Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 726
Filter
1.
IET Nanobiotechnol ; 2024: 7867463, 2024.
Article in English | MEDLINE | ID: mdl-38938743

ABSTRACT

The desire to reduce reliance on oil resources arises from the concerns about carbon footprint and nonrenewability. Conversely, the global presence of over 100 million palm trees poses a significant challenge due to the substantial amount of biowaste generated annually. Additionally, the use of nanocellulose (NC) as a cost-effective material is steadily gaining recognition for its growing adaptability over time. The main goal of this study is to biosynthesized NC from Iraqi date palm Phoenix dactylifera leaves waste with low-concentration acid-alkali treatment. The date palm leaves waste yields 20 g of NC from 100 g of leaves before acid hydrolysis treatment. The chemical components of biosynthesized NC were 47.90%, 26.78%, and 24.67% for α-cellulose, hemicellulose, and lignin, respectively. In order to study their properties, NC from raw date palm leaves was studied by microscopic techniques such as scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and atomic force microscope (AFM). SEM results revealed rod-like structured NC as well as combined long-fine fibrous structures rather than compacted bundles with sizes ranging between 31 and 74 nm. With EDX, all spectra exhibit the peaks of carbon and oxygen as the main elements with 63.8% and 10.44%, respectively, in their compositions, which relate to the typical composition of cellulose. The 3D image of AFM NC with a tapping mode presented a highly uniform distribution of NC with a size of ∼15 nm. The statistical roughness analysis shows that the obtained roughness average is 7.20 nm with the root-mean-square roughness value of 21.56 nm, which corresponded relatively with the micrographs of SEM. The results of this study demonstrate the promise of using date palm waste as raw material to produce NC as green nanocomposite from biodegradable nanomaterials for water purification and sustained drug delivery for biomedical applications. In this regard and because of the insufficient reports about the extraction of NC from palm tree leaves waste, the objective of this study was designed to fabricate NC biologically from fibers sourced from the waste of Iraqi date palm P. dactylifera leaves that left in agricultural lands or burned, which can be an ecological and health problem as a bionanocomposites in the medical and industrial field and as alternative resources of wood materials.


Subject(s)
Cellulose , Phoeniceae , Plant Leaves , Cellulose/chemistry , Phoeniceae/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Nanostructures/chemistry
2.
Sci Rep ; 14(1): 13064, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844596

ABSTRACT

This study aimed to investigate carbamate pesticide residues in different varieties of date palm fruits in the UAE, utilizing UHPLC-MS/MS. For sample preparation and clean-up, the efficiency and performance of different QuEChERS dispersive solid-phase extraction kits were compared. Precision and recovery were assessed at 10 µg kg-1 for the three kits, revealing that Kit 2 demonstrated the best performance. The selected QuEChERS method was validated to detect 14 carbamate residues in 55 date samples. The method exhibited strong linearity with R2 > 0.999 and low LOD (0.01-0.005 µg kg-1) and LOQ (0.003-0.04 µg kg-1). Excellent accuracy (recovery: 88-106%) and precision (RSD: 1-11%) were observed, with negligible matrix effect (- 4.98-13.26%). All samples contained at least one carbamate residue. While most detected residues were below their MRLs, carbosulfan was found in 21 samples, propoxur in 2 samples, and carbofuran in 1 sample above their MRLs. The hazard index (HI) was calculated for carbosulfan, phenmedipham, carbaryl, propoxur, carbofuran, and methomyl to assess potential health risks for date consumers. All HI values were below the safety limit of 1.0, indicating that the consumption of dates does not pose a non-carcinogenic health risk for adults and children.


Subject(s)
Carbamates , Fruit , Pesticide Residues , Phoeniceae , Tandem Mass Spectrometry , Phoeniceae/chemistry , Pesticide Residues/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Carbamates/analysis , Fruit/chemistry , Humans , Risk Assessment , Solid Phase Extraction/methods , Food Contamination/analysis
3.
Microb Pathog ; 192: 106708, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782213

