Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
IET Nanobiotechnol ; 2024: 7867463, 2024.
Article in English | MEDLINE | ID: mdl-38938743

ABSTRACT

The desire to reduce reliance on oil resources arises from the concerns about carbon footprint and nonrenewability. Conversely, the global presence of over 100 million palm trees poses a significant challenge due to the substantial amount of biowaste generated annually. Additionally, the use of nanocellulose (NC) as a cost-effective material is steadily gaining recognition for its growing adaptability over time. The main goal of this study is to biosynthesized NC from Iraqi date palm Phoenix dactylifera leaves waste with low-concentration acid-alkali treatment. The date palm leaves waste yields 20 g of NC from 100 g of leaves before acid hydrolysis treatment. The chemical components of biosynthesized NC were 47.90%, 26.78%, and 24.67% for α-cellulose, hemicellulose, and lignin, respectively. In order to study their properties, NC from raw date palm leaves was studied by microscopic techniques such as scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and atomic force microscope (AFM). SEM results revealed rod-like structured NC as well as combined long-fine fibrous structures rather than compacted bundles with sizes ranging between 31 and 74 nm. With EDX, all spectra exhibit the peaks of carbon and oxygen as the main elements with 63.8% and 10.44%, respectively, in their compositions, which relate to the typical composition of cellulose. The 3D image of AFM NC with a tapping mode presented a highly uniform distribution of NC with a size of ∼15 nm. The statistical roughness analysis shows that the obtained roughness average is 7.20 nm with the root-mean-square roughness value of 21.56 nm, which corresponded relatively with the micrographs of SEM. The results of this study demonstrate the promise of using date palm waste as raw material to produce NC as green nanocomposite from biodegradable nanomaterials for water purification and sustained drug delivery for biomedical applications. In this regard and because of the insufficient reports about the extraction of NC from palm tree leaves waste, the objective of this study was designed to fabricate NC biologically from fibers sourced from the waste of Iraqi date palm P. dactylifera leaves that left in agricultural lands or burned, which can be an ecological and health problem as a bionanocomposites in the medical and industrial field and as alternative resources of wood materials.


Subject(s)
Cellulose , Phoeniceae , Plant Leaves , Cellulose/chemistry , Phoeniceae/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Nanostructures/chemistry
2.
Sci Rep ; 14(1): 13064, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844596

ABSTRACT

This study aimed to investigate carbamate pesticide residues in different varieties of date palm fruits in the UAE, utilizing UHPLC-MS/MS. For sample preparation and clean-up, the efficiency and performance of different QuEChERS dispersive solid-phase extraction kits were compared. Precision and recovery were assessed at 10 µg kg-1 for the three kits, revealing that Kit 2 demonstrated the best performance. The selected QuEChERS method was validated to detect 14 carbamate residues in 55 date samples. The method exhibited strong linearity with R2 > 0.999 and low LOD (0.01-0.005 µg kg-1) and LOQ (0.003-0.04 µg kg-1). Excellent accuracy (recovery: 88-106%) and precision (RSD: 1-11%) were observed, with negligible matrix effect (- 4.98-13.26%). All samples contained at least one carbamate residue. While most detected residues were below their MRLs, carbosulfan was found in 21 samples, propoxur in 2 samples, and carbofuran in 1 sample above their MRLs. The hazard index (HI) was calculated for carbosulfan, phenmedipham, carbaryl, propoxur, carbofuran, and methomyl to assess potential health risks for date consumers. All HI values were below the safety limit of 1.0, indicating that the consumption of dates does not pose a non-carcinogenic health risk for adults and children.


Subject(s)
Carbamates , Fruit , Pesticide Residues , Phoeniceae , Tandem Mass Spectrometry , Phoeniceae/chemistry , Pesticide Residues/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Carbamates/analysis , Fruit/chemistry , Humans , Risk Assessment , Solid Phase Extraction/methods , Food Contamination/analysis
3.
Microb Pathog ; 192: 106708, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782213

