Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.132
Filter
1.
ACS Infect Dis ; 10(10): 3577-3585, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39255460

ABSTRACT

Acinetobacter baumannii (A. baumannii) challenges clinical infection treatment due to its resistance to various antibiotics. Multiple resistance genes in the core genome or mobile elements contribute to multidrug resistance in A. baumannii. Macrolide phosphotransferase gene mphE has been identified in A. baumannii, which is particularly relevant to macrolide antibiotics. Here, we determined the structure of MphE protein in three states: the apo state, the complex state with erythromycin and guanosine triphosphate (GTP), and the complex state with azithromycin and guanosine. Interestingly, GTP and two magnesium ions were observed in the erythromycin-bound MphE complex. This structure captured the active state of MphE, in which the magnesium ions stabilized the active site and assisted the transfer of phosphoryl groups. Based on these structures, we verified that the conserved residues Asp29, Asp194, His199, and Asp213 play an important role in the catalytic phosphorylation of MphE leading to drug resistance. Our work helps to understand the molecular basis of drug resistance and provides reference targets for optimizing macrolide antibiotics.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Catalytic Domain , Macrolides/pharmacology , Macrolides/chemistry , Macrolides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Erythromycin/pharmacology , Erythromycin/chemistry , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Models, Molecular , Protein Conformation , Azithromycin/pharmacology , Azithromycin/chemistry , Magnesium/metabolism , Magnesium/chemistry , Drug Resistance, Multiple, Bacterial , Phosphorylation , Phosphotransferases/genetics , Phosphotransferases/chemistry , Phosphotransferases/metabolism
2.
Structure ; 32(10): 1834-1846.e3, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39106858

ABSTRACT

Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.


Subject(s)
Fluorides , Fluorides/chemistry , Fluorides/metabolism , Crystallography, X-Ray , Cryoelectron Microscopy , Models, Molecular , Catalytic Domain , Humans , Scattering, Small Angle , X-Ray Diffraction , Phosphotransferases/metabolism , Phosphotransferases/chemistry
3.
Microbiol Spectr ; 12(10): e0084424, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39166854

ABSTRACT

Selenium is a trace element that plays critical roles in redox biology; it is typically incorporated into "selenoproteins" as the 21st amino acid selenocysteine. Additionally, selenium exists as a labile non-selenocysteine cofactor in a small subset of selenoproteins known as selenium-dependent molybdenum hydroxylases (SDMHs). In purinolytic clostridia, SDMHs are implicated in the degradation of hypoxanthine, xanthine, and uric acid for carbon and nitrogen. While SDMHs have been biochemically analyzed, the genes responsible for the insertion and maturation of the selenium cofactor lack characterization. In this study, we utilized the nosocomial pathogen Clostridioides difficile as a genetic model to begin characterizing this poorly understood selenium utilization pathway and its role in the catabolism of host-derived purines. We first observed that C. difficile could utilize hypoxanthine, xanthine, or uric acid to overcome a growth defect in a minimal medium devoid of glycine and threonine. However, strains lacking selenophosphate synthetase (selD mutants) still grew poorly in the presence of xanthine and uric acid, suggesting a selenium-dependent purinolytic process. Previous computational studies have identified yqeB and yqeC as potential candidates for cofactor maturation, so we subsequently deleted each gene using CRISPR-Cas9 technology. We surprisingly found that the growth of the ΔyqeB mutant in response to each purine was similar to the behavior of the selD mutants, while the ΔyqeC mutant exhibited no obvious phenotype. Our results suggest an important role for YqeB in selenium-dependent purine catabolism and also showcase C. difficile as an appropriate model organism to study the biological use of selenium.IMPORTANCEThe apparent modification of bacterial molybdenum hydroxylases with a catalytically essential selenium cofactor is the least understood mechanism of selenium incorporation. Selenium-dependent molybdenum hydroxylases play an important role in scavenging carbon and nitrogen from purines for purinolytic clostridia. Here, we used Clostridioides difficile as a genetic platform to begin dissecting the selenium cofactor trait and found genetic evidence for a selenium-dependent purinolytic pathway. The absence of selD or yqeB-a predicted genetic marker for the selenium cofactor trait-resulted in impaired growth on xanthine and uric acid, known substrates for selenium-dependent molybdenum hydroxylases. Our findings provide a genetic foundation for future research of this pathway and suggest a novel metabolic strategy for C. difficile to scavenge host-derived purines from the gut.


