Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.906
1.
Theor Appl Genet ; 137(5): 115, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38691245

KEY MESSAGE: This study found that the genes, PPD-H1 and ELF3, control the acceleration of plant development under speed breeding, with important implications for optimizing the delivery of climate-resilient crops. Speed breeding is a tool to accelerate breeding and research programmes. Despite its success and growing popularity with breeders, the genetic basis of plant development under speed breeding remains unknown. This study explored the developmental advancements of barley genotypes under different photoperiod regimes. A subset of the HEB-25 Nested Association Mapping population was evaluated for days to heading and maturity under two contrasting photoperiod conditions: (1) Speed breeding (SB) consisting of 22 h of light and 2 h of darkness, and (2) normal breeding (NB) consisting of 16 h of light and 8 h of darkness. GWAS revealed that developmental responses under both conditions were largely controlled by two loci: PPDH-1 and ELF3. Allelic variants at these genes determine whether plants display early flowering and maturity under both conditions. At key QTL regions, domesticated alleles were associated with late flowering and maturity in NB and early flowering and maturity in SB, whereas wild alleles were associated with early flowering under both conditions. We hypothesize that this is related to the dark-dependent repression of PPD-H1 by ELF3 which might be more prominent in NB conditions. Furthermore, by comparing development under two photoperiod regimes, we derived an estimate of plasticity for the two traits. Interestingly, plasticity in development was largely attributed to allelic variation at ELF3. Our results have important implications for our understanding and optimization of speed breeding protocols particularly for introgression breeding and the design of breeding programmes to support the delivery of climate-resilient crops.


Genotype , Hordeum , Phenotype , Photoperiod , Plant Breeding , Quantitative Trait Loci , Hordeum/genetics , Hordeum/growth & development , Alleles , Flowers/growth & development , Flowers/genetics , Chromosome Mapping , Genes, Plant , Polymorphism, Single Nucleotide , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Mol Reprod Dev ; 91(5): e23744, 2024 May.
Article En | MEDLINE | ID: mdl-38800960

This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.


Carps , Kisspeptins , Melatonin , Photoperiod , Sexual Maturation , Animals , Melatonin/metabolism , Kisspeptins/metabolism , Kisspeptins/genetics , Female , Carps/metabolism , Carps/genetics , Carps/growth & development , Carps/physiology , Sexual Maturation/physiology , Fish Proteins/metabolism , Fish Proteins/genetics
4.
Elife ; 122024 May 14.
Article En | MEDLINE | ID: mdl-38743049

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.


Circadian Clocks , Circadian Rhythm , Animals , Circadian Rhythm/genetics , Circadian Clocks/genetics , Sea Anemones/genetics , Sea Anemones/physiology , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Photoperiod , Cnidaria/physiology , Cnidaria/genetics
5.
Theor Appl Genet ; 137(6): 125, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727862

KEY MESSAGE: PHOTOPERIOD-1 homoeologous gene copies play a pivotal role in regulation of flowering time in wheat. Here, we show that their influence also extends to spike and shoot architecture and even impacts root development. The sequence diversity of three homoeologous copies of the PHOTOPERIOD-1 gene in European winter wheat was analyzed by Oxford Nanopore amplicon-based multiplex sequencing and molecular markers in a panel of 194 cultivars representing breeding progress over the past 5 decades. A strong, consistent association with an average 8% increase in grain yield was observed for the PpdA1-Hap1 haplotype across multiple environments. This haplotype was found to be linked in 51% of cultivars to the 2NS/2AS translocation, originally introduced from Aegilops ventricosa, which leads to an overestimation of its effect. However, even in cultivars without the 2NS/2AS translocation, PpdA1-Hap1 was significantly associated with increased grain yield, kernel per spike and kernel per m2 under optimal growth conditions, conferring a 4% yield advantage compared to haplotype PpdA1-Hap4. In contrast to Ppd-B1 and Ppd-D1, the Ppd-A1 gene exhibits novel structural variations and a high number of SNPs, highlighting the evolutionary changes that have occurred in this region over the course of wheat breeding history. Additionally, cultivars carrying the photoperiod-insensitive Ppd-D1a allele not only exhibit earlier heading, but also deeper roots compared to those with photoperiod-sensitive alleles under German conditions. PCR and KASP assays have been developed that can be effectively employed in marker-assisted breeding programs to introduce these favorable haplotypes.