ABSTRACT

The global rise of antibiotic resistance poses a substantial risk to mankind, underscoring the necessity for alternative antimicrobial options. Developing novel drugs has become challenging in matching the pace at which microbial resistance is evolving. Recently, nanotechnology, coupled with natural compounds, has emerged as a promising solution to combat multidrug-resistant bacteria. In the present study, silver nanoparticles were green-synthesized using aqueous extract of Phoenix dactylifera (variety Ajwa) fruits and characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDX), Transmission electron microscopy (TEM) and Thermogravimetric-differential thermal analysis (TGA-DTA). The in-vitro synergy of green synthesized P. dactylifera silver nanoparticle (PD-AgNPs) with selected antibiotics and bioactive extract of Punica granatum, i.e., ethyl acetate fraction (PGEF), was investigated using checkerboard assays. The most effective synergistic combination was evaluated against the QS-regulated virulence factors production and biofilm of Pseudomonas aeruginosa PAO1 by spectroscopic assays and electron microscopy. In-vivo anti-infective efficacy was examined in Caenorhabditis elegans N2 worms. PD-AgNPs were characterized as spherical in shape with an average diameter of 28.9 nm. FTIR analysis revealed the presence of functional groups responsible for the decrease and stabilization of PD-AgNPs. The signals produced by TGA-DTA analysis indicated the generation of thermally stable and pure crystallite AgNPs. Key phytocompounds detected in bioactive fractions include gulonic acid, dihydrocaffeic acid 3-O-glucuronide, and various fatty acids. The MIC of PD-AgNPs and PGEF ranged from 32 to 128 µg/mL and 250-500 µg/mL, respectively, against test bacterial strains. In-vitro, PD-AgNPs showed additive interaction with selected antibiotics (FICI 0.625-0.75) and synergy with PGEF (FICI 0.25-0.375). This combination inhibited virulence factors by up to 75 % and biofilm formation by 84.87 % in P. aeruginosa PAO1. Infected C. elegans worms with P. aeruginosa PAO1 had a 92.55 % survival rate when treated with PD-AgNPs and PGEF. The combination also reduced the reactive oxygen species (ROS) level in C. elegans N2 compared to the untreated control. Overall, these findings highlight that biosynthesized PD-AgNPs and bioactive P. granatum extract may be used as a potential therapeutic formulation against MDR bacteria.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Synergism , Metal Nanoparticles , Microbial Sensitivity Tests , Phoeniceae , Plant Extracts , Pomegranate , Pseudomonas aeruginosa , Silver , Silver/pharmacology , Silver/chemistry , Silver/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metal Nanoparticles/chemistry , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa/drug effects , Animals , Phoeniceae/chemistry , Virulence/drug effects , Pomegranate/chemistry , Caenorhabditis elegans/drug effects , Green Chemistry Technology , X-Ray Diffraction , Virulence Factors/metabolism , Spectroscopy, Fourier Transform Infrared , Fruit/chemistry , Fruit/microbiology
4.
Food Chem ; 454: 139800, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38805925

ABSTRACT

The aim of this study was to investigate the impact of different concentrations (3% and 6%) of two ingredients (paste and flour) obtained from the valorization of date fruit coproducts on the nutritional (proximate composition and mineral profile), technological (coagulation curve, pH, acidity, sugar and organic acid content and syneresis), physicochemical (color, water activity and texture), microbiological and sensory properties of goat's yogurt during 21 days of refrigerated storage. Both ingredients enhanced the growth and stability of the yogurt starter culture, thereby improving the probiotic potential of date-added yogurts. Physicochemically, the addition of date flour (at both concentrations) induces stronger modifications (texture, color and syneresis) in yogurts than the date paste. During storage, date paste reduced the syneresis and hence maintained yogurts' physical quality. Consumers preferred the yogurts with date paste (3% and 6%) rather than with date flour, because its addition led to a more brownish color and granular texture.


Subject(s)
Food Storage , Goats , Milk , Phoeniceae , Taste , Yogurt , Animals , Yogurt/analysis , Phoeniceae/chemistry , Milk/chemistry , Food, Fortified/analysis , Humans , Fruit/chemistry , Cold Temperature
5.
Water Environ Res ; 96(6): e11038, 2024 May.
Article in English | MEDLINE | ID: mdl-38797821

ABSTRACT

The continuous population growth and drying up the freshwater reservoirs around the world are increasing the demand for fresh water. Therefore, there is an urgent need to explore newer technologies able to purify water on large scales for human usage. Capacitive deionization is one of the most promising approaches to generate fresh water by the removal of salt ions from brackish water. In this work, we prepared three different capacitive deionization electrodes using carbonized palm tree fronds (PFC). These PFC activation was achieved using CO2 at 900°C. To generate the deionization electrodes, PFC activated carbon was combined with either polyaniline (PANI), MnO2, or both (PFC-PANI, PFC-MnO2, and PFC-MnO2-PANI). The MnO2 and PANI provided additional functionality and enhanced electrical conductivity, which resulted in much higher Na+ and Cl- ions adsorption. The BET surface area of PFC-MnO2-PANI was estimated to be 208.56 m2/g, which is approximately three times that of PCF-PANI and PFC-MnO2 alone. The morphological analysis showed that the PANI and MnO2 nanorods were well dispersed throughout the PFC network. Although PANI and MnO2 is largely embedded inside the PFC network, some remnants are visible on the surface of the electrodes. The cyclic voltammetry (CV) curves showed capacitive behavior of all electrodes in which PFC-MnO2-PANI showed highest specific capacitance of 84 F/g, while the PFC-MnO2 and PFC-PANI showed 42 and 43 F/g, respectively. Owing to its enhanced functionality and CV characteristics, the PFC-MnO2-PANI showed maximum salt adsorption capacity of 10.5 mg/g in contrast to 3.72 and 5.64 mg/g for PFC-MnO2 and PFC-PANI, respectively. Moreover, the measured contact angle for PFC-MnO2-PANI was ~51°, which indicates the hydrophilic nature of electrode that improved ions adsorption. PRACTITIONER POINTS: Date tree fronds were converted into mesopores carbon using CO2 as activation agent. Three composites were prepared with PANI, MnO2, and date palm fronds activated carbon (PFC-MnO2, PFC-MnO2-PANI, and PFC-PANI). Surface area, pore profile, surface morphology, electrochemical behavior, desalination performance, and hydrophilicity of all the electrodes were investigated. The PFC-MnO2-PANI showed maximum salt adsorption capacity of 10.5 mg/g in contrast to 3.72 and 5.64 mg/g for PFC-MnO2 and PFC-PANI, respectively.