Subject(s)
Clostridioides difficile , Selenium , Uric Acid , Xanthine , Clostridioides difficile/metabolism , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Selenium/metabolism , Uric Acid/metabolism , Xanthine/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Selenoproteins/metabolism , Selenoproteins/genetics , Phosphotransferases/metabolism , Phosphotransferases/genetics , Purines/metabolism , Nutrients/metabolism , Metabolic Networks and Pathways/genetics , Hypoxanthine/metabolism
4.
Nat Commun ; 15(1): 7596, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217147

ABSTRACT

Machine learning provides efficient ways to map compound-kinase interactions. However, diverse bioactivity data types, including single-dose and multi-dose-response assay results, present challenges. Traditional models utilize only multi-dose data, overlooking information contained in single-dose measurements. Here, we propose a machine learning methodology for compound-kinase activity prediction that leverages both single-dose and dose-response data. We demonstrate that our two-stage approach yields accurate activity predictions and significantly improves model performance compared to training solely on dose-response labels. This superior performance is consistent across five diverse machine learning methods. Using the best performing model, we carried out extensive experimental profiling on a total of 347 selected compound-kinase pairs, achieving a high hit rate of 40% and a negative predictive value of 78%. We show that these rates can be improved further by incorporating model uncertainty estimates into the compound selection process. By integrating multiple activity data types, we demonstrate that our approach holds promise for facilitating the development of training activity datasets in a more efficient and cost-effective way.


Subject(s)
Machine Learning , Humans , Protein Kinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Phosphotransferases/metabolism , Algorithms , Drug Discovery/methods
5.
Molecules ; 29(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39202847

ABSTRACT

Nucleosides, nucleotides, and their analogues are an important class of molecules that are used as substrates in research of enzymes and nucleic acid, or as antiviral and antineoplastic agents. Nucleoside phosphorylation is usually achieved with chemical methods; however, enzymatic phosphorylation is a viable alternative. Here, we present a chemoenzymatic synthesis of modified cytidine monophosphates, where a chemical synthesis of novel N4-modified cytidines is followed by an enzymatic phosphorylation of the nucleosides by nucleoside kinases. To enlarge the substrate scope, multiple mutant variants of Drosophila melanogaster deoxynucleoside kinase (DmdNK) (EC:2.7.1.145) and Bacillus subtilis deoxycytidine kinase (BsdCK) (EC:2.7.1.74) have been created and tested. It has been determined that certain point mutations in the active sites of the kinases alter their substrate specificities noticeably and allow phosphorylation of compounds that had been otherwise not phosphorylated by the wild-type DmdNK or BsdCK.


Subject(s)
Cytidine Monophosphate , Drosophila melanogaster , Animals , Phosphorylation , Substrate Specificity , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Cytidine Monophosphate/analogs & derivatives , Cytidine Monophosphate/metabolism , Cytidine Monophosphate/chemistry , Phosphotransferases/genetics , Phosphotransferases/metabolism , Phosphotransferases/chemistry , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Mutation , Deoxycytidine Kinase/genetics , Deoxycytidine Kinase/metabolism , Deoxycytidine Kinase/chemistry
6.
Elife ; 132024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984616

ABSTRACT

The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.


Subject(s)
Protein Kinases , Allosteric Regulation , Humans , Protein Kinases/metabolism , Protein Kinases/chemistry , Protein Kinases/genetics , Phosphotransferases/metabolism , Phosphotransferases/chemistry
7.
J Chem Inf Model ; 64(10): 4009-4020, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38751014

ABSTRACT

Drug discovery pipelines nowadays rely on machine learning models to explore and evaluate large chemical spaces. While including 3D structural information is considered beneficial, structural models are hindered by the availability of protein-ligand complex structures. Exemplified for kinase drug discovery, we address this issue by generating kinase-ligand complex data using template docking for the kinase compound subset of available ChEMBL assay data. To evaluate the benefit of the created complex data, we use it to train a structure-based E(3)-invariant graph neural network. Our evaluation shows that binding affinities can be predicted with significantly higher precision by models that take synthetic binding poses into account compared to ligand- or drug-target interaction models alone.


Subject(s)
Machine Learning , Molecular Docking Simulation , Ligands , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Neural Networks, Computer , Protein Kinases/metabolism , Protein Kinases/chemistry , Drug Discovery/methods , Protein Binding , Protein Conformation , Phosphotransferases/metabolism , Phosphotransferases/chemistry , Phosphotransferases/antagonists & inhibitors
8.
Plant Sci ; 343: 112085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588983

ABSTRACT

Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.