ABSTRACT

The global rise of antibiotic resistance poses a substantial risk to mankind, underscoring the necessity for alternative antimicrobial options. Developing novel drugs has become challenging in matching the pace at which microbial resistance is evolving. Recently, nanotechnology, coupled with natural compounds, has emerged as a promising solution to combat multidrug-resistant bacteria. In the present study, silver nanoparticles were green-synthesized using aqueous extract of Phoenix dactylifera (variety Ajwa) fruits and characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDX), Transmission electron microscopy (TEM) and Thermogravimetric-differential thermal analysis (TGA-DTA). The in-vitro synergy of green synthesized P. dactylifera silver nanoparticle (PD-AgNPs) with selected antibiotics and bioactive extract of Punica granatum, i.e., ethyl acetate fraction (PGEF), was investigated using checkerboard assays. The most effective synergistic combination was evaluated against the QS-regulated virulence factors production and biofilm of Pseudomonas aeruginosa PAO1 by spectroscopic assays and electron microscopy. In-vivo anti-infective efficacy was examined in Caenorhabditis elegans N2 worms. PD-AgNPs were characterized as spherical in shape with an average diameter of 28.9 nm. FTIR analysis revealed the presence of functional groups responsible for the decrease and stabilization of PD-AgNPs. The signals produced by TGA-DTA analysis indicated the generation of thermally stable and pure crystallite AgNPs. Key phytocompounds detected in bioactive fractions include gulonic acid, dihydrocaffeic acid 3-O-glucuronide, and various fatty acids. The MIC of PD-AgNPs and PGEF ranged from 32 to 128 µg/mL and 250-500 µg/mL, respectively, against test bacterial strains. In-vitro, PD-AgNPs showed additive interaction with selected antibiotics (FICI 0.625-0.75) and synergy with PGEF (FICI 0.25-0.375). This combination inhibited virulence factors by up to 75 % and biofilm formation by 84.87 % in P. aeruginosa PAO1. Infected C. elegans worms with P. aeruginosa PAO1 had a 92.55 % survival rate when treated with PD-AgNPs and PGEF. The combination also reduced the reactive oxygen species (ROS) level in C. elegans N2 compared to the untreated control. Overall, these findings highlight that biosynthesized PD-AgNPs and bioactive P. granatum extract may be used as a potential therapeutic formulation against MDR bacteria.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Synergism , Metal Nanoparticles , Microbial Sensitivity Tests , Phoeniceae , Plant Extracts , Pomegranate , Pseudomonas aeruginosa , Silver , Silver/pharmacology , Silver/chemistry , Silver/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metal Nanoparticles/chemistry , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa/drug effects , Animals , Phoeniceae/chemistry , Virulence/drug effects , Pomegranate/chemistry , Caenorhabditis elegans/drug effects , Green Chemistry Technology , X-Ray Diffraction , Virulence Factors/metabolism , Spectroscopy, Fourier Transform Infrared , Fruit/chemistry , Fruit/microbiology
4.
Braz J Microbiol ; 55(2): 1265-1277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696037

ABSTRACT

Vinegar is a fermented food produced by alcoholic and then acetic acid microbial metabolism. Date palm fruit (Phoenix dactylifera L.) is a valuable source for the production of vinegar. Microbial identification has a major role in the improvement and bio-management of the fermentation process of vinegar. Estamaran and Kabkab two varieties of date palm fruit were selected to study the fermentation process. A culture-dependent approach was used to study bacterial dynamics. 16 S rRNA gene was amplified by Polymerase Chain Reaction (PCR), also restriction enzyme analysis with HinfI and TaqI, and sequencing was done. Assessment of microbial flora of date palm fruit during fermentation showed that Fructobacillus tropaeoli, Bacillus sp., Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, and Weissella paramesenteroides existed in the first phase of fermentation. With fermentation progress, microbial diversity decreased so only one species remained. Komagataeibacter xylinus as an acid acetic producer was present in the third phase of fermentation. Based on chemical analysis, the concentration of reducing sugars decreased during fermentation. With decreasing pH, a simultaneous increase in acidity and total phenolic compounds occurred. The trend of changes during Estamaran fermentation was more severe and a vinegar with desirable properties was produced. Therefore, this date variety is recommended for the production of date vinegar.


Subject(s)
Acetic Acid , Bacteria , Fermentation , Phoeniceae , Acetic Acid/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Phoeniceae/microbiology , RNA, Ribosomal, 16S/genetics , Food Microbiology , Fruit/microbiology , Hydrogen-Ion Concentration
5.
Food Chem ; 454: 139800, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38805925

ABSTRACT

The aim of this study was to investigate the impact of different concentrations (3% and 6%) of two ingredients (paste and flour) obtained from the valorization of date fruit coproducts on the nutritional (proximate composition and mineral profile), technological (coagulation curve, pH, acidity, sugar and organic acid content and syneresis), physicochemical (color, water activity and texture), microbiological and sensory properties of goat's yogurt during 21 days of refrigerated storage. Both ingredients enhanced the growth and stability of the yogurt starter culture, thereby improving the probiotic potential of date-added yogurts. Physicochemically, the addition of date flour (at both concentrations) induces stronger modifications (texture, color and syneresis) in yogurts than the date paste. During storage, date paste reduced the syneresis and hence maintained yogurts' physical quality. Consumers preferred the yogurts with date paste (3% and 6%) rather than with date flour, because its addition led to a more brownish color and granular texture.


