Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.561
Filter
1.
Methods Mol Biol ; 2855: 155-169, 2025.
Article in English | MEDLINE | ID: mdl-39354307

ABSTRACT

Oxidized phospholipids (oxPLs) are generated during innate immunity and inflammation, where they play a variety of biological roles, including regulation of autoimmunity and coagulation. Some are generated by enzymatic reactions, leading to stereo- and regiospecificity, while many others can be formed through nonenzymatic oxidation and truncation and can be used as biomarkers of oxidative stress. Mass spectrometry methods have been developed over many years for oxPL analysis, which can provide robust estimations of molecular species and amounts, where standards are available. Here we present a method used for the analysis of enzymatically-generated oxPL (eoxPL), which allows quantification of mono-hydroxy oxylipin-containing species. We also show profiling of many other partially characterized structures in tissue samples and provide typical chromatograms obtained.


Subject(s)
Mass Spectrometry , Oxidation-Reduction , Phospholipids , Phospholipids/analysis , Phospholipids/metabolism , Phospholipids/chemistry , Mass Spectrometry/methods , Animals , Oxidative Stress , Humans , Oxylipins/analysis , Oxylipins/metabolism , Oxylipins/chemistry , Biomarkers/analysis
2.
Antonie Van Leeuwenhoek ; 118(1): 13, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352515

ABSTRACT

An aerobic, Gram-stain negative bacterium was isolated from sediment samples of Barkol salt lake in Hami City, Xinjiang Uygur Autonomous Region, China, with the number EGI_FJ10229T. The strain is ellipse-shaped, oxidase-negative, catalase-positive, and has white, round, smooth, opaque colonies on marine 2216 E agar plate. Growth occurs at 4.0-37.0 â„ƒ (optimal:30.0 â„ƒ), pH 7.0-9.0 (optimal: pH 8.0) and NaCl concentration of 0-8.0% (optimal: 3.0%). Phylogenetic analysis based on 16S rRNA gene and genome sequences indicated that the isolated strain should be assigned to the genus Aquibaculum and was most closely related to Aquibaculum arenosum CAU 1616 T. Average nucleotide identity (ANI) and Average amino-acid identity (AAI) values between the type species of the genus Aquibaculum and other related type species were lower than the threshold values recommended for bacterial species. The genomic DNA G + C content of EGI_FJ10229T was 65.41%. The major polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, phosphatidylethanolamine and unidentified phospholipid. The major fatty acids (> 5%) were C19:0 cyclo ω8c (42.0%) and C18:1 ω7c (33.78%). The respiratory quinone identified was Q-10. Differential phenotypic and genotypic characteristics of this strain and species of genus Aquibaculum showed that the strain should be classified as representing a new species belonging to this genus, for which the name Aquibaculum sediminis sp. nov. is proposed. The type strain of the proposed novel species is EGI_FJ10229T (= KCTC 8570 T = GDMCC 1.4598 T).


Subject(s)
Base Composition , DNA, Bacterial , Geologic Sediments , Lakes , Phylogeny , RNA, Ribosomal, 16S , Geologic Sediments/microbiology , Lakes/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Bacterial Typing Techniques , Fatty Acids/analysis , Sodium Chloride/metabolism , Phospholipids/analysis , Sequence Analysis, DNA
3.
Curr Microbiol ; 81(11): 385, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356301

ABSTRACT

A purple colony, designated as TRC1.1.SA was isolated from a tea garden soil sample. It was a Gram-negative, rod-shaped, non-spore-forming and motile bacterium. The strain TRC1.1.SAT grew aerobically at temperatures 15-37 â„ƒ and pH levels 5.0-9.0. It showed both oxidase and catalase activity. The 16S rRNA gene sequence blast analysis revealed identity with the members of the genus Chromobacterium. The maximum identity was with the type strains of species Chromobacterium piscinae CCM 3329T (99.8%), C. vaccinii MWU205T (99.7%), and C. violaceum ATCC 12472T (98.7%). However, the average nucleotide identity (ANI) of the genome sequence showed less than 96% similarity with all species of the genus Chromobacterium. Further, digital DNA-DNA hybridization (dDDH) revealed the highest identity of 63.4% with its phylogenetic relative C. piscinae CCM 3329T. The G + C content of the strain was 63.9%. The major polar lipids identified were phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), and phosphoglyceraldehyde (PG). Fatty acid analysis showed C16:0, C16:1ω7c, C17:0 cyclo, and C18:1ω7c as the major fatty acids. RAST and antiSMASH analyses of the genome revealed the presence of a biosynthetic gene cluster (BGC) involved in the production of violacein pigment, as observed for type species C. violaceum ATCC 12472T. Considering the phenotypic differences and genomic identity, strain TRC1.1.SAT is assigned as a novel species of the genus Chromobacterium, for which the name Chromobacterium indicum is proposed. The type strain of prospective species is designated as TRC1.1.SAT (= MTCC 13391T; JCM 36723T; = KCTC 8324T).