Haplotypes , Plant Roots , Triticum , Triticum/genetics , Triticum/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Phenotype , Polymorphism, Single Nucleotide , Plant Breeding , Photoperiod , Genes, Plant , Genetic Markers
6.
Planta ; 259(6): 150, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727772

MAIN CONCLUSION: The hop phenological cycle was described in subtropical condition of Brazil showing that flowering can happen at any time of year and this was related to developmental molecular pathways. Hops are traditionally produced in temperate regions, as it was believed that vernalization was necessary for flowering. Nevertheless, recent studies have revealed the potential for hops to flower in tropical and subtropical climates. In this work, we observed that hops in the subtropical climate of Minas Gerais, Brazil grow and flower multiple times throughout the year, independently of the season, contrasting with what happens in temperate regions. This could be due to the photoperiod consistently being inductive, with daylight hours below the described threshold (16.5 h critical). We observed that when the plants reached 7-9 nodes, the leaves began to transition from heart-shaped to trilobed-shaped, which could be indicative of the juvenile to adult transition. This could be related to the fact that the 5th node (in plants with 10 nodes) had the highest expression of miR156, while two miR172s increased in the 20th node (in plants with 25 nodes). Hop flowers appeared later, in the 25th or 28th nodes, and the expression of HlFT3 and HlFT5 was upregulated in plants between 15 and 20 nodes, while the expression of HlTFL3 was upregulated in plants with 20 nodes. These results indicate the role of axillary meristem age in regulating this process and suggest that the florigenic signal should be maintained until the hop plants bloom. In addition, it is possible that the expression of TFL is not sufficient to inhibit flowering in these conditions and promote branching. These findings suggest that the reproductive transition in hop under inductive photoperiodic conditions could occur in plants between 15 and 20 nodes. Our study sheds light on the intricate molecular mechanisms underlying hop floral development, paving the way for potential advancements in hop production on a global scale.


Flowers , Gene Expression Regulation, Plant , Humulus , Photoperiod , Plant Leaves , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Humulus/genetics , Humulus/growth & development , Humulus/physiology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/metabolism , Seasons , Brazil , MicroRNAs/genetics , MicroRNAs/metabolism , Tropical Climate
7.
Chronobiol Int ; 41(5): 738-756, 2024 May.
Article En | MEDLINE | ID: mdl-38722073

Circadian clocks, internal mechanisms that generate 24-hour rhythms, play a crucial role in coordinating biological events with day-night cycles. In light-deprived environments such as caves, species, particularly isolated obligatory troglobites, may exhibit evolutionary adaptations in biological rhythms due to light exposure. To explore rhythm expression in these settings, we conducted a comprehensive literature review on invertebrate chronobiology in global subterranean ecosystems, analyzing 44 selected studies out of over 480 identified as of September 2023. These studies revealed significant taxonomic diversity, primarily among terrestrial species like Coleoptera, with research concentrated in the United States, Italy, France, Australia, and Brazil, and a notable gap in African records. Troglobite species displayed a higher incidence of aperiodic behavior, while troglophiles showed a robust association with rhythm expression. Locomotor activity was the most studied aspect (>60%). However, approximately 4% of studies lacked information on periodicity or rhythm asynchrony, and limited research under constant light conditions hindered definitive conclusions. This review underscores the need to expand chronobiological research globally, encompassing diverse geographical regions and taxa, to deepen our understanding of biological rhythms in subterranean species. Such insights are crucial for preserving the resilience of subsurface ecosystems facing threats like climate change and habitat loss.