Subject(s)
Food Storage , Goats , Milk , Phoeniceae , Taste , Yogurt , Animals , Yogurt/analysis , Phoeniceae/chemistry , Milk/chemistry , Food, Fortified/analysis , Humans , Fruit/chemistry , Cold Temperature
6.
BMC Plant Biol ; 24(1): 407, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755531

ABSTRACT

BACKGROUND: The goal of this research is to enhance the quality of cucumber seedlings grown in greenhouses by experimenting with various soilless culture mediums (CMs) and the application of pistachio wood vinegar (WV). The experimental setup was designed as a factorial experiment within a randomized complete block design (RCBD), in greenhouse conditions featuring three replications to assess the effects of different culture media (CMs) and concentrations of pistachio wood vinegar (WV) on cucumber seedling growth. Cucumber seeds were planted in three CMs: coco peat-peat moss, coco peat-vermicompost, and date palm compost-vermicompost mixed in a 75:25 volume-to-volume ratio. These were then treated with pistachio WV at concentrations of 0, 0.5, and 1%, applied four times during irrigation following the emergence of the third leaf. RESULTS: The study revealed that treating seedlings with 0.5% WV in the date palm compost-vermicompost CM significantly enhanced various growth parameters. Specifically, it resulted in a 90% increase in shoot fresh mass, a 59% increase in shoot dry mass, an 11% increase in root fresh mass, a 36% increase in root dry mass, a 65% increase in shoot length, a 62% increase in leaf area, a 25% increase in stem diameter, a 41% increase in relative water content (RWC), and a 6% improvement in membrane stability index (MSI), all in comparison to untreated seedlings grown in coco peat-peat moss CM. Furthermore, chlorophyll a, b, total chlorophyll, and carotenoid levels were 2.3, 2.7, 2.6, and 2.7 times higher, respectively, in seedlings treated with 0.5% WV and grown in the date palm compost-vermicompost CM, compared to those treated with the same concentration of WV but grown in coco peat-peat moss CM. Additionally, the Fv/Fm ratio saw a 52% increase. When plant nutrition was enhanced with the date palm compost-vermicompost CM and 1% WV, auxin content rose by 130% compared to seedlings grown in coco peat-peat moss CM and treated with 0.5% WV. CONCLUSIONS: The study demonstrates that using 0.5% WV in conjunction with date palm compost-vermicompost CM significantly betters the quality of cucumber seedlings, outperforming other treatment combinations.


Subject(s)
Cucumis sativus , Seedlings , Seedlings/growth & development , Seedlings/physiology , Cucumis sativus/growth & development , Cucumis sativus/physiology , Phoeniceae/physiology , Phoeniceae/growth & development , Acetic Acid/metabolism , Pistacia/physiology , Pistacia/growth & development , Composting/methods , Soil/chemistry , Chlorophyll/metabolism
7.
Plant Sci ; 344: 112110, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704095

ABSTRACT

The date palm is economically vital in the Middle East and North Africa, providing essential fibres, vitamins, and carbohydrates. Understanding the genetic architecture of its traits remains complex due to the tree's perennial nature and long generation times. This study aims to address these complexities by employing advanced genome-wide association (GWAS) and genomic prediction models using previously published data involving fruit acid content, sugar content, dimension, and colour traits. The multivariate GWAS model identified seven QTL, including five novel associations, that shed light on the genetic control of these traits. Furthermore, the research evaluates different genomic prediction models that considered genotype by environment and genotype by trait interactions. While colour- traits demonstrate strong predictive power, other traits display moderate accuracies across different models and scenarios aligned with the expectations when using small reference populations. When designing the cross-validation to predict new individuals, the accuracy of the best multi-trait model was significantly higher than all single-trait models for dimension traits, but not for the remaining traits, which showed similar performances. However, the cross-validation strategy that masked random phenotypic records (i.e., mimicking the unbalanced phenotypic records) showed significantly higher accuracy for all traits except acid contents. The findings underscore the importance of understanding genetic architecture for informed breeding strategies. The research emphasises the need for larger population sizes and multivariate models to enhance gene tagging power and predictive accuracy to advance date palm breeding programs. These findings support more targeted breeding in date palm, improving productivity and resilience to various environments.


Subject(s)
Fruit , Genome-Wide Association Study , Phoeniceae , Fruit/genetics , Phoeniceae/genetics , Quantitative Trait Loci/genetics , Phenotype , Genotype , Genomics/methods , Plant Breeding/methods , Genome, Plant
8.
Water Environ Res ; 96(6): e11038, 2024 May.
Article in English | MEDLINE | ID: mdl-38797821