Subject(s)
Bacterial Typing Techniques , Base Composition , Chromobacterium , DNA, Bacterial , Fatty Acids , Phylogeny , Pigments, Biological , RNA, Ribosomal, 16S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Chromobacterium/genetics , Chromobacterium/classification , Chromobacterium/isolation & purification , Chromobacterium/metabolism , DNA, Bacterial/genetics , Pigments, Biological/biosynthesis , Pigments, Biological/metabolism , Nucleic Acid Hybridization , Sequence Analysis, DNA , Genome, Bacterial , Phospholipids/analysis
4.
Article in English | MEDLINE | ID: mdl-39230938

ABSTRACT

Three Gram-stain-negative, aerobic, non-motile, chemoheterotrophic, short-rod-shaped bacteria, designated CDY1-MB1T, CDY2-MB3, and BDY3-MB2, were isolated from three marine sediment samples collected in the eastern Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains were related to the genus Aequorivita and close to the type strain of Aequorivita vitellina F4716T (with similarities of 98.0-98.1%). Strain CDY1-MB1T can grow at 15-37 °C (optimum 30 °C) and in media with pH 6-9 (optimum, pH 7), and tolerate up to 10% (w/v) NaCl. The predominant cellular fatty acids of strain CDY1-MB1T were iso-C15 : 0 (20.7%) and iso-C17 : 0 3-OH (12.8%); the sole respiratory quinone was menaquinone 6; the major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and two unidentified polar lipids. The digital DNA-DNA hybridization/average nucleotide identity values between strains CDY1-MB1T, CDY2-MB3, and BDY3-MB2 and A. vitellina F4716T were 24.7%/81.6-81.7%, thereby indicating that strain CDY1-MB1T should represent a novel species of the genus Aequorivita. The genomic DNA G+C contents were 37.6 % in all three strains. Genomic analysis showed the presence of genes related to nitrogen and sulphur cycling, as well as metal reduction. The genetic traits of these strains indicate their possible roles in nutrient cycling and detoxification processes, potentially shaping the deep-sea ecosystem's health and resilience. Based upon the consensus of phenotypic and genotypic analyses, strain CDY1-MB1T should be classified as a novel species of the genus Aequorivita, for which the name Aequorivita flava sp. nov. is proposed. The type strain is CDY1-MB1T (=MCCC 1A16935T=KCTC 102223T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Vitamin K 2 , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Pacific Ocean , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , DNA, Bacterial/genetics , Seawater/microbiology , Phospholipids/analysis , Phosphatidylethanolamines , Flavobacteriaceae/isolation & purification , Flavobacteriaceae/genetics , Flavobacteriaceae/classification
5.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1807-1814, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233409

ABSTRACT

Soil microorganisms play a crucial role as a link between vegetation and soil nutrient cycling. However, it is unclear how vegetation and soil influence microbial community during the ecological restoration process of the Mu Us Desert. Using phospholipid fatty acid (PLFA) markers and integrating shrub, herbaceous plants, and soil factors, we explored the characteristics and regulations of soil microbial community changes. In this study, we used and took the soil after 10, 30, 50, and 70 years of Caragana korshinskii sand-fixing forest restoration, with moving dunes as a control (0 year). The results showed that the ecological restoration effect index increased significantly with the increase of recovery years. The total PLFA contents in 0, 10, 30, 50, and 70 years were 47.75, 55.89, 63.53, 67.23, and 82.29 nmol·g-1, respectively. With the increases of ecological restoration index, the biomass of fungi and bacteria, as well as the ratio of Gram-positive to Gram-negative bacteria, all showed significant increase, while the biomass of Gram-positive and Gram-negative bacterial communities, and the ratio of fungi to bacteria, demonstrated significant decrease. Shrub, herbaceous plants, and soil factors could explain 72.4% of the vari-ation of soil microbial community composition, with higher contribution of soil factors than vegetation factors. The total content of phospholipid fatty acids of soil microbial community in Mu Us Desert increased with the increases of restoration years. Soil water content, pH, total nitrogen, and soil organic carbon were the main driving factors affecting the characteristics of soil microbial community. With the increases of restoration years of C. korshinskii sand-fixation forests in the Mu Us Desert, there were significant changes in the structure of soil microbial communities, which were primarily driven by soil factors.