Subject(s)
Aniline Compounds , Carbon Dioxide , Manganese Compounds , Oxides , Phoeniceae , Water Purification , Aniline Compounds/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Water Purification/methods , Phoeniceae/chemistry , Carbon Dioxide/chemistry , Carbon/chemistry , Electrodes , Adsorption
6.
J Basic Clin Physiol Pharmacol ; 35(3): 175-179, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38677327

ABSTRACT

OBJECTIVES: Majhool date (Phoenix dactylifera), renowned for its premium taste and texture, is extensively consumed in the Islamic world, particularly during Ramadan. Despite its popularity, concerns persist regarding its potential to induce diabetes in non-patients. This study aims to explore the diabetogenic effects of prolonged Majhool date (Phoenix dactylifera) consumption, the widely used fruit in the Islamic world, through animal experiments and human clinical data. METHODS: Medjool dates were processed into an ethanolic extract for the animal experiment. Then, 21 Balb/c mice received varying doses of the extract for one month. The fasting blood glucose levels were analyzed at the beginning and after one month of consumption of the Majhool date extract. For the clinical study, 387 healthy participants were recruited, with fasting blood glucose levels assessed before and after Ramadan, a period of heightened Majhool date consumption. RESULTS: all groups of the experimental animals exhibited a significant (p<0.05) weight increase after Majhool date consumption, while no significant (p>0.05) alteration in fasting blood glucose levels among groups. In addition, it was found that fasting blood glucose levels remained statistically unchanged (p>0.05) after heightened Majhool date consumption among humans. CONCLUSIONS: The study challenges the belief that Majhool date induces diabetes, supported by both animal and human data. Findings suggest that Majhool date consumption, even at higher doses, does not induce diabetes. Further investigations could explore the impact of other date varieties on the fasting blood glucose levels.


Subject(s)
Blood Glucose , Fasting , Islam , Mice, Inbred BALB C , Phoeniceae , Plant Extracts , Animals , Blood Glucose/drug effects , Humans , Fasting/blood , Phoeniceae/chemistry , Mice , Male , Adult , Female , Plant Extracts/pharmacology , Middle Aged , Young Adult , Fruit/chemistry
7.
J Ethnopharmacol ; 330: 118168, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38604508

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Phoenix dactylifera L. pollen is the male reproductive dust of palm flowers known as a natural product that is considered a strong stimulant of sexual potency and fertility in Iranian traditional medicine (ITM). In this regard, no evidence-based medications are empirically prescribed to treat IMI. However, applying traditional medicine for the treatment of male infertility has attracted more attention in recent years. AIM OF THE STUDY: Phoenix dactylifera L. pollen was compared with pentoxifylline (PTX) to evaluate its efficacy on sperm parameters. MATERIALS AND METHODS: During this parallel randomized controlled trial, 80 adult men with asthenozoospermia, oligozoospermia, or teratozoospermia (age 20-35 years) were enrolled. In two separate groups of participants with a 1:1 ratio, participants received either 6 g of Phoenix dactylifera L. pollen powder daily or 400 mg of PTX tablets daily for 90 days. We measured the sperm parameters as well as the serum sex hormones in the sample. ANCOVA and t-tests were used to compare groups. RESULTS: There was no significant difference between the study groups in terms of baseline characteristics or demographic characteristics. According to the results, participants who took Phoenix dactylifera L. pollen powder had significantly improved sperm concentration (p = 0.016), morphology (p = 0.029), sperm counts (p = 0.012), progressive motility (p = 0.016), total motility (p = 0.018), and reduced immotile sperms (p = 0.014) compared to those who took PTX. CONCLUSIONS: In light of these results, Phoenix dactylifera L. pollen is recommended as a treatment factor for ameliorating IMI by enhancing sperm functional capacity and semen parameters.


Subject(s)
Infertility, Male , Pentoxifylline , Phoeniceae , Pollen , Spermatozoa , Humans , Male , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Adult , Phoeniceae/chemistry , Young Adult , Spermatozoa/drug effects , Infertility, Male/drug therapy , Sperm Motility/drug effects , Asthenozoospermia/drug therapy , Iran , Sperm Count , Oligospermia/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
8.
J Ethnopharmacol ; 329: 118138, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38565410