ABSTRACT

The continuous population growth and drying up the freshwater reservoirs around the world are increasing the demand for fresh water. Therefore, there is an urgent need to explore newer technologies able to purify water on large scales for human usage. Capacitive deionization is one of the most promising approaches to generate fresh water by the removal of salt ions from brackish water. In this work, we prepared three different capacitive deionization electrodes using carbonized palm tree fronds (PFC). These PFC activation was achieved using CO2 at 900°C. To generate the deionization electrodes, PFC activated carbon was combined with either polyaniline (PANI), MnO2, or both (PFC-PANI, PFC-MnO2, and PFC-MnO2-PANI). The MnO2 and PANI provided additional functionality and enhanced electrical conductivity, which resulted in much higher Na+ and Cl- ions adsorption. The BET surface area of PFC-MnO2-PANI was estimated to be 208.56 m2/g, which is approximately three times that of PCF-PANI and PFC-MnO2 alone. The morphological analysis showed that the PANI and MnO2 nanorods were well dispersed throughout the PFC network. Although PANI and MnO2 is largely embedded inside the PFC network, some remnants are visible on the surface of the electrodes. The cyclic voltammetry (CV) curves showed capacitive behavior of all electrodes in which PFC-MnO2-PANI showed highest specific capacitance of 84 F/g, while the PFC-MnO2 and PFC-PANI showed 42 and 43 F/g, respectively. Owing to its enhanced functionality and CV characteristics, the PFC-MnO2-PANI showed maximum salt adsorption capacity of 10.5 mg/g in contrast to 3.72 and 5.64 mg/g for PFC-MnO2 and PFC-PANI, respectively. Moreover, the measured contact angle for PFC-MnO2-PANI was ~51°, which indicates the hydrophilic nature of electrode that improved ions adsorption. PRACTITIONER POINTS: Date tree fronds were converted into mesopores carbon using CO2 as activation agent. Three composites were prepared with PANI, MnO2, and date palm fronds activated carbon (PFC-MnO2, PFC-MnO2-PANI, and PFC-PANI). Surface area, pore profile, surface morphology, electrochemical behavior, desalination performance, and hydrophilicity of all the electrodes were investigated. The PFC-MnO2-PANI showed maximum salt adsorption capacity of 10.5 mg/g in contrast to 3.72 and 5.64 mg/g for PFC-MnO2 and PFC-PANI, respectively.


Subject(s)
Aniline Compounds , Carbon Dioxide , Manganese Compounds , Oxides , Phoeniceae , Water Purification , Aniline Compounds/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Water Purification/methods , Phoeniceae/chemistry , Carbon Dioxide/chemistry , Carbon/chemistry , Electrodes , Adsorption
9.
J Basic Clin Physiol Pharmacol ; 35(3): 175-179, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38677327

ABSTRACT

OBJECTIVES: Majhool date (Phoenix dactylifera), renowned for its premium taste and texture, is extensively consumed in the Islamic world, particularly during Ramadan. Despite its popularity, concerns persist regarding its potential to induce diabetes in non-patients. This study aims to explore the diabetogenic effects of prolonged Majhool date (Phoenix dactylifera) consumption, the widely used fruit in the Islamic world, through animal experiments and human clinical data. METHODS: Medjool dates were processed into an ethanolic extract for the animal experiment. Then, 21 Balb/c mice received varying doses of the extract for one month. The fasting blood glucose levels were analyzed at the beginning and after one month of consumption of the Majhool date extract. For the clinical study, 387 healthy participants were recruited, with fasting blood glucose levels assessed before and after Ramadan, a period of heightened Majhool date consumption. RESULTS: all groups of the experimental animals exhibited a significant (p<0.05) weight increase after Majhool date consumption, while no significant (p>0.05) alteration in fasting blood glucose levels among groups. In addition, it was found that fasting blood glucose levels remained statistically unchanged (p>0.05) after heightened Majhool date consumption among humans. CONCLUSIONS: The study challenges the belief that Majhool date induces diabetes, supported by both animal and human data. Findings suggest that Majhool date consumption, even at higher doses, does not induce diabetes. Further investigations could explore the impact of other date varieties on the fasting blood glucose levels.


Subject(s)
Blood Glucose , Fasting , Islam , Mice, Inbred BALB C , Phoeniceae , Plant Extracts , Animals , Blood Glucose/drug effects , Humans , Fasting/blood , Phoeniceae/chemistry , Mice , Male , Adult , Female , Plant Extracts/pharmacology , Middle Aged , Young Adult , Fruit/chemistry
10.
J Ethnopharmacol ; 330: 118168, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38604508

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Phoenix dactylifera L. pollen is the male reproductive dust of palm flowers known as a natural product that is considered a strong stimulant of sexual potency and fertility in Iranian traditional medicine (ITM). In this regard, no evidence-based medications are empirically prescribed to treat IMI. However, applying traditional medicine for the treatment of male infertility has attracted more attention in recent years. AIM OF THE STUDY: Phoenix dactylifera L. pollen was compared with pentoxifylline (PTX) to evaluate its efficacy on sperm parameters. MATERIALS AND METHODS: During this parallel randomized controlled trial, 80 adult men with asthenozoospermia, oligozoospermia, or teratozoospermia (age 20-35 years) were enrolled. In two separate groups of participants with a 1:1 ratio, participants received either 6 g of Phoenix dactylifera L. pollen powder daily or 400 mg of PTX tablets daily for 90 days. We measured the sperm parameters as well as the serum sex hormones in the sample. ANCOVA and t-tests were used to compare groups. RESULTS: There was no significant difference between the study groups in terms of baseline characteristics or demographic characteristics. According to the results, participants who took Phoenix dactylifera L. pollen powder had significantly improved sperm concentration (p = 0.016), morphology (p = 0.029), sperm counts (p = 0.012), progressive motility (p = 0.016), total motility (p = 0.018), and reduced immotile sperms (p = 0.014) compared to those who took PTX. CONCLUSIONS: In light of these results, Phoenix dactylifera L. pollen is recommended as a treatment factor for ameliorating IMI by enhancing sperm functional capacity and semen parameters.