Subject(s)
Caragana , Desert Climate , Microbiota , Soil Microbiology , Caragana/growth & development , China , Forests , Phospholipids/analysis , Environmental Restoration and Remediation/methods , Soil/chemistry , Sand , Fatty Acids/analysis , Conservation of Natural Resources
6.
Article in English | MEDLINE | ID: mdl-39235837

ABSTRACT

Two bacterial strains, Y60-23T and HN-65T, were isolated from marine sediment samples collected from Xiaoshi Island, Weihai, and Dongzhai Harbour, Haikou, PR China, respectively. Based on the 16S rRNA gene sequences, strain Y60-23T exhibited 96.0% similarity to its most related type strain Hyphobacterium vulgare KCTC 52487T, while strain HN-65T exhibited 97.3% similarity to its most related type strain Hyphobacterium indicum 2ED5T. The 16S rRNA gene sequence similarity between the two strains was 95.8%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains Y60-23T and HN-65T belonged to the genus Hyphobacterium. Cells of strains Y60-23T and HN-65T were rod-shaped, Gram-stain-negative, aerobic, non-motile, prosthecate and multiplied by binary fission. The major cellular fatty acids (>10.0%) of strain Y60-23T were C18 : 1 ω7c and C17 : 0, while those of strain HN-65T were iso-C17 : 1 ω9c, iso-C17 : 0 and C18 : 1 ω7c. The major respiratory quinone in both strains was ubiquinone-10 (Q-10) and the major polar lipids were monoglycosyl diglyceride, sulfoquinovosyl diacylglycerol and glucuronopyranosyl diglyceride. The genomic DNA G+C contents of strains Y60-23T and HN-65T were 63.9 and 60.7 mol%, respectively. The average nucleotide identity value between the two strains was 72.1% and the DNA-DNA hybridization value was 18.4%, clearly distinguishing them from each other. According to the results of the phenotypic, chemotaxonomic, phylogenetic and genomic analyses, the two strains represented two novel species within the genus Hyphobacterium, for which the names Hyphobacterium marinum sp. nov. and Hyphobacterium lacteum sp. nov. were proposed with the type strains Y60-23T (=MCCC 1H01433T=KCTC 8172T) and HN-65T (=MCCC 1H01434T=KCTC 8169T), respectively.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Fatty Acids/analysis , DNA, Bacterial/genetics , China , Hyphomicrobiaceae/genetics , Hyphomicrobiaceae/classification , Hyphomicrobiaceae/isolation & purification , Nucleic Acid Hybridization , Seawater/microbiology , Ubiquinone/analogs & derivatives , Phospholipids/analysis
7.
Harmful Algae ; 138: 102694, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39244230

ABSTRACT

Despite significant reductions in phosphorus (P) loads, lakes still experience cyanobacterial blooms. Little is known regarding cellular P regulation in response to P deficiency in widely distributed bloom causing species such as Microcystis. In this study, we investigated changes in P containing and non-P lipids contents and their ratios concomitantly with the determinations of expression levels of genes encoding these lipids in cultural and field Microcystis samples. In the culture, the content of phosphatidylglycerol (PG) decreased from 2.1 µg g-1 in P replete control to 1.2 µg g-1 in P-deficient treatment, while non-P lipids, like sulfoquinovosyldiacylglycerol (SQDG) and monogalactosyldiacylglycerol (MGDG), increased dramatically from 13.6 µg g-1 to 142.3 µg g-1, and from 0.9 µg g-1 to 16.74 µg g-1, respectively. The expression of the MGDG synthesis gene, mgdE, also increased under low P conditions. Significant positive relationships between soluble reactive phosphorus (SRP) and ratios of P-containing lipids (PG) to non-P lipids, including SQDG, MGDG and digalactosyldiacylglycerol (DGDG) (P < 0.05) were observed in the field investigations. Both cultural and field data indicated that Microcystis sp. might increase non-P lipids proportion to lower P demand when suffering from P deficiency. Furthermore, despite lipid remodeling, photosynthetic activity remained stable, as indicated by comparable chlorophyll fluorescence and Fv/Fm ratios among cultural treatments. These findings suggested that Microcystis sp. may dominate in P-limited environments by substituting glycolipids and sulfolipids for phospholipids to reduce P demand without compromising the photosynthetic activity. This effective strategy in response to P deficiency meant a stricter P reduction threshold is needed in terms of Microcystis bloom control.


Subject(s)
Microcystis , Phosphorus , Microcystis/metabolism , Microcystis/genetics , Phosphorus/deficiency , Phosphorus/metabolism , Phospholipids/metabolism , Phospholipids/analysis , Lakes/microbiology , Lakes/chemistry , Harmful Algal Bloom , Lipids/analysis
8.
Anal Chim Acta ; 1326: 343139, 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39260917