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Phoenix dactylifera L. (date palm) seed is widely used in Arabian traditional medicine to alleviate several health problems including inflammatory conditions. The herbal tea of date palm seed has been consumed by rheumatoid patients to relief their symptoms. AIM OF THE STUDY: The purpose of this study was to investigate the claimed beneficial use of P. dactylifera L. (Sewy variety) seed (PDS) in the treatment of rheumatoid arthritis (RA) and its mechanism of action as well as to study its phytoconstituents. MATERIALS AND METHODS: The anti-inflammatory and anti-oxidative properties of the non-polar and the polar extracts of PDS were studied using Complete Freund's adjuvant (CFA)-induced arthritis rat model. Paw edema, body weight, total nitrate/nitrite NOX content and cytokine markers were evaluated to monitor the progress of arthritis. Also, histological examination and thermal analysis were conducted. The phytoconstituent profiles of non-polar and polar extracts of PDS were investigated using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The multiple reactions monitoring mode (MRM) of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used to quantify phenolic phytoconstituents in both extracts. RESULTS: According to the findings, the polar and non-polar PDS extracts kept body weight comparable to those of healthy individuals while considerably lowering paw swelling, edema, and neutrophil infiltration. It also reduced the levels of Nuclear Factor Kappa B (NF-κB), Tumor Necrosis Factor Alpha (TNF-α), Interleukin 22, Interleukin 23, Interferon (IFN), Interleukin 17, Interleukin 1ß, Interleukin 6, Interleukin 36, Janus Kinase 1 (JAK1), and Signal Transducer and Activator of Transcription 3 (STAT3). They also reduced the degenerative alterations caused by RA. Thermal research gave additional support for these findings. 83 phytoconstituents were identified in the non-polar PDS extract and 86 phytoconstituents were identified in the polar PDS extract. 74 of the identified phytoconstituents were common in both extracts. 33 phytoconstituents were identified here from P. dactylifera for the first time as far as we know. In MRM-LC-ESI-MS/MS analysis, the major phenolics in both extracts were chlorogenic acid, naringenin, and vanillin. Catechin was only detected in the non-polar PDS extract. On the other hand, apigenin, kaempferol, and hesperetin were only detected in the polar PDS extract. Generally, the polar PDS extract showed higher concentrations of the identified phenolics than the non-polar extract. CONCLUSIONS: The PDS extracts especially the non-polar extract showed significant anti-inflammatory and anti-oxidative properties in the CFA-induced arthritis rat model. PDS might be used to produce RA medicines.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Experimental , Cytokines , Freund's Adjuvant , Janus Kinase 1 , Phoeniceae , Plant Extracts , STAT3 Transcription Factor , Seeds , Animals , Phoeniceae/chemistry , STAT3 Transcription Factor/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Janus Kinase 1/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Seeds/chemistry , Male , Antirheumatic Agents/pharmacology , Antirheumatic Agents/isolation & purification , Rats , Phytochemicals/analysis , Phytochemicals/pharmacology , Signal Transduction/drug effects , Rats, Wistar , Rats, Sprague-Dawley , Antioxidants/pharmacology
9.
Int J Biol Macromol ; 267(Pt 1): 131540, 2024 May.
Article in English | MEDLINE | ID: mdl-38608992

ABSTRACT

Lignin-containing nanocellulose (LNC) is a compelling alternative to traditional nanocellulose (NC), it offers enhanced yields and a reduction in the demand for toxic chemicals. This research involves the isolation of LNC from date palm waste using a green hydrolysis process and its subsequent characterization. The potential of using ionic liquids (ILs) as green solvents to isolate LNC has not yet been explored. Our findings suggest that 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) can hydrolyze partially delignified and unbleached lignocellulose, achieving LNC synthesis. The obtained LNC showed a higher yield than its NC counterpart and exhibited rod-shaped fibers with nanoscale diameters and micrometer lengths, indicating a high aspect ratio. Dynamic Light Scattering (DLS) results indicate average particle sizes of 143.20 nm for NC and 282.30 nm for LNC, with a narrow particle size distribution conforming their monodisperse behavior. Thermogravimetric analysis and differential scanning calorimetry revealed high thermal stability (initial degradation temperature = 222.50 °C and glass transition temperature = 84.45°C) of LNC. Moreover, the obtained LNC fibers were crystalline (crystallinity index = 52.76 %). Their activation energy (124.95 kJ/mol) was determined using the Coats-Redfern method by employing eight solid-state diffusion models. Overall, this study motivates the use of ILs as green solvents to produce lignocellulose derivatives that are suitable for various applications.


Subject(s)
Cellulose , Green Chemistry Technology , Lignin , Phoeniceae , Solvents , Lignin/chemistry , Solvents/chemistry , Cellulose/chemistry , Green Chemistry Technology/methods , Phoeniceae/chemistry , Hydrolysis , Ionic Liquids/chemistry , Thermogravimetry , Waste Products , Temperature , Particle Size
10.
Plant Foods Hum Nutr ; 79(2): 518-525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38478328

ABSTRACT

Plant polyphenols are nutraceutical components with relevant biological effects on human health. They act against development of several diseases including cancer. In this study, the methanolic extracts of four date palm Phoenix dactylifera leaves (Deglet Noor (DN), Barhee (B), Khalas (KS) and Khunezi (KZ)) collected from south Tunisia were preliminary analyzed for their effects against U87 (human glioblastoma) and MDA-MB-231 (human breast cancer) cell line development. Results showed that Barhee extract (30 µg/mL) was the most efficient to reduce the growth of both tumor cells to about 40% (p < 0.05) without inducing cytotoxicity. Significantly, KS, KZ, DN and B extracts (30 µg/mL) decreased MDA-MB-231 and U87 cell adhesion towards fibrinogen and fibronectin. Using integrin blocking antibodies, leaf extracts competitively decreased human glioblastoma cell attachment to immobilized antibodies by interfering to αvß3 and α5ß1 integrin receptors. At the same concentration, extracts decreased MDA-MB-23 and U87 cell migration performed with wound healing assay. Particularly, Barhee and Deglet Noor leaf extracts (30 µg/mL) significantly reduced U87 cell invasion by 52.92% (p < 0.01) and 74.56% (p < 0.01), respectively. Collegially, our findings revealed beneficial proprieties of four varieties of date palm leaf especially those displayed by DN and B extracts that may serve as active candidates against human glioblastoma and breast cancer progression.


Subject(s)
Antineoplastic Agents, Phytogenic , Cell Adhesion , Cell Movement , Glioblastoma , Phoeniceae , Plant Extracts , Plant Leaves , Humans , Phoeniceae/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Cell Line, Tumor , Glioblastoma/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Cell Adhesion/drug effects , Cell Movement/drug effects , Breast Neoplasms/drug therapy , Tunisia , Polyphenols/pharmacology , Polyphenols/analysis
11.
Plant Foods Hum Nutr ; 79(2): 337-343, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358640

ABSTRACT

Although Phoenix dactylifera dates are traditionally consumed for their health benefits, no research has been done on the vascular response in hypertensive animals. This study evaluated the vascular relaxation of hydroalcoholic extracts from seeds of three varieties of P. dactylifera; Sukkari seed (SS), Ajwa seed (AS), and Mabroom seed (MS) on L-NAME-induced hypertension and spontaneously hypertensive rats (SHR). Results showed that all extracts (10 µg/mL) caused relaxations higher than 60% in the aortic rings precontracted with 10- 6 M phenylephrine in normotensive rats, the SS extract was the most potent. Endothelial nitric oxide (NO) pathway is involved as significantly reduced vascular relaxation in denuded-endothelium rat aorta and with an inhibitor (10- 4 M L-Nω-Nitro arginine methyl ester; L-NAME) of endothelial nitric oxide synthase (eNOS). Confocal microscopy confirmed that 10 µg/mL SS extract increases NO generation as detected by DAF-FM fluorescence in intact aortic rings. Consistent with these findings, vascular relaxation in intact aortic rings at 10 µg/mL SS extract was significantly decreased in L-NAME-induced hypertensive rats (endothelial dysfunction model), but not in SHR. In both hypertensive models, the denuded endothelium blunted the vascular relaxation. In conclusion, the hydroalcoholic extract of the seed of P. dactylifera (Sukkari, Ajwa and Mabroom varieties) presents a potent endothelium-dependent vascular relaxation, via NO, in normotensive rats as well as in two different models of hypertension. This effect could be mediated by the presence of phenolic compounds identified by UHPLC-ESI-MS/MS, such as protocatechuic acid, and caftaric acid.


Subject(s)
Hypertension , NG-Nitroarginine Methyl Ester , Nitric Oxide , Phoeniceae , Plant Extracts , Rats, Inbred SHR , Seeds , Animals , Seeds/chemistry , Phoeniceae/chemistry , Plant Extracts/pharmacology , Hypertension/drug therapy , Hypertension/chemically induced , Male , Nitric Oxide/metabolism , Rats , NG-Nitroarginine Methyl Ester/pharmacology , Endothelium, Vascular/drug effects , Nitric Oxide Synthase Type III/metabolism , Vasodilation/drug effects , Aorta/drug effects , Antihypertensive Agents/pharmacology
12.
Sci Rep ; 13(1): 20688, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001227

ABSTRACT

This study examined the amino acid sequence of the VIRESCENS gene (VIR), which regulates the production of anthocyanin in 12 cultivars of the date palm (Phoenix dactylifera L.), grown in Al-Madinah Al-Munawarah of the Kingdom of Saudi Arabia. The gene products were amplified via polymerase chain reactions, amplifying both exons and introns. The products were sequenced for the reconstruction of a phylogenetic tree, which used the associated amino acid sequences. The ripening stages of Khalal, Rutab, and Tamar varied among the cultivars. Regarding VIR genotype, the red date had the wild-type gene (VIR+), while the yellow date carried a dominant mutation (VIRIM), i.e., long terminal repeat retrotransposons (LTR-RTs). The DNA sequence of VIRIM revealed that the insertion length of the LTR-RTs ranged between 386 and 476 bp. The R2 and R3 motifs in both VIR+ and VIRIM were conserved. The C-terminus motifs S6A, S6B, and S6C were found in the VIR+ protein sequence. However, the amino acids at positions 123, 161, 166, and 168 differed between VIR+ and VIRIM, and were not included in the C-terminus motifs. Within the VIR+ allele, the lysine at position 187 in the C-terminus was located immediately after S6B, with a protein binding score of 0.3, which was unique to the dark, red-fruited cultivars Ajwah, Anbarah, and Safawi. In the lighter, red-fruited cultivars, the presence of glutamic acid at the same position suggested that the anthocyanin regulation of date palm might be outside the R2 and R3 domains in the N-terminus.