Subject(s)
Infertility, Male , Pentoxifylline , Phoeniceae , Pollen , Spermatozoa , Humans , Male , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Adult , Phoeniceae/chemistry , Young Adult , Spermatozoa/drug effects , Infertility, Male/drug therapy , Sperm Motility/drug effects , Asthenozoospermia/drug therapy , Iran , Sperm Count , Oligospermia/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
11.
J Ethnopharmacol ; 329: 118138, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38565410

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Phoenix dactylifera L. (date palm) seed is widely used in Arabian traditional medicine to alleviate several health problems including inflammatory conditions. The herbal tea of date palm seed has been consumed by rheumatoid patients to relief their symptoms. AIM OF THE STUDY: The purpose of this study was to investigate the claimed beneficial use of P. dactylifera L. (Sewy variety) seed (PDS) in the treatment of rheumatoid arthritis (RA) and its mechanism of action as well as to study its phytoconstituents. MATERIALS AND METHODS: The anti-inflammatory and anti-oxidative properties of the non-polar and the polar extracts of PDS were studied using Complete Freund's adjuvant (CFA)-induced arthritis rat model. Paw edema, body weight, total nitrate/nitrite NOX content and cytokine markers were evaluated to monitor the progress of arthritis. Also, histological examination and thermal analysis were conducted. The phytoconstituent profiles of non-polar and polar extracts of PDS were investigated using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The multiple reactions monitoring mode (MRM) of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used to quantify phenolic phytoconstituents in both extracts. RESULTS: According to the findings, the polar and non-polar PDS extracts kept body weight comparable to those of healthy individuals while considerably lowering paw swelling, edema, and neutrophil infiltration. It also reduced the levels of Nuclear Factor Kappa B (NF-κB), Tumor Necrosis Factor Alpha (TNF-α), Interleukin 22, Interleukin 23, Interferon (IFN), Interleukin 17, Interleukin 1ß, Interleukin 6, Interleukin 36, Janus Kinase 1 (JAK1), and Signal Transducer and Activator of Transcription 3 (STAT3). They also reduced the degenerative alterations caused by RA. Thermal research gave additional support for these findings. 83 phytoconstituents were identified in the non-polar PDS extract and 86 phytoconstituents were identified in the polar PDS extract. 74 of the identified phytoconstituents were common in both extracts. 33 phytoconstituents were identified here from P. dactylifera for the first time as far as we know. In MRM-LC-ESI-MS/MS analysis, the major phenolics in both extracts were chlorogenic acid, naringenin, and vanillin. Catechin was only detected in the non-polar PDS extract. On the other hand, apigenin, kaempferol, and hesperetin were only detected in the polar PDS extract. Generally, the polar PDS extract showed higher concentrations of the identified phenolics than the non-polar extract. CONCLUSIONS: The PDS extracts especially the non-polar extract showed significant anti-inflammatory and anti-oxidative properties in the CFA-induced arthritis rat model. PDS might be used to produce RA medicines.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Experimental , Cytokines , Freund's Adjuvant , Janus Kinase 1 , Phoeniceae , Plant Extracts , STAT3 Transcription Factor , Seeds , Animals , Phoeniceae/chemistry , STAT3 Transcription Factor/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Janus Kinase 1/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Seeds/chemistry , Male , Antirheumatic Agents/pharmacology , Antirheumatic Agents/isolation & purification , Rats , Phytochemicals/analysis , Phytochemicals/pharmacology , Signal Transduction/drug effects , Rats, Wistar , Rats, Sprague-Dawley , Antioxidants/pharmacology
12.
Int J Biol Macromol ; 267(Pt 1): 131540, 2024 May.
Article in English | MEDLINE | ID: mdl-38608992