ABSTRACT

BACKGROUND: Several oxylipins including hydroxy- and epoxy-polyunsaturated fatty acids act as lipid mediators. In biological samples they can be present as non-esterified form, but the major part occurs esterified in phospholipids (PL) or other lipids. Esterified oxylipins are quantified indirectly after alkaline hydrolysis as non-esterified oxylipins. However, in this indirect analysis the information in which lipid class oxylipins are bound is lost. In this work, an untargeted liquid chromatography high-resolution mass spectrometry (LC-HRMS) method for the direct analysis of PL bearing oxylipins was developed. RESULTS: Optimized reversed-phase LC separation achieved a sufficient separation of isobaric and isomeric PL from different lipid classes bearing oxylipin positional isomers. Individual PL species bearing oxylipins were identified based on retention time, precursor ion and characteristic product ions. The bound oxylipin could be characterized based on product ions resulting from the α-cleavage occurring at the hydroxy/epoxy group. PL sn-1/sn-2 isomers were identified based on the neutral loss of the fatty acyl in the sn-2 position. A total of 422 individual oxPL species from 7 different lipid classes i.e., PI, PS, PC, PE, PC-P, PC-O, and PE-P were detected in human serum and cells. This method enabled to determine in which PL class supplemented oxylipins are incorporated in HEK293 cells: 20:4;15OH, 20:4;14Ep, and 20:5;14Ep were mostly bound to PI. 20:4;8Ep and 20:5;8Ep were esterified to PC and PE while other oxylipins were mainly found in PC. SIGNIFICANCE: The developed LC-HRMS method enables the comprehensive detection as well as the semi-quantification of isobaric and isomeric PL species bearing oxylipins. With this method, we show that the position of the oxidation has a great impact and directs the incorporation of oxylipins into the different PL classes in human cells.


Subject(s)
Mass Spectrometry , Oxylipins , Phospholipids , Oxylipins/analysis , Oxylipins/chemistry , Humans , Phospholipids/analysis , Phospholipids/chemistry , Mass Spectrometry/methods , Chromatography, Liquid/methods , Isomerism
9.
Article in English | MEDLINE | ID: mdl-39264709

ABSTRACT

A Gram-stain-negative, yellow-pigmented, and strictly aerobic bacterium, designated as strain MSW5T, was isolated from seawater of the Yellow Sea in South Korea. The cells were non-motile rods exhibiting oxidase- and catalase-positive activities. Growth was observed at 15-25 °C (optimum, 25 °C) and pH 5.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 1.0-5.0% (w/v) NaCl (optimum, 2.0%). Menaquinone-6 was the sole respiratory quinone, and iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), iso-C15 : 0 3-OH, and C15 : 1 ω6c were the major cellular fatty acids. Major polar lipids included phosphatidylethanolamine, two unidentified aminolipids, and three unidentified lipids. Phylogenetic analyses based on 16S rRNA gene sequences and 92 concatenated core protein sequences revealed that strain MSW5T formed a distinct lineage within the genus Polaribacter. The genome of strain MSW5T was 3582 kb in size with a 29.1 mol% G+C content. Strain MSW5T exhibited the highest similarity to Polaribacter atrinae WP25T, with a 97.9% 16S rRNA gene sequence similarity. However, the average nucleotide identity and digital DNA-DNA hybridization values were 79.4 and 23.3%, respectively, indicating that strain MSW5T represents a novel species. Based on its phenotypic, chemotaxonomic, and phylogenetic characteristics, strain MSW5T is proposed to represent a novel species, with the name Polaribacter ponticola sp. nov. The type strain is MSW5T (=KACC 22340T=NBRC 116025T). In addition, whole genome sequence comparisons and phenotypic features suggested that Polaribacter sejongensis and Polaribacter undariae belong to the same species, with P. undariae proposed as a later heterotypic synonym of P. sejongensis. An emended description of Polaribacter sejongensis is also proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Seawater/microbiology , Republic of Korea , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Phosphatidylethanolamines , Nucleic Acid Hybridization , Bacteroidetes/genetics , Bacteroidetes/classification , Bacteroidetes/isolation & purification , Phospholipids/analysis , Phospholipids/chemistry
10.
Article in English | MEDLINE | ID: mdl-39312295

ABSTRACT

One bacterial strain, designated as C22-A2T, was isolated from Lake LungmuCo in Tibet. Cells of strain C22-A2T were long rod-shaped, Gram-stain-negative, non-spore-forming, with positive catalase and oxidase activity. Optimal growth occurred at 20-25 °C, pH 8.0 and with 3.0-7.0% (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene and whole genome sequences revealed that strain C22-A2T belonged to the genus Virgibacillus, showing the highest 16S rRNA gene similarity to Virgibacillus halodenitrificans DSM 10037T (97.6%). The average nucleotide identity values between strain C22-A2T and the type strains of related species in the genus Virgibacillus were less than 74.4% and the digital DNA-DNA hybridization values were less than 20.2%, both below the species delineation thresholds of 95 and 70% respectively. The genome analysis revealed that strain C22-A2T harboured genes responsible for osmotic and oxidative stress, enabling it to adapt to its surrounding environment. In terms of biochemical and physiological characteristics, strain C22-A2T shared similar characteristics with the genus Virgibacillus, including the predominant cellular fatty acid anteiso-C15 : 0, the major respiratory quinone MK-7, as well as the polar lipids phosphatidylglycerol and diphosphatidylglycerol. Based on the comprehensive analysis of phylogenetic, phylogenomic, morphological, physiological and biochemical characteristics, strain C22-A2T is proposed to represent a novel species of the genus Virgibacillus, named as Virgibacillus tibetensis sp. nov. (=CGMCC 1.19202T=KCTC 43426T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Lakes , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Virgibacillus , Tibet , RNA, Ribosomal, 16S/genetics , Lakes/microbiology , DNA, Bacterial/genetics , Virgibacillus/genetics , Virgibacillus/isolation & purification , Virgibacillus/classification , Sodium Chloride/metabolism , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Genome, Bacterial , Phospholipids/analysis , Whole Genome Sequencing
11.
Antonie Van Leeuwenhoek ; 118(1): 8, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305338