Subject(s)
Plant Proteins , Plants , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism , Peptides , Phosphotransferases/metabolism , Plant Development
9.
Mol Plant ; 17(5): 772-787, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38581129

ABSTRACT

The phytohormone auxin plays a pivotal role in governing plant growth and development. Although the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors function in both the nucleus and cytoplasm, the mechanism governing the distribution of TIR1/AFBs between these cellular compartments remains unknown. In this study, we demonstrate that auxin-mediated oxidation of TIR1/AFB2 is essential for their targeting to the nucleus. We showed that small active molecules, reactive oxygen species (ROS) and nitric oxide (NO), are indispensable for the nucleo-cytoplasmic distribution of TIR1/AFB2 in trichoblasts and root hairs. Further studies revealed that this process is regulated by the FERONIA receptor kinase-NADPH oxidase signaling pathway. Interestingly, ROS and NO initiate oxidative modifications in TIR1C140/516 and AFB2C135/511, facilitating their subsequent nuclear import. The oxidized forms of TIR1C140/516 and AFB2C135/511 play a crucial role in enhancing the function of TIR1 and AFB2 in transcriptional auxin responses. Collectively, our study reveals a novel mechanism by which auxin stimulates the transport of TIR1/AFB2 from the cytoplasm to the nucleus, orchestrated by the FERONIA-ROS signaling pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Indoleacetic Acids , Oxidation-Reduction , Protein Serine-Threonine Kinases , Signal Transduction , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , F-Box Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Nitric Oxide/metabolism , Phosphotransferases/metabolism , Reactive Oxygen Species/metabolism , Receptors, Cell Surface/metabolism
10.
Int J Biochem Cell Biol ; 170: 106558, 2024 May.
Article in English | MEDLINE | ID: mdl-38479581

ABSTRACT

Thousand and one amino acid kinase 1 (TAOK1) is a sterile 20 family Serine/Threonine kinase linked to microtubule dynamics, checkpoint signaling, DNA damage response, and neurological functions. Molecular-level alterations of TAOK1 have been associated with neurodevelopment disorders and cancers. Despite their known involvement in physiological and pathophysiological processes, and as a core member of the hippo signaling pathway, the phosphoregulatory network of TAOK1 has not been visualized. Aimed to explore this network, we first analyzed the predominantly detected and differentially regulated TAOK1 phosphosites in global phosphoproteome datasets across diverse experimental conditions. Based on 709 qualitative and 210 quantitative differential cellular phosphoproteome datasets that were systematically assembled, we identified that phosphorylation at Ser421, Ser9, Ser965, and Ser445 predominantly represented TAOK1 in almost 75% of these datasets. Surprisingly, the functional role of all these phosphosites in TAOK1 remains unexplored. Hence, we employed a robust strategy to extract the phosphosites in proteins that significantly correlated in expression with predominant TAOK1 phosphosites. This led to the first categorization of the phosphosites including those in the currently known and predicted interactors, kinases, and substrates, that positively/negatively correlated with the expression status of each predominant TAOK1 phosphosites. Subsequently, we also analyzed the phosphosites in core proteins of the hippo signaling pathway. Based on the TAOK1 phosphoregulatory network analysis, we inferred the potential role of the predominant TAOK1 phosphosites. Especially, we propose pSer9 as an autophosphorylation and TAOK1 kinase activity-associated phosphosite and pS421, the most frequently detected phosphosite in TAOK1, as a significant regulatory phosphosite involved in the maintenance of genome integrity. Considering that the impact of all phosphosites that predominantly represent each kinase is essential for the efficient interpretation of global phosphoproteome datasets, we believe that the approach undertaken in this study is suitable to be extended to other kinases for accelerated research.


Subject(s)
Phosphotransferases , Protein Serine-Threonine Kinases , Phosphotransferases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
11.
Sci Rep ; 14(1): 6518, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499693

ABSTRACT

Family with sequence similarity 20, member A (FAM20A) is a pseudo-kinase in the secretory pathway and is essential for enamel formation in humans. Here we examine if FAM20A is a membrane-associated protein. We show that the full-length FAM20A can be purified from HEK293 cells transfected with a FAM20A-expresing construct. Further, it is only found in the membrane fraction, but not in the soluble fraction, of cell lysate. Consistently, it is not secreted out of the expressing cells. Moreover, it is co-localized with GM130, a cis-Golgi network marker, and membrane topology analysis indicates that it has its C-terminus oriented towards the lumen of the organelle. Our results support that FAM20A is a Type II transmembrane protein within the secretory compartments.