ABSTRACT

Lignin-containing nanocellulose (LNC) is a compelling alternative to traditional nanocellulose (NC), it offers enhanced yields and a reduction in the demand for toxic chemicals. This research involves the isolation of LNC from date palm waste using a green hydrolysis process and its subsequent characterization. The potential of using ionic liquids (ILs) as green solvents to isolate LNC has not yet been explored. Our findings suggest that 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) can hydrolyze partially delignified and unbleached lignocellulose, achieving LNC synthesis. The obtained LNC showed a higher yield than its NC counterpart and exhibited rod-shaped fibers with nanoscale diameters and micrometer lengths, indicating a high aspect ratio. Dynamic Light Scattering (DLS) results indicate average particle sizes of 143.20 nm for NC and 282.30 nm for LNC, with a narrow particle size distribution conforming their monodisperse behavior. Thermogravimetric analysis and differential scanning calorimetry revealed high thermal stability (initial degradation temperature = 222.50 °C and glass transition temperature = 84.45°C) of LNC. Moreover, the obtained LNC fibers were crystalline (crystallinity index = 52.76 %). Their activation energy (124.95 kJ/mol) was determined using the Coats-Redfern method by employing eight solid-state diffusion models. Overall, this study motivates the use of ILs as green solvents to produce lignocellulose derivatives that are suitable for various applications.


Subject(s)
Cellulose , Green Chemistry Technology , Lignin , Phoeniceae , Solvents , Lignin/chemistry , Solvents/chemistry , Cellulose/chemistry , Green Chemistry Technology/methods , Phoeniceae/chemistry , Hydrolysis , Ionic Liquids/chemistry , Thermogravimetry , Waste Products , Temperature , Particle Size
13.
Plant Foods Hum Nutr ; 79(2): 518-525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38478328

ABSTRACT

Plant polyphenols are nutraceutical components with relevant biological effects on human health. They act against development of several diseases including cancer. In this study, the methanolic extracts of four date palm Phoenix dactylifera leaves (Deglet Noor (DN), Barhee (B), Khalas (KS) and Khunezi (KZ)) collected from south Tunisia were preliminary analyzed for their effects against U87 (human glioblastoma) and MDA-MB-231 (human breast cancer) cell line development. Results showed that Barhee extract (30 µg/mL) was the most efficient to reduce the growth of both tumor cells to about 40% (p < 0.05) without inducing cytotoxicity. Significantly, KS, KZ, DN and B extracts (30 µg/mL) decreased MDA-MB-231 and U87 cell adhesion towards fibrinogen and fibronectin. Using integrin blocking antibodies, leaf extracts competitively decreased human glioblastoma cell attachment to immobilized antibodies by interfering to αvß3 and α5ß1 integrin receptors. At the same concentration, extracts decreased MDA-MB-23 and U87 cell migration performed with wound healing assay. Particularly, Barhee and Deglet Noor leaf extracts (30 µg/mL) significantly reduced U87 cell invasion by 52.92% (p < 0.01) and 74.56% (p < 0.01), respectively. Collegially, our findings revealed beneficial proprieties of four varieties of date palm leaf especially those displayed by DN and B extracts that may serve as active candidates against human glioblastoma and breast cancer progression.


Subject(s)
Antineoplastic Agents, Phytogenic , Cell Adhesion , Cell Movement , Glioblastoma , Phoeniceae , Plant Extracts , Plant Leaves , Humans , Phoeniceae/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Cell Line, Tumor , Glioblastoma/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Cell Adhesion/drug effects , Cell Movement/drug effects , Breast Neoplasms/drug therapy , Tunisia , Polyphenols/pharmacology , Polyphenols/analysis
14.
BMC Genom Data ; 25(1): 31, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491426

ABSTRACT

BACKGROUND: Dates contain various minerals that are essential for good health. The major RNA interference (RNAi) gene families play a vital role in plant growth and development by controlling the expression of protein-coding genes against different biotic and abiotic stresses. However, these gene families for date palm are not yet studied. Therefore, this study has explored major RNAi genes and their characteristics in date palm. RESULTS: We have identified 4 PdDCLs, 7 PdAGOs, and 3 PdRDRs as RNAi proteins from the date palm genome by using AtRNAi genes as query sequences in BLASTp search. Domain analysis of predicted RNAi genes has revealed the Helicase_C, Dicer_dimer, PAZ, RNase III, and Piwi domains that are associated with the gene silencing mechanisms. Most PdRNAi proteins have been found in the nucleus and cytosol associated with the gene silencing actions. The gene ontology (GO) enrichment analysis has revealed some important GO terms including RNA interference, dsRNA fragmentation, and ribonuclease_III activity that are related to the protein-coding gene silencing mechanisms. Gene regulatory network (GRN) analysis has identified PAZ and SNF2 as the transcriptional regulators of PdRNAi genes. Top-ranked 10 microRNAs including Pda-miR156b, Pda-miR396a, Pda-miR166a, Pda-miR167d, and Pda-miR529a have been identified as the key post-transcriptional regulators of PdRNAi genes that are associated with different biotic/abiotic stresses. The cis-acting regulatory element analysis of PdRNAi genes has detected some vital cis-acting elements including ABRE, MBS, MYB, MYC, Box-4, G-box, I-box, and STRE that are linked with different abiotic stresses. CONCLUSION: The results of this study might be valuable resources for the improvement of different characteristics in date palm by further studies in wet-lab.