ABSTRACT

A novel bacterial strain, designated DW002T, was isolated from the sea ice of Cape Evans, McMurdo Sound, Antarctica. Cells of the strain were Gram-negative, obligate anaerobic, motile, non-flagellated, and short rod-shaped. The strain DW002T grew at 4-32 â„ƒ (optimum at 22-28 â„ƒ) and thrived best at pH 7.0, NaCl concentration of 2.5% (w/v). The predominant isoprenoid quinone of strain DW002T was menaquinone-7 (MK-7). The major fatty acids (> 10%) of DW002T were iso-C15:0, anteiso-C15:0 and iso-C17:1ω9c. The predominant polar lipids of strain DW002T contained two phosphatidylethanolamines, one unidentified glycolipid, one unidentified aminolipid and four unidentified lipids. The DNA G + C content of the strain DW002T was 34.8%. Strain DW002T encoded 237 carbohydrate-active enzymes. The strain DW002T had genes associated with dissimilatory nitrate reduction and assimilatory sulfate reduction metabolic pathways. Based on distinct physiological, chemotaxonomic, genome analysis and phylogenetic differences compared to other members of the phylogenetically related genera in the family Marinifilaceae, strain DW002T is proposed to represent a novel genus within the family. Therefore, the name Paralabilibaculum antarcticum gen. nov., sp. nov. is proposed. The type strain is DW002T (=KCTC 25274T=MCCC 1K06067T).


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Ice Cover , Phylogeny , RNA, Ribosomal, 16S , Antarctic Regions , RNA, Ribosomal, 16S/genetics , Fatty Acids/metabolism , Ice Cover/microbiology , DNA, Bacterial/genetics , Anaerobiosis , Bacterial Typing Techniques , Phospholipids/analysis
12.
Arch Microbiol ; 206(10): 413, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316218

ABSTRACT

A novel bacterium, designated as strain LOR1-02T and isolated from a lichen sample collected from Kham Riang Subdistrict, Kantharawichai District, Maha Sarakham Province, Thailand, underwent thorough investigation utilizing a polyphasic taxonomic approach. Strain LOR1-02T demonstrated growth within a temperature range of 20-42 °C (optimal at 30 °C), pH range of 5.0-7.5 (optimal at pH 7.0), and tolerance to 4.0% (w/v) NaCl. Phylogenetic analysis revealed its close relation to Paracraurococcus ruber JCM 9931T, with a 16S rRNA gene sequence similarity of 97.16%, placing it within the genus Paracraurococcus. The approximate genome size of strain LOR1-02T was determined to be 8.6 Mb, with a G + C content of 70.9 mol%. Additionally, ANIb, ANIm, and AAI values between the whole genomes of strain LOR1-02T and type strains were calculated as 82.6-83.4%, 86.1-86.8%, and 81.4-82.2%, respectively, while the dDDH value was determined to be 26.3-28.5% (C.I. 24.0-31.0%). The predominant fatty acids detected were C18:1ω7c and/or C18:1ω6c, C16:0, and C18:12OH. The major ubiquinone identified was Q-10, and the polar lipids included phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, along with unidentified phosphoaminolipid, lipids, and an amino lipid. Based on comprehensive phenotypic, chemotaxonomic, and genotypic characterization, it is concluded that strain LOR1-02T represents a novel species within the genus Paracraurococcus, for which the name Paracraurococcus lichenis sp. nov. is proposed. The type strain designation is LOR1-02T (= JCM 33121T = NBRC 112776T = TISTR 2503T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Lichens , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Thailand , Fatty Acids/analysis , Fatty Acids/chemistry , Lichens/microbiology , DNA, Bacterial/genetics , Sequence Analysis, DNA , Genome, Bacterial , Ubiquinone/chemistry , Ubiquinone/analysis , Phospholipids/analysis
13.
Antonie Van Leeuwenhoek ; 118(1): 12, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340698

