/drug effects , Seeds/drug effects , Seeds/growth & development , Soil Pollutants/toxicity , Metals, Heavy/toxicity , Microplastics/toxicity , Phenols/toxicity
13.
J Ethnopharmacol ; 331: 118295, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38710460

ETHNOPHARMACOLOGICAL RELEVANCE: Phlomis crinita Cav. (Lamiaceae), locally known as "El Khayata" or "Kayat El Adjarah", is traditionally used in Algeria for its wound-healing properties. AIM OF THE STUDY: Investigate, for the first time, the phytochemical profile, safety, antioxidant and wound-healing activities of the flowering tops methanolic extract of P. crinita (PCME) collected from Bouira Province in the North of Algeria. MATERIALS AND METHODS: Preliminary phytochemical assays were carried out on PCME to quantify the main classes of bioactive compounds, such as total phenols, flavonoids, and tannins. An in-depth LC-DAD-ESI-MS analysis was carried out to elucidate the phytochemical profile of this plant species. Antioxidant activity was investigated by several colorimetric and fluorimetric assays (DPPH, TEAC, FRAP, ORAC, ß-carotene bleaching and ferrozine assay). The acute oral toxicity of PCME (2000 mg/kg b.w.) was tested in vivo on Swiss albino mice, whereas the acute dermal toxicity and wound-healing properties of the PCME ointment (1-5% PCMO) were tested in vivo on Wistar albino rats. Biochemical and histological analyses were carried out on biological samples. RESULTS: The phytochemical screening highlighted a high content of phenolic compounds (175.49 ± 0.8 mg of gallic acid equivalents/g of dry extract), mainly flavonoids (82.28 ± 0.44 mg of quercetin equivalents/g of dry extract). Fifty-seven compounds were identified by LC-DAD-ESI-MS analysis, belonging mainly to the class of flavones (32.27%), with luteolin 7-(6″-acetylglucoside) as the most abundant compound and phenolic acids (32.54%), with salvianolic acid C as the most abundant compound. A conspicuous presence of phenylethanoids (15.26%) was also found, of which the major constituent is forsythoside B. PCME showed a strong antioxidant activity with half-inhibitory activity (IC50) ranging from 1.88 to 37.88 µg/mL and a moderate iron chelating activity (IC50 327.44 µg/mL). PCME appears to be safe with Lethal Dose 50 (LD50) ≥ 2000 mg/kg b.w. No mortality or toxicity signs, including any statistically significant changes in body weight gain and relative organs' weight with respect to the control group, were recorded. A significant (p < 0.001) wound contraction was observed in the 5% PCMO-treated group with respect to the untreated and petroleum jelly groups between 8 and 20 days, whereas no statistically significant results were observed at the two lower doses (1 and 2% PCMO). In addition, the 5% PCMO-treated group showed a statistically significant (p < 0.05) wound healing activity with respect to the reference drug-treated group, showing, at the end of the study, the highest wound contraction percentage (88.00 ± 0.16%). CONCLUSION: PCME was safe and showed strong antioxidant and wound-healing properties, suggesting new interesting pharmaceutical applications for P. crinita based on its traditional use.


Antioxidants , Plant Extracts , Wound Healing , Animals , Antioxidants/pharmacology , Antioxidants/isolation & purification , Algeria , Wound Healing/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/toxicity , Mice , Male , Rats , Rats, Wistar , Female , Phytochemicals/pharmacology , Phytochemicals/toxicity , Phytochemicals/analysis , Phytochemicals/isolation & purification , Phenols/analysis , Phenols/toxicity , Phenols/pharmacology , Phenols/isolation & purification , Flavonoids/pharmacology , Flavonoids/analysis , Flavonoids/isolation & purification , Flavonoids/toxicity
14.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38753512

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Benzhydryl Compounds , Neurons , Phenols , Sex Differentiation , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Male , Mice , Sex Differentiation/drug effects , Neurons/drug effects , Neurons/metabolism , Pregnancy , Hypothalamus/metabolism , Hypothalamus/drug effects , Neurogenesis/drug effects , Arginine Vasopressin/metabolism , Vasopressins/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Mice, Inbred C57BL , Estrogens/metabolism , Estrogens/pharmacology
15.
Environ Toxicol Pharmacol ; 108: 104467, 2024 Jun.
Article En | MEDLINE | ID: mdl-38763439

Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of polycarbonate plastics and epoxy resins, found in numerous consumer products. Despite its widespread use, its potential adverse health effects have raised significant concerns. This review explores the molecular mechanisms and evidence-based literature underlying BPA-induced toxicities and its implications for human health. BPA is an endocrine-disrupting chemical (EDC) which exhibits carcinogenic properties by influencing various receptors, such as ER, AhR, PPARs, LXRs, and RARs. It induces oxidative stress and contributes to cellular dysfunction, inflammation, and DNA damage, ultimately leading to various toxicities including but not limited to reproductive, cardiotoxicity, neurotoxicity, and endocrine toxicity. Moreover, BPA can modify DNA methylation patterns, histone modifications, and non-coding RNA expression, leading to epigenetic changes and contribute to carcinogenesis. Overall, understanding molecular mechanisms of BPA-induced toxicity is crucial for developing effective strategies and policies to mitigate its adverse effects on human health.


Benzhydryl Compounds , Endocrine Disruptors , Phenols , Benzhydryl Compounds/toxicity , Phenols/toxicity , Humans , Endocrine Disruptors/toxicity , Animals , Oxidative Stress/drug effects , DNA Damage/drug effects , Epigenesis, Genetic/drug effects , Environmental Pollutants/toxicity
16.
Ecotoxicol Environ Saf ; 279: 116475, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38781889

Nonylphenol (NP) is one of the common pollutants in the environment that have toxic effects on aquatic animals. Nevertheless, little is known about the possible toxicity mechanism of NP on the hepatopancreas of Litopenaeus vannamei. In the present study, the detrimental effects of NP on the hepatopancreas of the L. vannamei were explored at the histological and transcriptomic levels. The findings indicated that after NP exposed for 3, 12, and 48 h, the hepatopancreas histology was changed significantly. Transcriptomic analysis showed that a total of 4302, 3651, and 4830 differentially expressed genes (DEGs) were identified at 3, 12, and 48 h following NP exposure. All these DEGs were classified into 12 clusters according to the expression patterns at different time points. GO and KEGG enrichment analyses of DEGs were also performed, immunological, metabolic, and inflammatory related pathways, including arachidonic acid metabolism (ko00590), the PPAR signaling pathway (ko03320), and the regulation of TRP channels by inflammatory mediators (ko04750) were significantly enriched. Six DEGs were selected for validation by quantitative real-time PCR (qRT-PCR) and the results confirmed the reliability of transcriptome data. All results indicated that NP is toxic to L. vannamei by damaging the histopathological structure and disrupting the biological function. The findings would provide a theoretical framework for lowering or limiting the detrimental impacts of NP on aquaculture and help us to further study the molecular toxicity of NP in crustaceans.


Hepatopancreas , Penaeidae , Phenols , Transcriptome , Water Pollutants, Chemical , Animals , Penaeidae/drug effects , Penaeidae/genetics , Hepatopancreas/drug effects , Hepatopancreas/pathology , Phenols/toxicity , Water Pollutants, Chemical/toxicity , Transcriptome/drug effects , Gene Expression Profiling , Real-Time Polymerase Chain Reaction
17.
Sci Total Environ ; 937: 173481, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38795983

Various bisphenols (BPs) have been frequently detected in the aquatic environment and coexist in the form of mixtures with potential huge risks. As we all know, food chain is a media by which BPs mixtures and their mixtures probably enter the organisms at different trophic levels due to their environmental persistence. As a result, the concentrations of BPs and their mixtures may continuously magnify to varying degrees, which can produce higher risks to different levels of organisms, and even human health. However, the related researches about mixtures are few due to the complexity of mixtures. So, the ternary BP mixtures were designed by the uniform design ray method using bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) to investigate their food chain effects including bioconcentration and biomagnification. Here, Chlorella pyrenoidosa (C. pyrenoidosa) and Daphnia magna (D. magna) were selected to construct a food chain. The toxic effects of single BPs and their mixtures were also systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. Toxicity interaction within the ternary mixture was analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The results show that the C. pyrenoidosa and D. magna had obvious bioconcentration and biomagnification effects on BPs and their mixture. The mixture had the potential to enrich at higher nutrient levels. And BPF had the largest bioconcentration effect (BCF1 = 481.86, BCF2 = 772.02) and biomagnification effect (BMF = 1.6). Three BPs were toxic to C. pyrenoidosa by destroying algal cells and decreasing protein and chlorophyll contents, and their toxicity order was BPF > BPA > BPS. Moreover, their ternary mixture exhibits synergism with time/concentration-dependency. The obtained results are of significant reference value for objectively and accurately assessing the ecological and environmental risks of bisphenol pollutants.


Benzhydryl Compounds , Daphnia , Food Chain , Phenols , Sulfones , Water Pollutants, Chemical , Phenols/toxicity , Benzhydryl Compounds/toxicity , Water Pollutants, Chemical/analysis , Animals , Sulfones/toxicity , Chlorella/metabolism , Toxicity Tests
18.
Crit Rev Toxicol ; 54(5): 291-314, 2024 May.
Article En | MEDLINE | ID: mdl-38726570

The use of bisphenol A (BPA), a substance of very high concern, is proposed to be banned in food contact materials (FCMs) in the European Union. To prevent regrettable substitution of BPA by alternatives with similar or unknown hazardous properties, it is of importance to gain the relevant toxicological information on potential BPA alternative substances and monitor them adequately. We created an inventory of over 300 substances mentioned as potential BPA alternatives in regulatory reports and scientific literature. This study presents a prioritization strategy to identify substances that may be used as an alternative to BPA in FCMs. We prioritized 20 potential BPA alternatives of which 10 are less familiar. We subsequently reviewed the available information on the 10 prioritized less familiar substances regarding hazard profiles and migration potential obtained from scientific literature and in silico screening tools to identify a possible risk of the substances. Major data gaps regarding the hazard profiles of the prioritized substances exist, although the scarce available data give some indications on the possible hazard for some of the substances (like bisphenol TMC, 4,4-dihydroxybenzophenone, and tetrachlorobisphenol A). In addition, very little is known about the actual use and exposure to these substances. More toxicological research and monitoring of these substances in FCMs are, therefore, required to avoid regrettable substitution of BPA in FCM.