Subject(s)
MicroRNAs , Phoeniceae , Phoeniceae/genetics , RNA Interference , Genome , Regulatory Sequences, Nucleic Acid
15.
Environ Sci Pollut Res Int ; 31(17): 25227-25237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38468010

ABSTRACT

A quantitative method based on quick, easy, cheap, effective, rugged, and safe technique (QuEChERS) sample extraction and ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) was evolved for the determination of 47 pesticide residues in fresh Mazafati date fruits from Bam City of Kerman Province, Iran. The recoveries for selected pesticides ranged from 88 to 110% with a relative standard deviation (RSD) of less than 20% at concentrations of 0.05 and 0.1 mg kg-1. The proposed method had a linear range from the limit of quantification (LOQ) to 1.00 mg kg-1, and the LOQ of the 47 pesticides was ≤ 0.005 mg kg-1. The coefficients of determination (R2) were more than 0.99. This technique was used on 12 fresh date fruits samples, three water samples, and three soil samples with three replications per sample. Forty-seven pesticide were detected collectively, but only diazinon was detected in the date fruit samples. The mean value of diazinon residues was 0.037 mg kg-1, and the concentration of diazinon in most samples was below the national maximum residue limit (MRL) for date fruit (0.05 mg kg-1). Among the pesticides measured, diazinon residues were also detected in the water samples, but not in the soil samples. The dietary intake assessment showed no health risk to humans from the consumption of fresh date fruit concerning the pesticides investigated.


Subject(s)
Pesticide Residues , Pesticides , Phoeniceae , Humans , Pesticide Residues/analysis , Tandem Mass Spectrometry/methods , Water/analysis , Diazinon/analysis , Soil , Food Contamination/analysis , Vegetables/chemistry , Fruit/chemistry , Pesticides/analysis
16.
Biomarkers ; 29(3): 143-153, 2024 May.
Article in English | MEDLINE | ID: mdl-38483941

ABSTRACT

INTRODUCTION: The present study aimed at investigating the effect of dietary supplementation of Phoenix dactylifera, an important component of aphrodisiac supplements, on sexual performance, oxido-inflammatory mediators and purinergic signaling system in hypertensive rats. MATERIAL AND METHODS: Hypertension was induced via oral administration of 40 mg/kg L-NAME. Thereafter, the sexual performance of the experimental animals was determined and the hypertensive rats with impaired sexual activities were placed on P. dactylifera-supplemented diet for 21 days, and the effects of the treatment on the overall sexual behavior, antioxidant status, oxido-inflammatory biomarkers, and enzyme activity of the purinergic system were assessed. RESULTS: Hypertensive rats showed a significant (p < 0.05) decrease in sexual performance, elevated level of oxido-inflammatory mediators, and altered purinergic enzymes activity when compared with the control. However, sub-chronic feeding with P. dactylifera-supplemented diet improved sexual performance, significantly lowered oxido-inflammatory biomarkers, and enhanced the activity of purinergic enzymes in hypertensive rats. CONCLUSION: Findings presented in this study suggest that dietary inclusion of P. dactylifera could be useful in managing erectile dysfunction (ED) commonly observed in subjects with hypertension. Findings highlighted in this study thus provide the scientific basis supporting the folkloric use of P. dactylifera as a key ingredient in aphrodisiac supplements.


Subject(s)
Aphrodisiacs , Hypertension , Phoeniceae , Humans , Rats , Male , Animals , Fruit , Aphrodisiacs/adverse effects , Hypertension/chemically induced , Biomarkers
17.
Food Res Int ; 181: 114096, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448106

ABSTRACT

In this research, different seeds of Australian-grown date palm (Phoenix dactylifera L.) were studied to evaluate the antioxidant potential and analyze their phenolic constituents. Phenolic compounds were extracted from seeds of various Australian-grown date varieties at different ripening stages. Eight varieties of date seeds (Zahidi, Medjool, Deglet nour, Thoory, Halawi, Barhee, Khadrawy, and Bau Strami) at three ripening stages (Kimri, Khalal, and Tamar) were investigated in this study. Date seeds at Khalal (9.87-16.93 mg GAE/g) and Tamar (9.20-27.87 mg GAE/g) stages showed higher total phenolic content than those at Kimri stage (1.81-5.99 mg GAE/g). For antioxidant assays like DPPH, FRAP, ABTS, RAP, FICA, and TAC, date seeds at Khalal and Tamar stages also showed higher antioxidant potential than Kimri stage. However, date seeds at Kimri stage (55.24-63.26 mg TE/g) expressed higher radical scavenging activity than Khalal (13.58-51.88 mg TE/g) and Tamar (11.06-50.92 mg TE/g) stages. Phenolic compounds were characterized using LC-ESI-QTOF-MS/MS, revealing the presence of 37 different phenolic compounds, including 8 phenolic acids, 18 flavonoids, and 11 other phenolic compounds. Further, phenolic compounds were quantified using LC-DAD, revealing that Zahidi variety of date seeds exhibited the highest content during the Kimri stage. In contrast, during the Khalal and Tamar stages, Deglet nour and Medjool date seeds displayed higher concentrations of phenolic compounds. The results indicated an increase in phenolic content in date seeds after the Kimri stage, with significant variations observed among different date varieties.


Subject(s)
Antioxidants , Phoeniceae , Australia , Tandem Mass Spectrometry , Phenols , Seeds
18.
BMC Plant Biol ; 24(1): 225, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539110

ABSTRACT

BACKGROUND: Plants are considered the primary source of many principal bioactive compounds that have been utilized in a wide range of applications including the pharmaceutical and biotechnological industries. Therefore, there is an imperative need to modulate the production of natural bioactive components. The present study aimed to determine the importance of dried and pulverized date palm seeds (DPS) as a natural elicitor for the synthesis of secondary metabolites in Lotus arabicus L. RESULTS: The presence of various antioxidant compounds, simple sugars, amino acids, fatty acids and reasonable mineral contents was distinct in the phytochemical characterization of DPS. The major components detected in DPS analysis were the 5-(hydroxymethyl) furfural and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone. The induced callus of L. arabicus (seven weeks old) was supplemented with DPS at different concentrations (0, 2, 4, 8 and 10 g/l) in culture media. Treatment with 8 g/l DPS induced the highest antioxidant capacity, ascorbic acid content and secondary metabolites (total phenolics and flavonoids) in the produced callus. Stress biomarkers (hydrogen peroxide and malondialdehyde) were found in the control ranges except at 10 g/l DPS. The expression patterns of key genes involoved in secondary metabolism modulation, such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) and deoxyxylulose phosphate reductoisomerase (DXR), were triggered after DPS treatments. Moreover, the quantitative profiling of phenolic and flavonoid compounds showed that supplementation with DPS, especially at 8 g/l, led to pronounced increases in most of the measured compounds. CONCLUSION: The marked upregulation of eliciting-responsive genes and overproduction of secondary metabolites provide molecular-based evidence for intensifying the principal pathways of phenylpropanoid, flavonoid and terpenoid biosynthesis. Overall, the present in vitro study highlights the stimulating capacity of DPS utilization to improve the bioactive components of L. arabicus at the physiological and molecular levels, enhancing its potential as a medicinal herb.


Subject(s)
Lotus , Phoeniceae , Antioxidants/metabolism , Lotus/metabolism , Phoeniceae/metabolism , Powders , Flavonoids/metabolism , Phenols/metabolism , Seeds/metabolism
19.
Physiol Plant ; 176(1): e14189, 2024.
Article in English | MEDLINE | ID: mdl-38342489

ABSTRACT

The date palm is a resilient, socioeconomically valuable desert fruit tree renowned for its heat, drought, and salinity tolerance. Date palm fruits are rich in nutrients and antioxidants, and their beneficial health properties can mitigate current and future food security challenges. However, it is challenging to improve date palm production through conventional breeding methods due to its slow growth. Date palm seeds do not produce true-to-type progeny, and commercial propagation relies on direct organogenesis from maternal tissue. Consequently, numerous economically important and valuable cultivars are lost due to tissue recalcitrance and challenges in inducing cell dedifferentiation and regeneration. Moreover, genetic engineering of date palms is currently impossible due to the lack of a stable genetic transformation protocol. This hampers the development of genetic resources in date palms. This study established a tissue culture pipeline and a genetic transformation protocol for various commercially important date palm cultivars. We used the non-invasive visual reporter RUBY and four morphogenic regulators to validate and improve date palm transformation potential. We found that the date palm BABY-BOOM (PdBBM) and the WOUND INDUCED DEDIFFERENTIATION (PdWIND1) enhanced transformation efficacy. We show that PdBBM can induce embryogenesis in hormone-free media and regenerate roots and shoots in recalcitrant varieties. On the other hand, PdWIND1 maintained embryogenic cells in their undifferentiated state. Our study provides a foundation for genetically improving date palms and a potential solution for preserving economically valuable varieties.


Subject(s)
Phoeniceae , Phoeniceae/genetics , Antioxidants
20.
Trends Genet ; 40(5): 398-409, 2024 May.
Article in English | MEDLINE | ID: mdl-38423916

ABSTRACT

Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.


Subject(s)
Crops, Agricultural , Fruit , Crops, Agricultural/genetics , Fruit/genetics , Genomics/methods , Domestication , Plant Breeding/methods , Genetic Variation , Genome, Plant/genetics , Vitis/genetics , Solanum lycopersicum/genetics , Phoeniceae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...