ABSTRACT

A Gram-staining-negative, dark pink, rod-shaped, amastigote and cellulose-degrading strain, designated H9T, was isolated from intestinal contents of Nipponacmea schrenckii. The isolate was able to grow at 4-42 °C (optimum, 25 °C), at pH 6.5-9.0 (optimum, pH 7.0), and with 0.0-11.0% (w/v) NaCl (optimum, 3.0-5.0%). Phylogenetic analysis of the 16S rRNA gene sequence suggested that isolate H9T belongs to the genus Roseobacter, neighboring Roseobacter insulae YSTF-M11T, Roseobacter cerasinus AI77T and Roseobacter ponti MM-7 T, and the pairwise sequence showed the highest similarity of 99.1% to Roseobacter insulae YSTF-M11T. The major fatty acid was summed feature 8 (C18:1ω7c and/or C18:1ω6c; 81.08%). The predominant respiratory quinone was Q-10. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, an unknown lipid, and a small amount of an unknown phospholipid. The genome of strain H9T was 5,351,685 bp in length, and the DNA G + C content was 59.8%. The average amino acid identity (AAI), average nucleotide identity (ANI), and digital DNA hybridization (dDDH) values between strain H9T and closely related strains were 63.4-76.8%, 74.7-78.8%, and 13.4-19.7%, respectively. On the basis of the phenotypic, chemical taxonomic, and phylogenetic data, it is suggested that strain H9T should represent a novel species in the genus Roseobacter, for which the name Roseobacter weihaiensis sp. nov. is proposed. The type strain is H9T (= KCTC 82507 T = MCCC 1K04354T).


Subject(s)
Base Composition , Cellulose , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Roseobacter , China , RNA, Ribosomal, 16S/genetics , Cellulose/metabolism , DNA, Bacterial/genetics , Fatty Acids/metabolism , Roseobacter/classification , Roseobacter/genetics , Roseobacter/isolation & purification , Roseobacter/metabolism , Animals , Bacterial Typing Techniques , Sequence Analysis, DNA , Genome, Bacterial , Intestines/microbiology , Phospholipids/analysis
14.
J Pharm Biomed Anal ; 251: 116429, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39178482

ABSTRACT

Lipidomic profiling has been reported as an effective approach for characterizing and differentiating brain tumors. However, since lipids can undergo non-specific enzymatic and nonenzymatic reactions due to tissue disruption, it is critical to consider the preanalytical phase of the diagnostic process (e.g., optimizing the sampling time and sampling conditions). Thus, this study assesses the ways in which the time point of sampling impacts the lipidome composition of brain tumors. Two histologically distinct brain tumors-namely, meningiomas and gliomas-were sampled using solid-phase microextraction (SPME) fibers at two time points: on-site directly after removal, and after 12 months of storage at -30 °C. The samples were analyzed via HILIC chromatography coupled with HRMS, which enabled the detection of a wide range of features, including phospholipids and sphingolipids, as well as changes in the profiles of these compounds. The samples obtained from the stored tissues tended to have elevated levels of analytes with lower m/z values. In addition, the samples obtained from the fresh and stored tissues were easily distinguished based on their lipidome compositions, regardless of the histological tumor type. Notably, while storage did not affect the possibility of differentiating meningiomas and gliomas, the biological interpretation of the obtained results were prone to bias.


Subject(s)
Brain Neoplasms , Glioma , Lipidomics , Meningioma , Humans , Lipidomics/methods , Brain Neoplasms/metabolism , Glioma/metabolism , Glioma/pathology , Time Factors , Solid Phase Microextraction/methods , Lipids/analysis , Lipids/chemistry , Phospholipids/analysis , Specimen Handling/methods , Middle Aged , Male , Female , Sphingolipids/analysis , Meningeal Neoplasms/diagnosis , Aged
15.
Food Chem ; 460(Pt 2): 140556, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39089024

ABSTRACT

Human milk phospholipids (HMPLs) play an indispensable role in the neurodevelopment and growth of infants. In this study, a total of 37 phospholipid fatty acid (PLFA) species and 139 phospholipid molecular species were detected from human milk and other natural phospholipid sources (including 5 animal-derived species and 2 plant species). Moreover, a similarity evaluation model for HMPLs was established, including phospholipid classes, PLFAs, and phospholipid molecular species, to evaluate their natural substitutes. The closest scores for HMPL substitute in these three dimensions was 0.89, 0.72, and 0.77, which belonged to mare milk, goat milk, and camel milk, respectively. The highest comprehensive similarity score was obtained by camel milk at 0.75, while the lowest score was observed in soybean phospholipid (0.22). Therefore, these results not only monitored the stereochemical structure of HMPLs and their substitutes, but also further provided new insights for the development of infant formulae.