Benzhydryl Compounds , Food Contamination , Food Packaging , Phenols , Phenols/toxicity , Benzhydryl Compounds/toxicity , Humans , Risk Assessment , European Union , Animals
19.
Environ Res ; 252(Pt 3): 119034, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38701888

Cumulative human exposure to the environmental toxin, bisphenol A (BPA), has raised important health concerns in recent decades. However, the direct genomic regulation of BPA in skeletal muscles and its clinical significance are poorly understood. Therefore, we conducted a genome-wide transcriptome analysis after daily oral administration of BPA at the lowest observed adverse-effect level (LOAEL, 50 mg/kg) in male mice for six weeks to explore the gene-expression regulations in skeletal muscle induced by BPA. The primary Gene Ontology terms linked to BPA-dependent, differentially expressed genes at LOAEL comprised adaptive-immune response, positive regulation of T cell activation, and immune system process. The gene-set enrichment analysis disclosed increased complement-associated genes [complement components 3 (C3) and 4B, complement factor D, complement receptor 2, and immunoglobulin lambda constant 2] in the group administered with BPA, with a false-discovery rate of <0.05. Subsequent validation analysis conducted in BPA-fed animal skeletal muscle tissue and in vitro experiments confirmed that BPA induced immune activation, as evidenced by increased levels of C3 and C4α proteins in mice, C2C12 myoblasts, and mouse skeletal muscle cells. In addition, BPA markedly upregulated the transcription of tumor necrosis factor-α (Tnfα) in C2C12 myoblasts and mouse skeletal muscle cells, which was substantially inhibited by 5z-7-oxozeanol and parthenolide, providing further evidence of BPA-induced inflammation in muscle cells. Our bioinformatics and subsequent animal and in vitro validations demonstrate that BPA can activate inflammation in skeletal muscle, which could be a risk factor underlying chronic muscle weakness and wastage.


Benzhydryl Compounds , Gene Expression Profiling , Muscle, Skeletal , Phenols , Benzhydryl Compounds/toxicity , Animals , Phenols/toxicity , Male , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Transcriptome/drug effects , Mice, Inbred C57BL
20.
Toxicol Appl Pharmacol ; 487: 116953, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705400

INTRODUCTION: Research has unveiled the neurotoxicity of Bisphenol A (BPA) linked to neuropathological traits of Alzheimer's disease (AD) through varied mechanisms. This study aims to investigate the neuroprotective properties of cyanidin, an anthocyanin, in an in vivo model of BPA-induced Alzheimer's-like neuropathology. METHODS: Three-week-old Sprague-Dawley rats were randomly assigned to four groups: vehicle control, negative control (BPA exposure), low-dose cyanidin treatment (BPA + cyanidin 5 mg/kg), and high-dose cyanidin treatment (BPA + cyanidin 10 mg/kg). Spatial memory was assessed through behavioral tests, including the Y-maze, novel object recognition, and Morris water maze. After behavioral tests, animals were euthanized, and brain regions were examined for acetylcholinesterase inhibition, p-tau, Wnt3, GSK3ß, and ß-catenin levels, antioxidant activities, and histopathological changes. RESULTS: BPA-exposed groups displayed memory impairments, while cyanidin-treated groups showed significant memory improvement (p < 0.0001). Cyanidin down regulated p-tau and glycogen synthase kinase-3ß (GSK3ß) and restored Wnt3 and ß-catenin levels (p < 0.0001). Moreover, cyanidin exhibited antioxidant properties, elevating catalase and superoxide dismutase levels. The intervention significantly reduced the concentrations of acetylcholinesterase in the cortex and hippocampus in comparison to the groups treated with BPA (p < 0.0001). Significant gender-based disparities were not observed. CONCLUSION: Cyanidin demonstrated potent neuroprotection against BPA-induced Alzheimer's-like neuropathology by enhancing antioxidant defenses, modulating tau phosphorylation by restoring the Wnt/ß-catenin pathway, and ameliorating spatial memory deficits. This study highlights the therapeutic potential of cyanidin in countering neurotoxicity linked to BPA exposure.


Alzheimer Disease , Anthocyanins , Benzhydryl Compounds , Cognition , Neuroprotective Agents , Phenols , Rats, Sprague-Dawley , Spatial Memory , Wnt Signaling Pathway , Animals , Phenols/pharmacology , Phenols/toxicity , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/pharmacology , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Spatial Memory/drug effects , Male , Rats , Wnt Signaling Pathway/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Cognition/drug effects , Disease Models, Animal , Maze Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology
...