Subject(s)
Phoeniceae , Phoeniceae/chemistry , Amino Acid Sequence , Anthocyanins/genetics , Anthocyanins/metabolism , Phylogeny , Polymerase Chain Reaction
13.
Biomolecules ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37892156

ABSTRACT

We evaluated the therapeutic potentials of Khudari fruit pulp, a functional food and cultivar of Phoenix dactylifera, against neurological disorders. Our results demonstrate a good amount of phytochemicals (total phenolic content: 17.77 ± 8.21 µg GA/mg extract) with a high antioxidant potential of aqueous extract (DPPH assay IC50 = 235.84 ± 11.65 µg/mL) and FRAP value: 331.81 ± 4.56 µmol. Furthermore, the aqueous extract showed the marked inhibition of cell-free acetylcholinesterase (electric eel) with an IC50 value of 48.25 ± 2.04 µg/mL, and an enzyme inhibition kinetics study revealed that it exhibits mixed inhibition. Thereafter, we listed the 18 best-matched phytochemical compounds present in aqueous extract through LC/MS analysis. The computational study revealed that five out of eighteen predicted compounds can cross the BBB and exert considerable aqueous solubility. where 2-{5-[(1E)-3-methylbuta-1,3-dien-1-yl]-1H-indol-3-yl}ethanol (MDIE) indicates an acceptable LD50. value. A molecular docking study exhibited that the compounds occupied the key residues of acetylcholinesterase with ΔG range between -6.91 and -9.49 kcal/mol, where MDIE has ∆G: -8.67 kcal/mol, which was better than that of tacrine, ∆G: -8.25 kcal/mol. Molecular dynamics analyses of 100 ns supported the stability of the protein-ligand complexes analyzed through RMSD, RMSF, Rg, and SASA parameters. TRP_84 and GLY_442 are the most critical hydrophobic contacts for the complex, although GLU_199 is important for H-bonds. Prime/MM-GBSA showed that the protein-ligand complex formed a stable confirmation. These findings suggest that the aqueous extract of Khudari fruit pulp has significant antioxidant and acetylcholinesterase inhibition potentials, and its compound, MDIE, forms stably with confirmation with the target protein, though this fruit of Khudari dates can be a better functional food for the treatment of Alzheimer's disease. Further investigations are needed to fully understand the therapeutic role of this plant-based compound via in vivo study.


Subject(s)
Cholinesterases , Phoeniceae , Antioxidants/pharmacology , Antioxidants/chemistry , Acetylcholinesterase/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phoeniceae/chemistry , Phoeniceae/metabolism , Chromatography, Liquid , Molecular Docking Simulation , Ligands , Tandem Mass Spectrometry , Phytochemicals
14.
Photodiagnosis Photodyn Ther ; 44: 103792, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689125

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) represents a barrier to PDT efficacy among melanoma patients. The aim of this study is to employ a novel muti-tactic TME-remodeling strategy via repolarization of tumor-associated macrophages (TAMs), the main TME immune cells in melanoma, from the pro-tumor M2 into the antitumor M1 phenotype using Phoenix dactylifera L. (date palm) in combination with PDT. METHODS: Screening of different date cultivars was employed to choose extracts of selective toxicity to melanoma and TAMs, not normal macrophages. Potential extracts were then fractionated and characterized by gas chromatography-mass spectrometry (GC-MS). Finally, the efficacy and the potential molecular mechanism of the co-treatment were portrayed via quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS: Initial screening resulted in the selection of the two Phoenix dactylifera L. cultivars Safawi and Sukkari methanolic extracts. Sukkari showed superior capacity to revert TAM phenotype into M1 as well as more prominent upregulation of M1 markers and repression of melanoma immunosuppressive markers relative to positive control (resiquimod). Molecularly, it was shown that PDT of melanoma cells in the presence of the secretome of repolarized TAMs surpassed the monotherapy via the modulation of the H19/iNOS/PD-L1immune-regulatory axis. CONCLUSION: This study highlights the potential utilization of nutraceuticals in combination with PDT in the treatment of melanoma to provide a dual activity through alleviating the immune suppressive TME and potentiating the anti-tumor responses.


Subject(s)
Melanoma , Phoeniceae , Photochemotherapy , Humans , Melanoma/drug therapy , Melanoma/pathology , Tumor-Associated Macrophages/pathology , Phoeniceae/chemistry , B7-H1 Antigen/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Tumor Microenvironment
15.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445591

ABSTRACT

Traditional medicine claims that various components of the Phoenix dactylifera (date plant) can be used to treat memory loss, fever, inflammation, loss of consciousness, and nerve disorders. The present study aims to evaluate the effectiveness of Phoenix dactylifera fruit extracts (PDF) against rat sickness behaviour caused by lipopolysaccharide (LPS) by assessing behavioural and biochemical parameters. PDF was prepared by extracting dry fruits of P. dactylifera with a methanol:water (4:1, v/v) mixture. The PDF was evaluated for phenolic and flavonoid content and HPLC analysis of quercetin estimation. Adult Wistar rats were treated with LPS, PDF + LPS and dexamethasone + LPS. Water and food intake, behavioural tests such as locomotor activity, tail suspension and forced swim tests were conducted. Furthermore, alanine transaminase (ALT) and aspartate transaminase (AST) were estimated in plasma and malondialdehyde (MDA), reduced glutathione (GSH), nitrite, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were estimated in the brain. PDF ameliorated LPS-induced sickness behaviour by reducing MDA, nitrite, IL-6, and TNF-α levels and improving GSH, behavioural alteration, water and food intake in the treated rats. In the plasma of the treated rats, PDF also decreased the levels of ALT and AST. The outcomes demonstrated the efficacy of PDF in reducing the sickness behaviour caused by LPS in rats. The authors believe that this study will provide the groundwork for future research to better understand the underlying mechanisms of action and therapeutic efficacy.