Subject(s)
Goats , Milk, Human , Phospholipids , Humans , Phospholipids/chemistry , Phospholipids/analysis , Milk, Human/chemistry , Animals , Fatty Acids/chemistry , Fatty Acids/analysis , Camelus/growth & development , Horses , Infant Formula/chemistry , Infant Formula/analysis , Milk/chemistry , Female , Molecular Structure
16.
Article in English | MEDLINE | ID: mdl-39190453

ABSTRACT

Two Gram-stain-negative, aerobic, rod-shaped, orange-coloured bacterial strains, designated strain C216T and strain M2295, were isolated from mature mushroom compost from composting facilities in Victoria and South Australia, Australia, respectively. External structures such as flagella or pili were not observed on the cells under scanning electron microscopy. Optimal growth was found to occur at 45 °C, at pH 7.25 and in the absence of NaCl on Emerson's 350 YpSs medium. The genome sequence of strain C216T was 3 342 126 bp long with a G+C content of 40.5 mol%. Functional analysis of the genome of strain C216T revealed genes encoding chitinolytic and hemi-cellulolytic functions, with 166 predicted genes associated with carbohydrate metabolism (8.9% of the predicted genes). These functions are important for survival in the mushroom compost environment, which is rich in hemicelluloses. No antibiotic resistance genes were found in the genome sequence. The major fatty acids of strain C216T were iso-C15 : 0 (56.7%), iso-C17 : 0 3-OH (15.6%), C16 : 1 ω7c/iso-C15 : 0 2-OH (7.3%) and iso-C15 : 1 G (6.1%). The only respiratory quinone was MK-7. The major polar lipid of strain C216T was phosphatidylethanolamine, but three unidentified phospholipids, four unidentified aminophospholipids/aminolipids and one unidentified glycolipid were also detected. Phylogenetic analysis based on proteins encoded by the core genome (bac120, 120 conserved bacterial genes) showed that strain C216T forms a distinct lineage in the family Chitinophagaceae and that the closest identified relative is Niabella soli (69.69% ANI). These data demonstrate that strain C216T represents a novel genus and novel species within the family Chitinophagaceae, for which we propose the name Mycovorax composti. The type strain is C216T (=DSM 114558T=LMG 32998T).


Subject(s)
Agaricales , Bacterial Typing Techniques , Base Composition , Composting , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Fatty Acids/analysis , Agaricales/genetics , Agaricales/classification , Agaricales/isolation & purification , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Comamonadaceae/genetics , Comamonadaceae/isolation & purification , Comamonadaceae/classification , Phospholipids/analysis , Vitamin K 2/analogs & derivatives , Phosphatidylethanolamines , Genome, Bacterial , South Australia
17.
Antonie Van Leeuwenhoek ; 117(1): 111, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103503

ABSTRACT

The strain designated NCCP-602T was isolated from tannery effluent, and displayed aerobic, gram-positive, rod-shaped cells that were characterized by oxidase negative, catalase positive, and non-motile features. The most favourable growth conditions were observed at a temperature of 30°C, pH 7.0, and NaCl concentration of 1% (w/v). It tolerated heavy metals at high concentrations of chromium (3600 ppm), copper (3300 ppm), cadmium (3000 ppm), arsenic (1200 ppm) and lead (1500 ppm). The results of phylogenetic analysis, derived from sequences of the 16S rRNA gene, indicated the position of strain NCCP-602T within genus Brevibacterium and showed that it was closely related to Brevibacterium ammoniilyticum JCM 17537T. Strain NCCP-602 T formed a robust branch that was clearly separate from closely related taxa. A comparison of 16S rRNA gene sequence similarity and dDDH values between the closely related type strains and strain NCCP-602T provided additional evidence supporting the classification of strain NCCP-602T as a distinct novel genospecies. The polar lipid profile included diphosphatidylglycerol, glycolipid, phospholipids and amino lipids. MK-7 and MK-8 were found as the respiratory quinones, while anteiso-C15:0, iso-C15:0, iso-C16:0, iso-C17:0, and anteiso-C17:0 were identified as the predominant cellular fatty acids (> 10%). Considering the convergence of phylogenetic, phenotypic, chemotaxonomic, and genotypic traits, it is suggested that strain NCCP-602 T be classified as a distinct species Brevibacterium metallidurans sp. nov. within genus Brevibacterium with type strain NCCP-602T (JCM 18882T = CGMCC1.62055T).


Subject(s)
Brevibacterium , Fatty Acids , Metals, Heavy , Phylogeny , RNA, Ribosomal, 16S , Brevibacterium/genetics , Brevibacterium/classification , Brevibacterium/isolation & purification , Brevibacterium/metabolism , Brevibacterium/physiology , RNA, Ribosomal, 16S/genetics , Metals, Heavy/metabolism , Pakistan , Fatty Acids/analysis , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Sequence Analysis, DNA , Phospholipids/analysis , Tanning , Genomics
18.
Syst Appl Microbiol ; 47(5): 126542, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39116476

ABSTRACT

Several strains were isolated from subsurface soil of the Atacama Desert and were previously assigned to the Micromonospora genus. A polyphasic study was designed to determine the taxonomic affiliation of isolates 4G51T, 4G53, and 4G57. All the strains showed chemotaxonomic properties in line with their classification in the genus Micromonospora, including meso-diaminopimelic acid in the cell wall peptidoglycan, MK-9(H4) as major respiratory quinone, iso-C15:0 and iso-C16:0 as major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as major polar lipids. The 16S rRNA gene sequences of strains 4G51T, 4G53, and 4G57 showed the highest similarity (97.9 %) with the type strain of Micromonospora costi CS1-12T, forming an independent branch in the phylogenetic gene tree. Their independent position was confirmed with genome phylogenies, being most closely related to the type strain of Micromonospora kangleipakensis. Digital DNA-DNA hybridization and average nucleotide identity analyses between the isolates and their closest phylogenomic neighbours confirmed that they should be assigned to a new species within the genus Micromonospora for which the name Micromonospora sicca sp. nov. (4G51T=PCM 3031T=LMG 30756T) is proposed.


Subject(s)
DNA, Bacterial , Desert Climate , Fatty Acids , Micromonospora , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Micromonospora/genetics , Micromonospora/classification , Micromonospora/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/analysis , Fatty Acids/chemistry , Peptidoglycan/chemistry , Peptidoglycan/analysis , Bacterial Typing Techniques , Diaminopimelic Acid/analysis , Cell Wall/chemistry , Chile , Phospholipids/analysis , Phospholipids/chemistry
19.
Anal Biochem ; 695: 115638, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39127328

ABSTRACT

Phospholipid fatty acid (PLFA) analysis is used for characterizing microbial communities based on their lipid profiles. This method avoids biases from PCR or culture, allowing data collection in a natural state. However, PLFA is labor-intensive due to lipid fractionation. Simplified ester-linked fatty acid analysis (ELFA), which skips lipid fractionation, offers an alternative. It utilizes base-catalyzed methylation to derivatize only lipids, not free fatty acids, and found glycolipid and neutral lipid fractions are scarcely present in most bacteria, allowing lipid fractionation to be skipped. ELFA method showed a high correlation to PLFA data (r = 0.99) and higher sensitivity than the PLFA method by 1.5-2.57-fold, mainly due to the higher recovery of lipids, which was 1.5-1.9 times higher than with PLFA. The theoretical limit of detection (LOD) and limit of quantification (LOQ) for the ELFA method indicated that 1.54-fold less sample was needed for analysis than with the PLFA method. Our analysis of three bacterial cultures and a simulated consortium revealed the effectiveness of the ELFA method by its simple procedure and enhanced sensitivity for detecting strain-specific markers, which were not detected in PLFA analysis. Overall, this method could be easily used for the population analysis of synthetic consortia.


Subject(s)
Esters , Fatty Acids , Phospholipids , Fatty Acids/analysis , Fatty Acids/chemistry , Phospholipids/analysis , Phospholipids/chemistry , Esters/analysis , Esters/chemistry , Bacteria/metabolism , Limit of Detection
20.
Curr Microbiol ; 81(10): 313, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160426

ABSTRACT

Strain SYSU D00308T, a short-rod-shaped bacterium, was isolated from a sandy soil collected from the Gurbantunggut Desert, Xinjiang, PR China. Strain SYSU D00308T was Gram-stain-negative, aerobic, pink-pigmented, non-motile, catalase- and oxidase-positive. The strain grew at 4-37 ℃, pH 5.0-8.0 and 0-1.5% (w/v) NaCl. 16S rRNA gene sequencing analyses demonstrated that strain SYSU D00308T belonged to the genus Rufibacter and exhibited the highest sequence similarity (97.4%) to Rufibacter glacialis MDT1-10-3T. Summed features 3, 4, and iso-C15:0 were the major fatty acids, and menaquinone 7 (MK-7) was the sole respiratory menaquinone. The polar lipid profiles comprised phosphatidylethanolamine, an unidentified glycolipid, an unidentified phospholipid, two unidentified aminophospholipids, and two unidentified lipids. The genome size and DNA G + C content of strain SYSU D00308T were 5,176,683 bp and 54.8%, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SYSU D00308T and members of the genus Rufibacter were 77.7-81.8% and 20.4-23.4% respectively, which were less than the corresponding thresholds (ANI: 95-96%; dDDH: 70%) for prokaryotic species definition. According to the genotypic, phenotypic and phylogenetic characteristics, strain SYSU D00308T represents a novel species of the genus Rufibacter. We propose the name, Rufibacter psychrotolerans sp. nov., with SYSU D00308T (= CGMCC 1.18621T = KCTC 82275T = MCCC 1K04970T) as the type strain.


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Fatty Acids/chemistry , Bacterial Typing Techniques , Phospholipids/analysis , Desert Climate , Cold Temperature , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis
SELECTION OF CITATIONS
SEARCH DETAIL