Subject(s)
Dental Enamel Proteins , Membrane Proteins , Humans , HEK293 Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphotransferases/metabolism , Golgi Apparatus/metabolism , Dental Enamel Proteins/metabolism
12.
Proc Natl Acad Sci U S A ; 121(8): e2311522121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38363863

ABSTRACT

Symbiosis receptor-like kinase SYMRK is required for root nodule symbiosis between legume plants and nitrogen-fixing bacteria. To understand symbiotic signaling from SYMRK, we determined the crystal structure to 1.95 Å and mapped the phosphorylation sites onto the intracellular domain. We identified four serine residues in a conserved "alpha-I" motif, located on the border between the kinase core domain and the flexible C-terminal tail, that, when phosphorylated, drives organogenesis. Substituting the four serines with alanines abolished symbiotic signaling, while substituting them with phosphorylation-mimicking aspartates induced the formation of spontaneous nodules in the absence of bacteria. These findings show that the signaling pathway controlling root nodule organogenesis is mediated by SYMRK phosphorylation, which may help when engineering this trait into non-legume plants.


Subject(s)
Fabaceae , Root Nodules, Plant , Phosphorylation , Root Nodules, Plant/metabolism , Plant Root Nodulation , Phosphotransferases/metabolism , Symbiosis/genetics , Fabaceae/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant
13.
Plant Biotechnol J ; 22(7): 1800-1811, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38344883

ABSTRACT

The plant rapid alkalinization factor (RALF) peptides function as key regulators in cell growth and immune responses through the receptor kinase FERONIA (FER). In this study, we report that the transcription factor FgPacC binds directly to the promoter of FgRALF gene, which encodes a functional homologue of the plant RALF peptides from the wheat head blight fungus Fusarium graminearum (FgRALF). More importantly, FgPacC promotes fungal infection via host immune suppression by activating the expression of FgRALF. The FgRALF peptide also exhibited typical activities of plant RALF functions, such as inducing plant alkalinization and inhibiting cell growth, including wheat (Triticum aestivum), tomato (Solanum lycopersicum) and Arabidopsis thaliana. We further identified the wheat receptor kinase FERONIA (TaFER), which is capable of restoring the defects of the A. thaliana FER mutant. In addition, we found that FgRALF peptide binds to the extracellular malectin-like domain (ECD) of TaFER (TaFERECD) to suppress the PAMP-triggered immunity (PTI) and cell growth. Overexpression of TaFERECD in A. thaliana confers plant resistance to F. graminearum and protects from FgRALF-induced cell growth inhibition. Collectively, our results demonstrate that the fungal pathogen-secreted RALF mimic suppresses host immunity and inhibits cell growth via plant FER receptor. This establishes a novel pathway for the development of disease-resistant crops in the future without compromising their yield potential.


Subject(s)
Arabidopsis , Fusarium , Plant Immunity , Arabidopsis/immunology , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Triticum/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Phosphotransferases/metabolism , Phosphotransferases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolism , Protein Serine-Threonine Kinases
14.
Annu Rev Plant Biol ; 75(1): 345-375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38424067

ABSTRACT

Initially identified as a key regulator of female fertility in Arabidopsis, the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.


Subject(s)
Signal Transduction , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Phosphotransferases/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/physiology , Protein Kinases/metabolism , Protein Kinases/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Protein Serine-Threonine Kinases
15.
PLoS Genet ; 20(1): e1011087, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190412

ABSTRACT

Plant cell growth involves coordination of numerous processes and signaling cascades among the different cellular compartments to concomitantly enlarge the protoplast and the surrounding cell wall. The cell wall integrity-sensing process involves the extracellular LRX (LRR-Extensin) proteins that bind RALF (Rapid ALkalinization Factor) peptide hormones and, in vegetative tissues, interact with the transmembrane receptor kinase FERONIA (FER). This LRX/RALF/FER signaling module influences cell wall composition and regulates cell growth. The numerous proteins involved in or influenced by this module are beginning to be characterized. In a genetic screen, mutations in Apyrase 7 (APY7) were identified to suppress growth defects observed in lrx1 and fer mutants. APY7 encodes a Golgi-localized NTP-diphosphohydrolase, but opposed to other apyrases of Arabidopsis, APY7 revealed to be a negative regulator of cell growth. APY7 modulates the growth-inhibiting effect of RALF1, influences the cell wall architecture and -composition, and alters the pH of the extracellular matrix, all of which affect cell growth. Together, this study reveals a function of APY7 in cell wall formation and cell growth that is connected to growth processes influenced by the LRX/RALF/FER signaling module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Peptide Hormones , Apyrase/genetics , Apyrase/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Peptide Hormones/metabolism , Phosphotransferases/metabolism
16.
Dev Cell ; 59(4): 434-447.e8, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38295794