Caves , Circadian Rhythm , Invertebrates , Animals , Circadian Rhythm/physiology , Invertebrates/physiology , Ecosystem , Circadian Clocks/physiology , Photoperiod
8.
Bioresour Technol ; 402: 130828, 2024 Jun.
Article En | MEDLINE | ID: mdl-38734260

This study investigated the influence of yeast extract addition, carbon source, and photoperiod on the growth dynamics of Auxenochlorella pyrenoidosa FACHB-5. Employing response surface methodology, the culture strategy was optimized, resulting in the following optimal conditions: yeast extract addition at 0.75 g L-1, glucose concentration of 0.83 g L-1, and a photoperiod set at Light: Dark = 18 h: 6 h. Under these conditions, the biomass reached 1.76 g L-1 with a protein content of 750.00 g L-1, containing 40 % of essential amino acids, representing a 1.52-fold increase. Proteomic analysis revealed that the targeted cultivation strategy up-regulated genes involved in microalgal protein synthesis. The combined effect of yeast extract and glucose enhanced both the glutamine synthetase-glutamate synthetase mechanism and the free amino acid content.


Biomass , Amino Acids/metabolism , Proteomics/methods , Glutamate-Ammonia Ligase/metabolism , Photoperiod , Glucose/metabolism , Microalgae/metabolism , Algal Proteins/metabolism , Chlorophyta/metabolism
9.
Commun Biol ; 7(1): 579, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755402

As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.


Circadian Rhythm , Flowers , Photoperiod , Circadian Rhythm/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Epigenesis, Genetic , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Reproduction/genetics
10.
J Pineal Res ; 76(4): e12964, 2024 May.
Article En | MEDLINE | ID: mdl-38803014

Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of ß-NMN, a crucial intermediate in the NAD+ pathway, was found to be particularly reduced. Moreover, we demonstrated that both ß-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. ß-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.


Circadian Rhythm , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/etiology , Mice , Male , Circadian Rhythm/physiology , Melatonin/metabolism , Disease Progression , Mice, Inbred C57BL , Photoperiod , Kidney/metabolism , Kidney/pathology
11.
Curr Biol ; 34(9): 2002-2010.e3, 2024 05 06.
Article En | MEDLINE | ID: mdl-38579713

Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex.1,2,3,4 ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success.5,6 However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear. Here, we analyzed the environmental perception mechanism in the crustacean, Daphnia pulex, a seasonal (photoperiodic) ESD arthropod, capable of producing females under long days and males under short days.7,8,9,10 Through breeding experiments, we found that their circadian clock likely contributes to perception of day length. To explore this further, we created a genetically modified daphnid by knocking out the clock gene, period, using genome editing. Knockout disrupted the daphnid's ability to sustain diel vertical migration (DVM) under constant darkness, driven by the circadian clock, and leading them to produce females regardless of day length. Additionally, when exposed to an analog of juvenile hormone (JH), an endocrine factor synthesized in mothers during male production, or subjected to unfavorable conditions of high density and low food availability, these knockout daphnids produced males regardless of day length, like wild-type daphnids. Based on these findings, we propose that recognizing short days via the circadian clock is the initial step in sex determination. This recognition subsequently triggers male production by signaling the endocrine system, specifically via the JH signal. Establishment of a connection between these two processes may be the crucial element in evolution of ESD in Daphnia.


Circadian Clocks , Daphnia , Photoperiod , Sex Determination Processes , Animals , Daphnia/genetics , Daphnia/physiology , Circadian Clocks/genetics , Circadian Clocks/physiology , Female , Male
12.
Sci Rep ; 14(1): 9950, 2024 04 30.
Article En | MEDLINE | ID: mdl-38688941

The degree to which burrowing, soil-dwelling caecilian amphibians spend time on the surface is little studied, and circadian rhythm has not been investigated in multiple species of this order or by manipulating light-dark cycles. We studied surface-activity rhythm of the Indian caecilians Ichthyophis cf. longicephalus and Uraeotyphlus cf. oxyurus (Ichthyophiidae) and Gegeneophis tejaswini (Grandisoniidae), under LD, DD and DL cycles. We examined daily surface activity and the role of light-dark cycles as a zeitgeber. All three species were strictly nocturnal and G. tejaswini displayed the least surface activity. Four out of thirteen individuals, two I. cf. longicephalus, one G. tejaswini and one U. cf. oxyurus, displayed a more or less distinct surface-activity rhythm in all three cycles, and for the nine other animals the activity patterns were not evident. An approximately 24 h free-run period was observed in the three species. When the light-dark cycle was inverted, surface activity in the three species shifted to the dark phase. The findings of this study suggest that caecilians have a weak circadian surface-activity rhythm, and that the absence of light can act as a prominent zeitgeber in these burrowing, limbless amphibians.


Amphibians , Circadian Rhythm , Soil , Animals , Circadian Rhythm/physiology , Amphibians/physiology , Soil/chemistry , Photoperiod , Behavior, Animal/physiology
13.
Front Biosci (Landmark Ed) ; 29(4): 156, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38682211

BACKGROUND: Environmental conditions, such as photoperiod, affect the developmental response of plants; thus, plants have evolved molecular mechanisms to adapt to changes in photoperiod. In Bougainvillea spp., the mechanism of flower formation underlying flowering control techniques remains poorly understood, and the physiological changes that occur during flower bud formation and the expression of related genes are not yet fully understood. METHODS: In this study, we induced flowering of potted Bougainvillea glabra 'Sao Paulo' plants under light-control treatments and analyzed their effects on flowering time, number of flower buds, flowering quality, as well as quality of flower formation, which was analyzed using transcriptome sequencing. RESULTS: Light-control treatment effectively induced the rapid formation of flower buds and early flowering in B. glabra 'Sao Paulo', with the time of flower bud formation being 119 days earlier and the flowering period extended six days longer than those of the control plants. The light-control treatment caused the bracts to become smaller and lighter in color, while the number of flowers increased, and the neatness of flowering improved. Transcriptome sequencing of the apical buds identified 1235 differentially expressed genes (DEGs) related to the pathways of environmental adaptation, biosynthesis of other secondary metabolites, glycan biosynthesis and metabolism, and energy metabolism. DEGs related to gibberellin metabolism were analyzed, wherein five DEGs were identified between the control and treatment groups. Transcriptomic analysis revealed that the gibberellin regulatory pathway is linked to flowering. Specifically, GA and GID1 levels increased during this process, enhancing DELLA protein degradation. However, decreasing this protein's binding to CO did not halt FT upregulation, thereby advancing the flowering of B. glabra 'Sao Paulo'. CONCLUSIONS: The findings of our study have implications for future research on photoperiod and its role in controlling flowering timing of Bougainvillea spp.


Flowers , Gene Expression Regulation, Plant , Photoperiod , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Nyctaginaceae/genetics , Nyctaginaceae/growth & development , Nyctaginaceae/metabolism , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
14.
Trop Anim Health Prod ; 56(3): 125, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38613714

Photoperiod manipulation is emerging as an effective approach for regulating physiological functions in fish. This study aimed to assess the impact of photoperiod on the growth performance, haematological responses, and economic returns of the endangered and highly valued Indian butter catfish, Ompok bimaculatus. Fish with an average body weight of 28.60 ± 4.78 g were randomly placed in six FRP tanks, each measuring 120 × 45 × 60 cm3. Each tank contained 20 fish exposed to a light intensity of 1500 lx under different photoperiods [24:0 light: dark (L: D), 15 L: 9D, 12 L: 12D, 9 L: 15D, 0 L: 24D and a natural photoperiod (control)], and fed at a daily rate of 2% of their body weight twice daily for 60 days. The fish in the 15 L: 9D photoperiod exhibited the highest final weight (g), percentage weight gain, specific growth rate (SGR) and survival rate, while the lowest was displayed in 24 L: 0D photoperiod group. The feed conversion ratio (FCR) was at its lowest in the catfish subjected to the 15 L: 9D photoperiod. Regarding haematological parameters, the 15 L: 9D photoperiod group showed higher total erythrocyte count, total leukocyte count, haemoglobin levels, and haematocrit values compared to the other groups. Conversely, the 0 L: 24D group, which experienced prolonged darkness, exhibited the lowest values in these parameters. Moreover, the 24 L: 0D, 9 L: 15D, and 0 L: 24D groups displayed a lower mean corpuscular volume (MCV) but higher mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) when compared to the control group. The economic analysis revealed that O. bimaculatus reared in a moderate photoperiod (15 L: 9D) displayed better growth, feed utilization, and overall health. This finding suggests that adopting a 15 L: 9D photoperiod can lead to enhanced production and improved economic returns for farmers culturing this high-value catfish in the future.


Catfishes , Animals , Photoperiod , Body Weight , Erythrocyte Indices/veterinary , Hematocrit/veterinary
15.
PLoS One ; 19(4): e0302388, 2024.
Article En | MEDLINE | ID: mdl-38648207

The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.


Liver , Salmo salar , Animals , Liver/metabolism , Salmo salar/genetics , Salmo salar/growth & development , Salmo salar/metabolism , Photoperiod , DNA Methylation , Genome , Transcriptome , Transcription Factors/metabolism , Transcription Factors/genetics , Seawater , Lipid Metabolism/genetics , Fish Proteins/genetics , Fish Proteins/metabolism
16.
Mol Metab ; 84: 101946, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657735

Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.


Body Temperature , Circadian Rhythm , Energy Metabolism , Photoperiod , Ultradian Rhythm , Animals , Mice , Ultradian Rhythm/physiology , Energy Metabolism/physiology , Circadian Rhythm/physiology , Body Temperature/physiology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/physiology , Wakefulness/physiology , Sleep/physiology
17.
Chronobiol Int ; 41(5): 725-737, 2024 May.
Article En | MEDLINE | ID: mdl-38616310

Adolescent sleep disturbances and circadian delays pose significant challenges to mood and daytime functioning. In this narrative review, we explore the impact of light on sleep and highlight the importance of monitoring and managing light exposure in adolescents throughout the day and night. The benefits of daylight exposure in mitigating sleep and circadian disruptions are well-established; however, interventions targeting access to daylight in adolescents remain understudied and underutilized. The primary aim of this narrative review is to bring attention to this gap in the literature and propose the need for institutional-level interventions that promote access to daylight, especially considering adolescents' early school start times and substantial time spent indoors on weekdays. School-led interventions, such as active commuting to school and outdoor curriculums, have promising effects on sleep and circadian rhythms. Additionally, practical measures to optimize natural light in classrooms, including managing blinds and designing conducive environments, should also be considered. While future studies are necessary to facilitate the implementation of interventions, the potential for these school-level interventions to support adolescent sleep health is evident. Aiming for integration of individual-level regulation and institutional-level intervention of light exposure is necessary for optimal outcomes.


Circadian Rhythm , Schools , Sleep , Humans , Circadian Rhythm/physiology , Adolescent , Sleep/physiology , Light , Photoperiod , Adolescent Behavior/physiology
18.
Biomolecules ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38672481

Soybean [Glycine max (L.) Merr.] is a short-day (SD) plant that is sensitive to photoperiod, which influences flowering, maturity, and even adaptation. TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors have been shown to regulate photoperiodic flowering. However, the roles of TCPs in SD plants such as soybean, rice, and maize remain largely unknown. In this study, we cloned the GmTCP40 gene from soybean and investigated its expression pattern and function. Compared with wild-type (WT) plants, GmTCP40-overexpression plants flowered earlier under long-day (LD) conditions but not under SD conditions. Consistent with this, the overexpression lines showed upregulation of the flowering-related genes GmFT2a, GmFT2b, GmFT5a, GmFT6, GmAP1a, GmAP1b, GmAP1c, GmSOC1a, GmSOC1b, GmFULa, and GmAG under LD conditions. Further investigation revealed that GmTCP40 binds to the GmAP1a promoter and promotes its expression. Analysis of the GmTCP40 haplotypes and phenotypes of soybean accessions demonstrated that one GmTCP40 haplotype (Hap6) may contribute to delayed flowering at low latitudes. Taken together, our findings provide preliminary insights into the regulation of flowering time by GmTCP40 while laying a foundation for future research on other members of the GmTCP family and for efforts to enhance soybean adaptability.


Flowers , Gene Expression Regulation, Plant , Glycine max , Photoperiod , Plant Proteins , Flowers/genetics , Flowers/growth & development , Glycine max/genetics , Glycine max/growth & development , Glycine max/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Up-Regulation/genetics
19.
J Plant Physiol ; 297: 154256, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657393

Basic helix-loop-helix (bHLH) transcription factors play various important roles in plant growth and development. In this study, a AabHLH48 was identified in the floral organ of Adonis amurensis, a perennial herb that can naturally complete flowering at extreme low temperatures. AabHLH48 was widely expressed in various tissues or organs of A. amurensis and was localized in the nucleus. Overexpression of AabHLH48 promotes early flowering in Arabidopsis under both photoperiod (12 h light/12 h dark and 16 h light/8 h dark) and temperature (22 and 18 °C) conditions. Transcriptome sequencing combined with quantitative real-time PCR analysis showed that overexpression of AabHLH48 caused a general upregulation of genes involved in floral development in Arabidopsis, especially for AtAGAMOUS-LIKE 8/FRUITFULL (AtAGL8/FUL). The yeast one-hybrid assay revealed that AabHLH48 has transcriptional activating activity and can directly bind to the promoter region of AtAGL8/FUL. These results suggest that the overexpression of AabHLH48 promoting early flowering in Arabidopsis is associated with the upregulated expression of AtAGL8/FUL activated by AabHLH48. This indicates that AabHLH48 can serve as an important genetic resource for improving flowering-time control in other ornamental plants or crops.


Adonis , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Adonis/genetics , Adonis/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
20.
Exp Appl Acarol ; 92(4): 777-794, 2024 May.
Article En | MEDLINE | ID: mdl-38637448

The European red mite Panonychus ulmi (Koch) is widely distributed and it can severely affect pome fruit crops, particularly apple. Pest outbreaks are related to an overuse of non-selective pesticide treatments that lead to the development of resistance and the absence of natural enemies in the orchard. A key aspect to optimize the use of pesticide treatments in the context of IPM is to increase the knowledge on the biology and ecology of the pest to better predict population dynamics and outbreaks. For the European red mite, knowledge on the conditions that lead to diapause breaking by winter eggs is essential to model population dynamics. To increase this knowledge, winter eggs were collected during field surveys in northen Spain during three years and egg hatching was monitored under controlled temperature and photoperiod conditions in the laboratory. The "number of days exposed to cold temperatures" was the most significant factor that positively affected hatching of overwintering eggs. The time required for 50% of the egg population to hatch (T50%) was also negatively modulated by the duration of exposure to cold temperature. The temperature threshold for postdiapause eggs development collected from the field was estimated between 5 and 6 ºC in 2005 and 2007, respectively. Moreover, the degree-days required for post diapause development were estimated between 263.2 and 270.3, depending on the year of collection. Collectively, we provide additional information on the diapause termination and postdiapause development of the European red mite that may effectively contribute to optimize pest population models.


Diapause , Ovum , Temperature , Tetranychidae , Animals , Tetranychidae/physiology , Tetranychidae/growth & development , Ovum/growth & development , Ovum/physiology , Spain , Photoperiod , Cold Temperature , Female , Seasons
...