Subject(s)
Antioxidants , Phoeniceae , Rats , Animals , Antioxidants/pharmacology , Lipopolysaccharides/toxicity , Cytokines , Phoeniceae/chemistry , Rats, Wistar , Illness Behavior , Interleukin-6 , Tumor Necrosis Factor-alpha , Nitrites , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Oxidative Stress , Brain
16.
Int J Biol Macromol ; 242(Pt 3): 124995, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37236559

ABSTRACT

The widespread use of antibiotics has contributed to the control of disease and the nutritional well-being of livestock. Antibiotics reach the environment via excretions (urine and feces) from human and domestic animals, through non proper disposal or handling of unused drugs. The present study describes a green method for the synthesis of silver nanoparticle (AgNPs) using cellulose extracted from Phoenix dactylifera seed powder via mechanical stirrer method for the electroanalytical determination of ornidazole (ODZ) in milk and water samples. The cellulose extract is used as the reducing and stabilizer agent for the synthesis of AgNPs. The obtained AgNPs were characterized by UV-Vis, SEM and EDX, presenting a spherical shape and an average size of 48.6 nm. The electrochemical sensor (AgNPs/CPE) was fabricated by dipping a carbon paste electrode (CPE) in the AgNPs colloidal solution. The sensor shows acceptable linearity with ODZ concentration in the linear range from 1.0 × 10-5 to 1.0 × 10-3 M with a limit of detection (LOD =3S/P) and quantification (LOQ =10S/P) of 7.58 × 10-7 M and 2.08 × 10-6 M respectively.


Subject(s)
Metal Nanoparticles , Ornidazole , Phoeniceae , Animals , Humans , Metal Nanoparticles/chemistry , Phoeniceae/chemistry , Silver/chemistry , Milk/chemistry , Anti-Bacterial Agents/analysis , Electrodes , Water , Plant Extracts/chemistry
17.
Pharm Biol ; 61(1): 657-665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37092359

ABSTRACT

CONTEXT: Date palm waste is an agricultural waste that accumulates in massive amounts causing serious pollution and environmental problems. OBJECTIVES: Date palm trees, Phoenix dactylifera Linn CV 'Zaghloul' (Arecaceae) grown in Egypt, leave behind waste products that were investigated to produce compounds with anti-Helicobacter pylori and anti-inflammatory activities. MATERIALS AND METHODS: Chromatographic workup of P. dactylifera aqueous methanol extract derived from fibrous mesh and fruit bunch (without fruit) afforded a new sesquiterpene lactone derivative, phodactolide A (1), along with ten known compounds (2-11), primarily identified as polyphenols. Chemical structures were unambiguously elucidated based on mass and 1D/2D NMR spectroscopy. All isolated compounds were assessed for their activities against H. pylori using broth micro-well dilution method and clarithromycin as a positive control. The anti-inflammatory response of isolated compounds was evaluated by inhibiting cyclooxygenase-2 enzyme using TMPD Assay followed by an in silico study to validate their mechanism of action using celecoxib as a standard drug. RESULTS: Compounds 4, 6 and 8-10 exhibited potent anti-H. pylori activity with MIC values ranging from 0.48 to 1.95 µg/mL that were comparable to or more potent than clarithromycin. For COX-2 inhibitory assay, 4, 7 and 8 revealed promising activities with IC50 values of 1.04, 0.65 and 0.45 µg/mL, respectively. These results were verified by molecular docking studies, where 4, 7 and 8 showed the best interactions with key amino acid residues of COX-2 active site. CONCLUSION: The present study characterizes a new sesquiterpene lactone and recommends 4 and 8 for future in vivo studies as plausible anti-ulcer remedies.


Subject(s)
Helicobacter pylori , Phoeniceae , Sesquiterpenes , Phoeniceae/chemistry , Molecular Docking Simulation , Clarithromycin , Anti-Inflammatory Agents/pharmacology , Sesquiterpenes/pharmacology
18.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834805

ABSTRACT

The Ajwa date (Phoenix dactylifera L., Arecaceae family) is a popular edible fruit consumed all over the world. The profiling of the polyphenolic compounds of optimized unripe Ajwa date pulp (URADP) extracts is scarce. The aim of this study was to extract polyphenols from URADP as effectively as possible by using response surface methodology (RSM). A central composite design (CCD) was used to optimize the extraction conditions with respect to ethanol concentration, extraction time, and temperature and to achieve the maximum amount of polyphenolic compounds. High-resolution mass spectrometry was used to identify the URADP's polyphenolic compounds. The DPPH-, ABTS-radical scavenging, α-glucosidase, elastase and tyrosinase enzyme inhibition of optimized extracts of URADP was also evaluated. According to RSM, the highest amounts of TPC (24.25 ± 1.02 mgGAE/g) and TFC (23.98 ± 0.65 mgCAE/g) were obtained at 52% ethanol, 81 min time, and 63 °C. Seventy (70) secondary metabolites, including phenolic, flavonoids, fatty acids, and sugar, were discovered using high-resolution mass spectrometry. In addition, twelve (12) new phytoconstituents were identified for the first time in this plant. Optimized URADP extract showed inhibition of DPPH-radical (IC50 = 87.56 mg/mL), ABTS-radical (IC50 = 172.36 mg/mL), α-glucosidase (IC50 = 221.59 mg/mL), elastase (IC50 = 372.25 mg/mL) and tyrosinase (IC50 = 59.53 mg/mL) enzymes. The results revealed a significant amount of phytoconstituents, making it an excellent contender for the pharmaceutical and food industries.


Subject(s)
Antioxidants , Phoeniceae , Antioxidants/pharmacology , Monophenol Monooxygenase/metabolism , alpha-Glucosidases/metabolism , Phoeniceae/chemistry , Pancreatic Elastase/metabolism , Plant Extracts/pharmacology
19.
Int J Biol Macromol ; 235: 123804, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36842736

ABSTRACT

The liver is the most important organ in the body. Hepatocyte oxidative damage occurs to excess ROS. Liver fibrosis is a mechanism that the immune system uses to treat extreme inflammation by repairing damaged tissue with the creation of a scar. The outcome of fibrosis may be reversed by consuming natural plant extracts with high ROS-scavenging ability. The date palm fruits contain caffeic acid, gallic acid, syringic acid, and ferulic acid, which have anti-inflammatory, antioxidant, and hepatoprotective properties. This study aimed to prepare a date fruit extract, load it onto chitosan nanoparticles, and compare its anti-fibrotic activity with the unloaded crude extract in the CCl4-mouse model. Our findings show that nanocomposite (Cs@FA/DEx) has anti-fibrotic properties and can improve liver function enzymes and endogenous antioxidant enzymes by inhibiting cell apoptosis caused by CCl4-induction in mice. Furthermore, significantly reduced CD95 and ICAM1 levels and down-regulation of TGFß-1 and collagen-α-1 expression demonstrated the anti-fibrotic effects of the Cs@FA/DEx. Therefore, the Cs@FA/DEx might be an innovative supplement for inhibiting liver fibrosis and hepatocyte inflammation induced by chemical toxins. Besides, this nano-supplement could be a promising anti-hepatocellular carcinoma agent as it has potent in vitro anticancer activity against the HePG2 cell line.


Subject(s)
Chitosan , Liver Diseases , Nanoparticles , Phoeniceae , Mice , Animals , Phoeniceae/chemistry , Chitosan/pharmacology , Chitosan/metabolism , Reactive Oxygen Species/metabolism , Plant Extracts/chemistry , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver , Antioxidants/chemistry , Liver Diseases/metabolism , Disease Models, Animal , Inflammation/pathology , Carbon Tetrachloride/toxicity
20.
Biomed Res Int ; 2023: 1725638, 2023.
Article in English | MEDLINE | ID: mdl-36654869

ABSTRACT

Phoenix dactylifera is known for medicinal importance due to its antioxidant, antidiabetic, antidepressant, and anti-inflammatory properties. This study is aimed at evaluating the effect of P. dactylifera seeds to cure Alzheimer's disease (AD). AD was induced in the rats with streptozotocin + aluminium chloride followed by treatment of methanolic extract of P. dactylifera seeds. The blood glucose levels were determined at regular intervals, which showed a prominent decrease in the extracts treated group. Behavior tests, including the Elevated Plus Maze (EPM) test and Morris Water Maze (MWM) test, were used to evaluate memory patterns in rats. The results indicated that extract-treated rats significantly improved memory behavior compared to the diseased group. After dissection, the serum electrolytes, antioxidant enzymes, and choline esterase enzymes were measured in different organs. The serum parameters creatinine, urea, and bilirubin increased after extract treatment. Similarly, the level of antioxidant enzymes like peroxidases (POD), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS) in the extract-treated group showed improved results that were close to the normal control group. The enzyme (lipase, insulin, amylase, and acetylcholine) levels were found enhanced in extract groups as compared to diseased rats. High-performance liquid chromatography (HPLC) was used to determine the level of dopamine and serotonin neurotransmitters, which were increased significantly for P. dactylifera seeds with values of 0.18 µg/mg tissue and 0.56 µg/mg tissue, respectively. Overall, results showed that P. dactylifera seeds proved to be quite efficient in improving the memory and behavior of treated rats. The antioxidants and enzymes were also increased; therefore, it may be a potential candidate for treating AD.


Subject(s)
Alzheimer Disease , Phoeniceae , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Phoeniceae/chemistry , Streptozocin/pharmacology , Aluminum Chloride/pharmacology , Rats, Wistar , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glutathione/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...