ABSTRACT

The cotyledons of etiolated seedlings from terrestrial flowering plants must emerge from the soil surface, while roots must penetrate the soil to ensure plant survival. We show here that the soil emergence-related transcription factor PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) controls root penetration via transducing external signals perceived by the receptor kinase FERONIA (FER) in Arabidopsis thaliana. The loss of FER function in Arabidopsis and soybean (Glycine max) mutants resulted in a severe defect in root penetration into agar medium or hard soil. Single-cell RNA sequencing (scRNA-seq) profiling of Arabidopsis roots identified a distinct cell clustering pattern, especially for root cap cells, and identified PIF3 as a FER-regulated transcription factor. Biochemical, imaging, and genetic experiments confirmed that PIF3 is required for root penetration into soil. Moreover, FER interacted with and stabilized PIF3 to modulate the expression of mechanosensitive ion channel PIEZO and the sloughing of outer root cap cells.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Phosphotransferases/metabolism , Phytochrome/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Cell ; 187(2): 312-330.e22, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157854

ABSTRACT

The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphotransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Pectins/metabolism , Phase Separation , GPI-Linked Proteins/metabolism
18.
Biomed Pharmacother ; 170: 116093, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159378

ABSTRACT

Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine and metabolic disorder that is closely associated with the proliferation and apoptosis of ovarian granulosa cells (GCs). Ampelopsis japonica (AJ) is the dried tuberous root of Ampelopsis japonica (Thunb.) Makino (A. japonica), with anti-inflammatory, antioxidant, antibacterial, antiviral, wound-healing, and antitumor properties; however, it is unclear whether this herb has a therapeutic effect on PCOS. Therefore, this study aimed to investigate the pharmacological effect of AJ on PCOS and reveal its potential mechanism of action. A PCOS rat model was established using letrozole. After establishing the PCOS model, the rats received oral treatment of AJ and Diane-35 (Positive drug: ethinylestradiol + cyproterone tablets) for 2 weeks. Lipidomics was conducted using liquid-phase mass spectrometry and chromatography. AJ significantly regulated serum hormone levels and attenuated pathological variants in the ovaries of rats with PCOS. Furthermore, AJ significantly reduced the apoptotic rate of ovarian GCs. Lipidomic analysis revealed that AJ modulated glycerolipid and glycerophospholipid metabolic pathways mediated by lipoprotein lipase (Lpl), diacylglycerol choline phosphotransferase (Chpt1), and choline/ethanolamine phosphotransferase (Cept1). Therefore, we established that AJ may reduce ovarian GC apoptosis by modulating lipid metabolism, ultimately improving ovulatory dysfunction in PCOS. Therefore, AJ is a novel candidate for PCOS treatment.


Subject(s)
Ampelopsis , Polycystic Ovary Syndrome , Female , Humans , Rats , Animals , Polycystic Ovary Syndrome/metabolism , Ampelopsis/metabolism , Lipid Metabolism , Phosphotransferases/metabolism , Phosphotransferases/therapeutic use , Choline/therapeutic use
19.
Elife ; 122023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126364

ABSTRACT

Why does protein kinase A respond to purine nucleosides in certain pathogens, but not to the cyclic nucleotides that activate this kinase in most other organisms?


Subject(s)
Leishmania donovani , Trypanosoma brucei brucei , Ligands , Phosphotransferases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Purine Nucleosides/metabolism
20.
Nat Neurosci ; 26(12): 2081-2089, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37996529

ABSTRACT

It is generally thought that under basal conditions, neurons produce ATP mainly through mitochondrial oxidative phosphorylation (OXPHOS), and glycolytic activity only predominates when neurons are activated and need to meet higher energy demands. However, it remains unknown whether there are differences in glucose metabolism between neuronal somata and axon terminals. Here, we demonstrated that neuronal somata perform higher levels of aerobic glycolysis and lower levels of OXPHOS than terminals, both during basal and activated states. We found that the glycolytic enzyme pyruvate kinase 2 (PKM2) is localized predominantly in the somata rather than in the terminals. Deletion of Pkm2 in mice results in a switch from aerobic glycolysis to OXPHOS in neuronal somata, leading to oxidative damage and progressive loss of dopaminergic neurons. Our findings update the conventional view that neurons uniformly use OXPHOS under basal conditions and highlight the important role of somatic aerobic glycolysis in maintaining antioxidant capacity.


Subject(s)
Glycolysis , Oxidative Phosphorylation , Animals , Mice , Phosphotransferases/metabolism , Oxidative Stress , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL