Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Braz J Microbiol ; 55(1): 1023-1028, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38200375

ABSTRACT

The mechanism of colonisation of the chicken intestine by Salmonella remains poorly understood, while the severity of infections vary enormously depending on the serovar and the age of the bird. Several metabolism and virulence genes have been identified in Salmonella Heidelberg; however, information on their roles in infection, particularly in the chicken infection model, remains scarce. In the present publication, we investigated three Salmonella Heidelberg mutants containing deletions in misL, ssa, and pta-ackA genes by using signature-tagged mutagenesis. We found that mutations in these genes of S. Heidelberg result in an increase in fitness in the chicken model. The exception was perhaps the pta-ackA mutant where colonisation was slightly reduced (2, 7, 14, and 21 days post-infection) although some birds were still excreting at the end of the experiment. Our results suggest that for intestinal colonisation of the chicken caecum, substrate-level phosphorylation is likely to be more important than the MisL outer membrane protein or even the secretion system apparatus. These findings validate previous work that demonstrated the contribution of ackA and pta mutants to virulence in chickens, suggesting that the anaerobic metabolism genes such as pta-ackA could be a promising mitigation strategy to reduce S. Heidelberg virulence.


Subject(s)
Chickens , Salmonella Infections, Animal , Animals , Phosphorylation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phosphate Acetyltransferase/genetics , Phosphate Acetyltransferase/metabolism , Anaerobiosis , Virulence , Salmonella , Salmonella Infections, Animal/microbiology
2.
Microbiology (Reading) ; 160(Pt 12): 2794-2806, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25294105

ABSTRACT

Phytoplasmas ('Candidatus Phytoplasma') are insect-vectored plant pathogens. The genomes of these bacteria are small with limited metabolic capacities making them dependent on their plant and insect hosts for survival. In contrast to mycoplasmas and other relatives in the class Mollicutes, phytoplasmas encode genes for malate transporters and malic enzyme (ME) for conversion of malate into pyruvate. It was hypothesized that malate is probably a major energy source for phytoplasmas as these bacteria are limited in the uptake and processing of carbohydrates. In this study, we investigated the metabolic capabilities of 'Candidatus (Ca.) phytoplasma' aster yellows witches'-broom (AYWB) malic enzyme (ME). We found that AYWB-ME has malate oxidative decarboxylation activity, being able to convert malate to pyruvate and CO2 with the reduction of either NAD or NADP, and displays distinctive kinetic mechanisms depending on the relative concentration of the substrates. AYWB-ME activity was strictly modulated by the ATP/ADP ratio, a feature which has not been found in other ME isoforms characterized to date. In addition, we found that the 'Ca. Phytoplasma' AYWB PduL-like enzyme (AYWB-PduL) harbours phosphotransacetylase activity, being able to convert acetyl-CoA to acetyl phosphate downstream of pyruvate. ATP also inhibited AYWB-PduL activity, as with AYWB-ME, and the product of the reaction catalysed by AYWB-PduL, acetyl phosphate, stimulated AYWB-ME activity. Overall, our data indicate that AYWB-ME and AYWB-PduL activities are finely coordinated by common metabolic signals, like ATP/ADP ratios and acetyl phosphate, which support their participation in energy (ATP) and reducing power [NAD(P)H] generation from malate in phytoplasmas.


Subject(s)
Energy Metabolism , Gene Expression Regulation, Enzymologic , Malate Dehydrogenase/metabolism , Malates/metabolism , Phosphate Acetyltransferase/metabolism , Phytoplasma/enzymology , Phytoplasma/metabolism , Acetyl Coenzyme A/metabolism , Carbon Dioxide/metabolism , Gene Expression Regulation, Bacterial , NAD/metabolism , NADP/metabolism , Phytoplasma/genetics , Pyruvic Acid/metabolism
3.
Appl Biochem Biotechnol ; 166(3): 680-99, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22127808

ABSTRACT

Glycerol has become an ideal feedstock for producing fuels and chemicals. Here, five technological schemes for optically pure D: -lactic acid production from raw glycerol were designed, simulated, and economically assessed based on five fermentative scenarios using engineered Escherichia coli strains. Fermentative scenarios considered different qualities of glycerol (pure, 98 wt.%, and crude, 85 wt.%) with concentrations ranging from 20 to 60 g/l in the fermentation media, and two fermentation stages were also analyzed. Raw glycerol (60 wt.%) was considered as the feedstock feeding the production process in all cases; then a purification process of raw glycerol up to the required quality was required. Simulation processes were carried out using Aspen Plus, while economic assessments were performed using Aspen Icarus Process Evaluator. D: -Lactic acid recovery and purification processes were based on reactive extraction with tri-n-octylamine using dichloromethane as active extractant agent. The use of raw glycerol represents only between 2.4% and 7.8% of the total production costs. Also, the total production costs obtained of D: -lactic acid in all cases were lower than its sale price indicating that these processes are potentially profitable. Thus, the best configuration process requires the use of crude glycerol diluted at 40 g/l with total glycerol consumption and with D: -lactic acid recovering by reactive extraction. The lowest obtained total production cost was 1.015 US$/kg with a sale price/production cost ratio of 1.53.


Subject(s)
Escherichia coli/genetics , Genetic Engineering/methods , Glycerol/metabolism , Lactic Acid/biosynthesis , Acetyltransferases/genetics , Acetyltransferases/metabolism , Amines/chemistry , Computer Simulation , Costs and Cost Analysis , Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation , Genetic Engineering/economics , Industrial Microbiology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Methylene Chloride/chemistry , Mutation , Phosphate Acetyltransferase/genetics , Phosphate Acetyltransferase/metabolism , Research Design , Stereoisomerism , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism
4.
J Microbiol ; 48(5): 629-36, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21046341

ABSTRACT

The Escherichia coli genes pta and eutD encode proteins containing the phosphate-acetyltransferase domain. EutD is composed only by this domain and belongs to the ethanolamine operon. This enzyme has not been characterized yet, and its relationship to the multimodular E. coli phosphotransacetylase (Pta) remains unclear. In the present work, a detailed characterization of EutD from E. coli (EcEutD) was performed. The enzyme is a more efficient phosphotransacetylase than E. coli Pta (EcPta) in catalyzing its reaction in either direction and assembles as a dimer, being differentially modulated by EcPta effectors. When comparing EutD and Pta, both from E. coli, certain divergent regions of the primary structure responsible for their unique properties can be found. The growth on acetate of the E. coli pta acs double-mutant strain, was complemented by either introducing EcEutD or by inducing the eut operon with ethanolamine. In this case, the expression of a phosphotransacetylase different from Pta was confirmed by activity assays. Overall, the results indicate that EcEutD and Pta, although able to catalyse the same reaction, display differential efficiency and regulation, and also differ in the induction of their expression. However, under certain growth conditions, they can fulfil equal roles in E. coli metabolism.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Ethanolamine/metabolism , Phosphate Acetyltransferase/metabolism , Acetates/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Gene Knockout Techniques , Genetic Complementation Test , Metabolic Networks and Pathways , Models, Biological , Operon , Phosphate Acetyltransferase/genetics , Protein Multimerization
5.
FEBS J ; 277(8): 1957-66, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20236319

ABSTRACT

Escherichia coli phosphotransacetylase (Pta) catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. Both compounds are critical in E. coli metabolism, and acetyl phosphate is also involved in the regulation of certain signal transduction pathways. Along with acetate kinase, Pta plays an important role in acetate production when E. coli grows on rich medium; alternatively, it is involved in acetate utilization at high acetate concentrations. E. coli Pta is composed of three different domains, but only the C-terminal one, called PTA_PTB, is specific for all Ptas. In the present work, the characterization of E. coli Pta and deletions from the N-terminal region were performed. E. coli Pta acetyl phosphate-forming and acetyl phosphate-consuming reactions display different maximum activities, and are differentially regulated by pyruvate and phosphoenolpyruvate. These compounds activate acetyl phosphate production, but inhibit acetyl-CoA production, thus playing a critical role in defining the rates of the two Pta reactions. The characterization of three truncated Ptas, which all display Pta activity, indicates that the substrate-binding site is located at the C-terminal PTA_PTB domain. However, the N-terminal P-loop NTPase domain is involved in expression of the maximal catalytic activity, stabilization of the hexameric native state, and Pta activity regulation by NADH, ATP, phosphoenolpyruvate, and pyruvate. The truncated protein Pta-F3 was able to complement the growth on acetate of an E. coli mutant defective in acetyl-CoA synthetase and Pta, indicating that, although not regulated by metabolites, the Pta C-terminal domain is active in vivo.


Subject(s)
Acetate Kinase/metabolism , Acetyl Coenzyme A/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Organophosphates/metabolism , Phosphate Acetyltransferase/metabolism , Catalysis , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Kinetics , Models, Biological , Phosphate Acetyltransferase/genetics , Protein Structure, Tertiary/genetics , Recombinant Proteins/metabolism , Signal Transduction/genetics
6.
Int Microbiol ; 6(2): 127-9, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12827525

ABSTRACT

Molecular analysis of a genomic region of Bacillus megaterium, a polyhydroxybutyrate (PHB)-producing microorganism, revealed the presence of a gene coding for the enzyme phosphotransbutyrylase (Ptb). Enzyme activity was measured throughout the different growth phases of B. megaterium and was found to correlate with PHB accumulation during the late-exponential growth phase. Ptb expression was repressed by glucose and activated by the branched amino acids isoleucine and valine. Overexpression of Act(Bm), a sigma(54) regulator from B. megaterium whose gene is located upstream from ptb, caused an increase in Ptb activity and PHB accumulation in B. megaterium.


Subject(s)
Bacillus megaterium/metabolism , DNA-Binding Proteins , Hydroxybutyrates/metabolism , Phosphate Acetyltransferase/metabolism , Polyesters/metabolism , Amino Acids, Branched-Chain/pharmacology , Bacillus megaterium/drug effects , Bacillus megaterium/genetics , Bacillus megaterium/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbohydrates/pharmacology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Genes, Bacterial , Kinetics , Phosphate Acetyltransferase/genetics , RNA Polymerase Sigma 54 , Sigma Factor/genetics , Sigma Factor/metabolism
7.
Curr Microbiol ; 42(5): 345-9, 2001 May.
Article in English | MEDLINE | ID: mdl-11400055

ABSTRACT

The molecular analysis of a genomic region of B. megaterium revealed the presence of a gene coding for the enzyme phosphotransbutyrylase (Ptb). The enzyme activity was measured throughout the different phases of growth in B. megaterium, and its activity was found to be maximal in the late exponential growth phase. The branched amino acids isoleucine and valine activated Ptb expression. PtbBm was capable of using butyryl-CoA and 2-methyl-propionyl CoA as substrates. ActBm, a final sigma54 regulator from B. megaterium whose gene is situated upstream from the ptb gene, activated its expression.


Subject(s)
Bacillus megaterium/enzymology , Bacillus megaterium/growth & development , DNA-Binding Proteins , Gene Expression Regulation, Bacterial , Phosphate Acetyltransferase/genetics , Phosphate Acetyltransferase/metabolism , Amino Acids, Branched-Chain/pharmacology , Bacillus megaterium/genetics , Culture Media/chemistry , DNA-Directed RNA Polymerases/metabolism , Kinetics , RNA Polymerase Sigma 54 , Sigma Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL