Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
1.
Immun Inflamm Dis ; 12(8): e70001, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39172009

ABSTRACT

BACKGROUND: The inhalation of paraquat (PQ), one of the most widely used herbicides in the world, can result in lung injury. Curcuma longa (Cl) has long history in traditional and folk medicine for the treatment of a wide range of disorders including respiratory diseases. AIM: The aim of the present work was to evaluate the preventive effect of Cl on inhaled PQ-induced lung injury in rats. METHODS: Male Wistar rats were divided into 8 groups (n = 7), one group exposed to saline (control) and other groups exposed to PQ aerosol. Saline (PQ), Cl extract, (two doses), curcumin (Cu), pioglitazone (Pio), and the combination of Cl-L + Pio and dexamethasone (Dex) were administered during the exposure period to PQ. Total and differential white blood cell (WBC) counts, oxidant and antioxidant indicators in the bronchoalveolar lavage (BALF), interleukin (IL)-10, and tumor necrosis alpha (TNF-α) levels in the lung tissues, lung histologic lesions score, and air way responsiveness to methacholine were evaluated. RESULTS: WBC counts (Total and differential), malondialdehyde level, tracheal responsiveness (TR), IL-10, TNF-α and histopathological changes of the lung were markedly elevated but total thiol content and the activities of catalase and superoxide dismutase were decreased in the BALF in the PQ group. Both doses of Cl, Cu, Pio, Cl-L + Pio, and Dex markedly improved all measured variables in comparison with the PQ group. CONCLUSION: CI, Pio, and Cl-L + Pio improved PQ-induced lung inflammation and oxidative damage comparable with the effects of Dex.


Subject(s)
Curcuma , PPAR gamma , Paraquat , Pioglitazone , Plant Extracts , Rats, Wistar , Animals , Pioglitazone/pharmacology , Pioglitazone/therapeutic use , Paraquat/toxicity , Male , Rats , Curcuma/chemistry , PPAR gamma/agonists , PPAR gamma/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/prevention & control , Lung Injury/drug therapy , Lung Injury/pathology , Lung Injury/metabolism , Dexamethasone/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Oxidative Stress/drug effects , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Antioxidants/pharmacology , Curcumin/pharmacology , Curcumin/therapeutic use
2.
Medicina (Kaunas) ; 60(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39202556

ABSTRACT

Background and Objectives: This study aimed to evaluate the potential chemopreventive effect of antidiabetic medications, specifically metformin and pioglitazone, on lung cancer in patients with type 2 diabetes mellitus (T2DM). Additionally, the potential dose-response relationship for metformin use was analyzed. Methods: We conducted a retrospective cohort study utilizing comprehensive national health insurance and cancer registry databases to gather a large cohort of T2DM patients. Cox proportional hazards regression models were used to assess the risk of lung cancer across different antidiabetic medication groups, adjusting for potential confounders such as age and gender. A dose-response analysis was conducted for metformin users. Results: Our results indicated that metformin users had a significantly lower lung cancer risk than the reference group (HR = 0.69, 95% CI [0.55-0.86], p = 0.001). The risk reduction increased with higher cumulative metformin doses: a metformin cumulative dose between 1,370,000 and 2,976,000 had an HR of 0.61 (95% CI [0.49-0.75], p < 0.001) vs. cumulative metformin dose >2,976,000 which had an HR of 0.35 (95% CI [0.21-0.59], p < 0.001). No significant association between pioglitazone use and the risk of lung cancer was found (HR = 1.00, 95% CI [0.25-4.02]). Conclusions: This study shows that metformin may have a dose-dependent chemopreventive effect against lung cancer in T2DM, while the impact of pioglitazone remains unclear and requires further investigation.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Lung Neoplasms , Metformin , Humans , Metformin/therapeutic use , Lung Neoplasms/prevention & control , Retrospective Studies , Male , Female , Middle Aged , Diabetes Mellitus, Type 2/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Aged , Hypoglycemic Agents/therapeutic use , Lithuania/epidemiology , Cohort Studies , Pioglitazone/therapeutic use , Proportional Hazards Models , Chemoprevention/methods , Chemoprevention/statistics & numerical data , Adult
3.
J Neuroinflammation ; 21(1): 194, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097742

ABSTRACT

Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.


Subject(s)
Cognitive Dysfunction , Microglia , PPAR gamma , Pioglitazone , Animals , Male , Mice , Brain Concussion/metabolism , Brain Concussion/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Pioglitazone/pharmacology , Pioglitazone/therapeutic use , PPAR gamma/metabolism
4.
N Z Med J ; 137(1600): 66-75, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39088811

ABSTRACT

AIMS: To assess whether diabetes treatment satisfaction differs by ethnicity among participants with insufficient glycaemic control of type 2 diabetes mellitus in a clinical trial involving additional oral diabetes medications. Patient satisfaction is used as an indicator of healthcare quality. However, data on patients' diabetes treatment satisfaction in the context of insufficient glycaemic control is limited. METHODS: Individuals with type 2 diabetes and an HbA1c of 58-110mmol/mol (7.5-12.5%) were recruited across Aotearoa New Zealand to participate in an 8-month randomised crossover study of vildagliptin and pioglitazone as add-on therapy to metformin and/or sulfonylurea. Participants completed the Diabetes Treatment Satisfaction Questionnaire (DTSQ) at baseline pre-randomisation. Treatment satisfaction scores were compared between ethnic groups and other characteristics using the analysis of variance and linear regression. Perceived hyper- and hypoglycaemia were summarised separately. RESULTS: Between February 2019 and March 2020, 346 participants (41% women, 32% Pacific peoples, 23% Maori, 26% European) completed the DTSQ. Mean (SD) age was 57.5 (10.9) years, diabetes duration was 9 (6.3) years and HbA1c was 75 (12)mmol/mol (9.0[3.2]%). At study entry, 40% were receiving monotherapy for diabetes. Treatment satisfaction was rated highly, with a score of 29(6) (interquartile range 25-33). Pacific peoples and older people reported greater treatment satisfaction than other groups (p<0.001). CONCLUSIONS: Diabetes treatment satisfaction was high, particularly among Pacific peoples, despite suboptimal glycaemic control and insufficient glucose-lowering therapy.


Subject(s)
Cross-Over Studies , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Patient Satisfaction , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/ethnology , Female , New Zealand , Male , Middle Aged , Hypoglycemic Agents/therapeutic use , Aged , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Metformin/therapeutic use , Pioglitazone/therapeutic use , Sulfonylurea Compounds/therapeutic use , Drug Therapy, Combination , Surveys and Questionnaires , Ethnicity/statistics & numerical data
5.
J Am Coll Cardiol ; 84(6): 540-557, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39084829

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is characterized by insulin resistance (IR) and dysregulated insulin secretion. Glucagon-like peptide-1 receptor agonist liraglutide promotes insulin secretion, whereas thiazolidinedione-pioglitazone decreases IR. OBJECTIVES: This study aimed to compare the efficacies of increasing insulin secretion vs decreasing IR strategies for improving myocardial perfusion, energetics, and function in T2D via an open-label randomized crossover trial. METHODS: Forty-one patients with T2D (age 63 years [95% CI: 59-68 years], 27 [66%] male, body mass index 27.8 kg/m2) [95% CI: 26.1-29.5 kg/m2)]) without cardiovascular disease were randomized to liraglutide or pioglitazone for a 16-week treatment followed by an 8-week washout and a further 16-week treatment with the second trial drug. Participants underwent rest and dobutamine stress 31phosphorus magnetic resonance spectroscopy and cardiovascular magnetic resonance for measuring the myocardial energetics index phosphocreatine to adenosine triphosphate ratio, myocardial perfusion (rest, dobutamine stress myocardial blood flow, and myocardial perfusion reserve), left ventricular (LV) volumes, systolic and diastolic function (mitral in-flow E/A ratio), before and after treatment. The 6-minute walk-test was used for functional assessments. RESULTS: Pioglitazone treatment resulted in significant increases in LV mass (96 g [95% CI: 68-105 g] to 105 g [95% CI: 74-115 g]; P = 0.003) and mitral-inflow E/A ratio (1.04 [95% CI: 0.62-1.21] to 1.34 [95% CI: 0.70-1.54]; P = 0.008), and a significant reduction in LV concentricity index (0.79 mg/mL [95% CI: 0.61-0.85 mg/mL] to 0.73 mg/mL [95% CI: 0.56-0.79 mg/mL]; P = 0.04). Liraglutide treatment increased stress myocardial blood flow (1.62 mL/g/min [95% CI: 1.19-1.75 mL/g/min] to 2.08 mL/g/min [95% CI: 1.57-2.24 mL/g/min]; P = 0.01) and myocardial perfusion reserve (2.40 [95% CI: 1.55-2.68] to 2.90 [95% CI: 1.83-3.18]; P = 0.01). Liraglutide treatment also significantly increased the rest (1.47 [95% CI: 1.17-1.58] to 1.94 [95% CI: 1.52-2.08]; P =0.00002) and stress phosphocreatine to adenosine triphosphate ratio (1.32 [95% CI: 1.05-1.42] to 1.58 [95% CI: 1.19-1.71]; P = 0.004) and 6-minute walk distance (488 m [95% CI: 458-518 m] to 521 m [95% CI: 481-561 m]; P = 0.009). CONCLUSIONS: Liraglutide treatment resulted in improved myocardial perfusion, energetics, and 6-minute walk distance in patients with T2D, whereas pioglitazone showed no effect on these parameters (Lean-DM [Targeting Beta-cell Failure in Lean Patients With Type 2 Diabetes]; NCT04657939).


Subject(s)
Cross-Over Studies , Diabetes Mellitus, Type 2 , Exercise Tolerance , Hypoglycemic Agents , Liraglutide , Pioglitazone , Humans , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Middle Aged , Liraglutide/therapeutic use , Liraglutide/pharmacology , Female , Aged , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Exercise Tolerance/drug effects , Exercise Tolerance/physiology , Pioglitazone/therapeutic use , Coronary Circulation/drug effects , Coronary Circulation/physiology , Insulin Resistance/physiology
6.
Int Immunopharmacol ; 139: 112757, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39067401

ABSTRACT

Sepsis is a severe immune response to an infection. It is associated with multiple organ dysfunction syndrome (MODs) along with systemic and neuronal inflammatory response. This study focused on the acute neurologic dysfunction associated with sepsis by exploring the role of PPARγ/SIRT1 pathway against sepsis. We studied the role of this axis in ameliorating sepsis-associated encephalopathy (SAE) and its linked neurobehavioral disorders by using pioglitazone (PIO). This PPARγ agonist showed neuroprotective actions in neuroinflammatory disorders. Sepsis was induced in mice by LPS (10 mg/kg). Survival rate and MODs were assessed. Furthermore, behavioral deficits, cerebral oxidative, inflammatory, and apoptotic markers, and the cerebral expression level of SIRT1 were determined. In this study, we observed that PIO attenuated sepsis-induced cerebral injury. PIO significantly enhanced survival rate, attenuated MODs, and systemic inflammatory response in septic mice. PIO also promoted cerebral SIRT1 expression and reduced cerebral activation of microglia, oxidative stress, HMGB, iNOS, NLRP3 and caspase-3 along with an obvious improvement in behavioral deficits and cerebral pathological damage induced by LPS. Most of the neuroprotective effects of PIO were abolished by EX-527, a SIRT1 inhibitor. These results highlight that the neuroprotective effect of PIO in SAE is mainly SIRT1-dependent.


Subject(s)
Lipopolysaccharides , Neuroprotective Agents , Pioglitazone , Sepsis-Associated Encephalopathy , Signal Transduction , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Pioglitazone/therapeutic use , Pioglitazone/pharmacology , Sepsis-Associated Encephalopathy/drug therapy , Signal Transduction/drug effects , Male , Mice , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Sepsis/drug therapy , Sepsis/complications , PPAR gamma/metabolism , PPAR gamma/agonists , Mice, Inbred C57BL , Oxidative Stress/drug effects , Brain/drug effects , Brain/pathology , Brain/metabolism , Disease Models, Animal , Microglia/drug effects
7.
Medicina (Kaunas) ; 60(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929608

ABSTRACT

Bacground and Objectives: The objective of this study is to investigate how different therapies modulating insulin resistance, either causally or consequently, affect metabolic parameters in treatment-naïve subjects with T2DM. Subjects and Methods: A total of 212 subjects were assigned to receive either a tight Japanese diet (n = 65), pioglitazone at doses ranging from 15-30 mg/day (n = 70), or canagliflozin at doses ranging from 50-100 mg/day (n = 77) for a duration of three months. Correlations and changes (Δ) in metabolic parameters relative to insulin resistance were investigated. Results: Across these distinct therapeutic interventions, ΔHOMA-R exhibited significant correlations with ΔFBG and ΔHOMA-B, while demonstrating a negative correlation with baseline HOMA-R. However, other parameters such as ΔHbA1c, ΔBMI, ΔTC, ΔTG, Δnon-HDL-C, or ΔUA displayed varying patterns depending on the treatment regimens. Participants were stratified into two groups based on the median value of ΔHOMA-R: the lower half (X) and upper half (Y). Group X consistently demonstrated more pronounced reductions in FBG compared to Group Y across all treatments, while other parameters including HbA1c, HOMA-B, TC, TG, HDL-C, non-HDL-C, TG/HDL-C ratio, or UA exhibited distinct regulatory responses depending on the treatment administered. Conclusions: These findings suggest that (1) regression to the mean is observed in the changes in insulin resistance across these therapies and (2) the modulation of insulin resistance with these therapies, either causally or consequentially, results in differential effects on glycemic parameters, beta-cell function, specific lipids, body weight, or UA.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Insulin Resistance , Pioglitazone , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Insulin Resistance/physiology , Male , Female , Middle Aged , Pioglitazone/therapeutic use , Hypoglycemic Agents/therapeutic use , Canagliflozin/therapeutic use , Blood Glucose/analysis , Aged , Glycated Hemoglobin/analysis , Adult
8.
J Diabetes Res ; 2024: 3470654, 2024.
Article in English | MEDLINE | ID: mdl-38846063

ABSTRACT

Aims: We compared the glycaemic and cardiorenal effects of combination therapy involving metformin, pioglitazone, sodium-glucose-linked-cotransporter-2 inhibitor (SGLT2i), and glucagon-like peptide-1 receptor agonist (GLP-1RA) versus a more conventional glucocentric treatment approach combining sulphonylureas (SU) and insulin from the point of type 2 diabetes (T2D) diagnosis. Methods: We performed a retrospective cohort study using the Global Collaborative Network in TriNetX. We included individuals prescribed metformin, pioglitazone, an SGLT2i, and a GLP-1 RA for at least 1-year duration, within 3 years of a T2D diagnosis, and compared with individuals prescribed insulin and a SU within the same temporal pattern. Individuals were followed up for 3 years. Results: We propensity score-matched (PSM) for 26 variables. A total of 1762 individuals were included in the final analysis (n = 881 per cohort). At 3-years, compared to the insulin/SU group, the metformin/pioglitazone/SGLT2i/GLP-1 RA group had a lower risk of heart failure (HR 0.34, 95% CI 0.13-0.87, p = 0.018), acute coronary syndrome (HR 0.29, 95% CI 0.12-0.67, p = 0.002), stroke (HR 0.17, 95% CI 0.06-0.49, p < 0.001), chronic kidney disease (HR 0.50, 95% CI 0.25-0.99, p = 0.042), and hospitalisation (HR 0.59, 95% CI 0.46-0.77, p < 0.001). Conclusions: In this real-world study, early, intensive polytherapy, targeting the distinct pathophysiological defects in T2D, is associated with significantly more favourable cardiorenal outcomes, compared to insulin and SU therapy.


Subject(s)
Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Insulin , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Sulfonylurea Compounds , Humans , Diabetes Mellitus, Type 2/drug therapy , Female , Male , Hypoglycemic Agents/therapeutic use , Retrospective Studies , Middle Aged , Aged , Metformin/therapeutic use , Sulfonylurea Compounds/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Insulin/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Pioglitazone/therapeutic use , Databases, Factual , Blood Glucose/metabolism , Blood Glucose/drug effects , Treatment Outcome
9.
J Diabetes Investig ; 15(9): 1220-1230, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38775319

ABSTRACT

AIMS/INTRODUCTION: We conducted a 5 year post-trial monitoring study of our previous randomized 24 week, open-label, active-controlled trial that showed beneficial effects of ipragliflozin on metabolic dysfunction-associated steatotic liver disease (MASLD), identical to those of pioglitazone. MATERIALS AND METHODS: In our previous trial, 66 patients with MASLD and type 2 diabetes were randomly assigned to receive either ipragliflozin (n = 32) or pioglitazone (n = 34). Upon its conclusion, 61 patients were monitored for 5 years for outcome measures of MASLD, glycemic, and metabolic parameters. Differences between the two groups were analyzed at baseline, 24 weeks, and 5 years; changes in outcome measures from baseline were also evaluated. RESULTS: At 5 years, the mean liver-to-spleen attenuation ratio increased by 0.20 (from 0.78 ± 0.24 to 0.98 ± 0.20) in the ipragliflozin group and by 0.26 (from 0.76 ± 0.26 to 1.02 ± 0.20) in the pioglitazone group (P = 0.363). Similarly, ipragliflozin and pioglitazone significantly improved serum aminotransferase, HbA1c, and fasting plasma glucose levels over 5 years. In the ipragliflozin group, significant reductions in body weight and visceral fat area observed at 24 weeks were sustained throughout the 5 years (-4.0%, P = 0.0075 and -7.6%, P = 0.045, respectively). Moreover, ipragliflozin significantly reduced the values of fibrosis markers (serum ferritin and FIB-4 index), was well tolerated, and had a higher continuation rate for 5 years compared with pioglitazone. CONCLUSIONS: Ipragliflozin and pioglitazone improved MASLD and glycemic parameters over 5 years. In the ipragliflozin group, significant reductions in body weight and visceral fat mass persisted for 5 years.


Subject(s)
Diabetes Mellitus, Type 2 , Glucosides , Pioglitazone , Thiophenes , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Pioglitazone/therapeutic use , Thiophenes/therapeutic use , Male , Glucosides/therapeutic use , Female , Middle Aged , Follow-Up Studies , Hypoglycemic Agents/therapeutic use , Aged , Blood Glucose/analysis , Treatment Outcome , Fatty Liver/drug therapy , Fatty Liver/etiology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
10.
J Diabetes Complications ; 38(7): 108777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788522

ABSTRACT

AIMS: Guidelines emphasize screening high-risk patients for metabolic dysfunction-associated steatotic liver disease (MASLD) with a calculated FIB-4 score for therapy to reverse fibrosis. We aimed to determine whether FIB-4 can effectively screen and monitor changes in steatohepatitis (MASH). METHODS: Data were retrieved from the NIDDK-CR R4R central repository, of the CRN/PIVENS (pioglitazone vs vitamin E vs placebo) trial of adult patients without diabetes mellitus and with MASLD. RESULTS: 220 patients with MASLD had alanine transaminase (ALT), aspartate aminotransferase (AST) and platelet count, to calculate FIB-4, and repeat liver biopsies for histological MASLD activity scores (NAS). Compared to NAS score of 2, Fib-4 was higher at NAS 5) (p = 0.03), and NAS score of 6 (p = 0.02). FIB-4 correlated with cellular ballooning (r = 0.309, p < 0.001). Levels of ALT (ANOVA, p = 0.016) and AST (ANOVA p = 0.0008) were associated with NAS. NAS improved with pioglitazone by 39 %, p < 0.001 and with vitamin E by 36 %, p < 0.001. Pioglitazone and vitamin E both improved histological sub-scores for steatosis, and inflammation, without statistical changes in fibrosis grade. Changes in FIB-4 correlated with changes in NAS (r = 0.237, p < 0.001). CONCLUSIONS: In this post hoc analysis, changes in FIB-4 were associated with changes of steatohepatitis. Medication known to treat steatohepatitis, may be considered, before the onset of advanced fibrosis.


Subject(s)
Liver Cirrhosis , Pioglitazone , Vitamin E , Humans , Male , Female , Middle Aged , Pioglitazone/therapeutic use , Liver Cirrhosis/diagnosis , Liver Cirrhosis/blood , Liver Cirrhosis/pathology , Adult , Vitamin E/blood , Vitamin E/therapeutic use , Aspartate Aminotransferases/blood , Alanine Transaminase/blood , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Liver/pathology , Thiazolidinediones/therapeutic use , Hypoglycemic Agents/therapeutic use , Mass Screening/methods , Severity of Illness Index , Biomarkers/blood , Biomarkers/analysis , Platelet Count , Biopsy , Fatty Liver/diagnosis , Fatty Liver/pathology , Fatty Liver/complications , Disease Progression
11.
Front Endocrinol (Lausanne) ; 15: 1325230, 2024.
Article in English | MEDLINE | ID: mdl-38818508

ABSTRACT

Introduction: Polycystic ovary syndrome (PCOS) is often associated with metabolic-associated fatty liver disease (MAFLD). MAFLD has been associated with altered hepatic function, systemic dysmetabolism, and abnormal circulating levels of signaling molecules called organokines. Here, we assessed the effects of two randomized treatments on a set of organokines in adolescent girls with PCOS and without obesity, and report the associations with circulating biomarkers of liver damage, which were assessed longitudinally in the aforementioned studies as safety markers. Materials and methods: Liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT)] were assessed as safety markers in previous randomized pilot studies comparing the effects of an oral contraceptive (OC) with those of a low-dose combination of spironolactone-pioglitazone-metformin (spiomet) for 1 year. As a post hoc endpoint, the organokines fibroblast growth factor-21 (FGF21), diazepam-binding protein-1 (DBI), and meteorin-like protein (METRNL) were assessed by ELISA after 6 months of OC (N = 26) or spiomet (N = 28). Auxological, endocrine-metabolic, body composition (using DXA), and abdominal fat partitioning (using MRI) were also evaluated. Healthy, age-matched adolescent girls (N = 17) served as controls. Results: Circulating ALT and GGT levels increased during OC treatment and returned to baseline concentrations in the post-treatment phase; in contrast, spiomet treatment elicited no detectable changes in ALT and GGT concentrations. In relation to organokines after 6 months of treatment, (1) FGF21 levels were significantly higher in PCOS adolescents than in control girls; (2) DBI levels were lower in OC-treated girls than in controls and spiomet-treated girls; and (3) no differences were observed in METRNL concentrations between PCOS girls and controls. Serum ALT and GGT levels were directly correlated with circulating METRNL levels only in OC-treated girls (R = 0.449, P = 0.036 and R = 0.552, P = 0.004, respectively). Conclusion: The on-treatment increase in ALT and GGT levels occurring only in OC-treated girls is associated with circulating METRNL levels, suggesting enhanced METRNL synthesis as a reaction to the hepatic changes elicited by OC treatment. Clinical Trial Registration: https://doi.org, identifiers 10.1186/ISRCTN29234515, 10.1186/ISRCTN11062950.


Subject(s)
Alanine Transaminase , Fibroblast Growth Factors , Liver , Metformin , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/blood , Adolescent , Metformin/therapeutic use , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/metabolism , Liver/drug effects , Liver/metabolism , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Pioglitazone/therapeutic use , Biomarkers/blood , Spironolactone/therapeutic use , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/metabolism , gamma-Glutamyltransferase/blood , gamma-Glutamyltransferase/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Contraceptives, Oral/adverse effects , Contraceptives, Oral/therapeutic use , Contraceptives, Oral/administration & dosage , Hypoglycemic Agents/therapeutic use
12.
Hereditas ; 161(1): 17, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755697

ABSTRACT

BACKGROUND: This study investigates the therapeutic mechanisms of dendrobine, a primary bioactive compound in Dendrobium nobile, for Metabolic Associated Fatty Liver Disease (MASLD) management. Utilizing network pharmacology combined with experimental validation, the clinical effectiveness of dendrobine in MASLD treatment was assessed and analyzed. RESULTS: The study demonstrates significant improvement in liver function among MASLD patients treated with Dendrobium nobile. Network pharmacology identified key targets such as Peroxisome Proliferator-Activated Receptor Gamma (PPARG), Interleukin 6 (IL6), Tumor Necrosis Factor (TNF), Interleukin 1 Beta (IL1B), and AKT Serine/Threonine Kinase 1 (AKT1), with molecular docking confirming their interactions. Additionally, dendrobine significantly reduced ALT and AST levels in palmitic acid-treated HepG2 cells, indicating hepatoprotective properties and amelioration of oxidative stress through decreased Malondialdehyde (MDA) levels and increased Superoxide Dismutase (SOD) levels. CONCLUSION: Dendrobine mitigates liver damage in MASLD through modulating inflammatory and immune responses and affecting lipid metabolism, potentially by downregulating inflammatory mediators like TNF, IL6, IL1B, and inhibiting AKT1 and Signal Transducer and Activator of Transcription 3 (STAT3). This study provides a theoretical basis for the application of dendrobine in MASLD treatment, highlighting its potential as a therapeutic agent.


Subject(s)
Alkaloids , Network Pharmacology , Non-alcoholic Fatty Liver Disease , Alkaloids/therapeutic use , Humans , Metabolic Syndrome/complications , Liver/drug effects , Liver/pathology , Liver/physiology , Pioglitazone/therapeutic use , Metformin/therapeutic use , Hep G2 Cells , Dendrobium/chemistry , Network Pharmacology/methods , Protein Interaction Maps , Molecular Docking Simulation , Real-Time Polymerase Chain Reaction , Non-alcoholic Fatty Liver Disease/drug therapy , Gene Regulatory Networks
13.
Diabetes Obes Metab ; 26(8): 3137-3146, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699792

ABSTRACT

AIM: To examine the effects of the thiazolidinedione (TZD) pioglitazone on reducing ketone bodies in non-obese patients with T2DM treated with the sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin. METHODS: Crossover trials with two periods, each treatment period lasting 4 weeks, with a 4-week washout period, were conducted. Participants were randomly assigned in a 1:1 ratio to receive pioglitazone combined with canagliflozin (PIOG + CANA group) versus canagliflozin monotherapy (CANA group). The primary outcome was change (Δ) in ß-hydroxybutyric acid (ß-HBA) before and after the CANA or PIOG + CANA treatments. The secondary outcomes were Δchanges in serum acetoacetate and acetone, the rate of conversion into urinary ketones, and Δchanges in factors related to SGLT2 inhibitor-induced ketone body production including non-esterified fatty acids (NEFAs), glucagon, glucagon to insulin ratio, and noradrenaline (NA). Analyses were performed in accordance with the intention-to-treat principle. RESULTS: Twenty-five patients with a mean age of 49 ± 7.97 years and a body mass index of 25.35 ± 2.22 kg/m2 were included. One patient discontinued the study during the washout period. Analyses revealed a significant increase in the levels of serum ketone bodies and an elevation in the rate of conversion into urinary ketones after both interventions. However, differernces in levels of ketone bodies (except for acetoacetate) in the PIOG + CANA group were significantly smaller than in the CANA group (219.84 ± 80.21 µmol/L vs. 317.69 ± 83.07 µmol/L, p < 0.001 in ß-HBA; 8.98 ± 4.17 µmol/L vs. 12.29 ± 5.27 µmol/L, p = 0.018 in acetone). NEFA, glucagon, glucagon to insulin ratio, and NA were also significantly increased after both CANA and PIOG + CANA treatments; while only NEFAs demonstrated a significant difference between the two groups. Correlation analyses revealed a significant association between the difference in Δchanges in serum NEFA levels with the differences in Δchanges in ketones of ß-HBA and acetoacetate. CONCLUSION: Supplementation of pioglitazone could alleviate canagliflozin-induced ketone bodies. This benefit may be closely associated with decreased substrate NEFAs rather than other factors including glucagon, fasting insulin and NA.


Subject(s)
Canagliflozin , Cross-Over Studies , Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Hypoglycemic Agents , Ketone Bodies , Pioglitazone , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Middle Aged , Ketone Bodies/blood , Female , Pioglitazone/therapeutic use , Canagliflozin/therapeutic use , Hypoglycemic Agents/therapeutic use , 3-Hydroxybutyric Acid/blood , Acetoacetates/blood , Insulin/blood , Adult , Glucagon/blood , Thiazolidinediones/therapeutic use , Fatty Acids, Nonesterified/blood , Blood Glucose/drug effects , Blood Glucose/metabolism
14.
J Assoc Physicians India ; 72(1): 32-42, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38736072

ABSTRACT

BACKGROUND: The efficacy and safety of lobeglitazone sulfate has been reported only in the Korean population, and no study has been conducted in India. MATERIALS AND METHODS: In this 16-week randomized, double-blind, and multicenter study, the efficacy and safety of lobeglitazone sulfate 0.5 mg were evaluated with pioglitazone 15 mg. Type 2 diabetes mellitus (T2DM) patients with ≥7.5% glycated hemoglobin (HbA1c) ≤10.5% and on stable metformin dose were assigned to both treatment arms. The primary outcome was a mean change in HbA1c. Safety assessments included adverse events (AE), home-based glucose monitoring, vital parameters, electrocardiogram (ECG), and laboratory assessments. RESULTS: A total of 328 subjects were randomized equally in two groups. A statistically significant reduction in HbA1c at week 16 in the lobeglitazone group with the least square (LS) mean change: 1.01 [standard error (SE): 0.09] (p < 0.0001) was seen. The LS mean difference between the two groups was 0.05 (SE: 0.12) [95% confidence interval (CI): -0.18, 0.27], which was statistically significant (p = 0.0013). Statistically significant reductions were also observed in fasting and postprandial glucose. Treatment-emergent Aes (TEAE) were comparable between both groups. CONCLUSION: Lobeglitazone 0.5 mg once daily was found to be efficacious and safe in the treatment of T2DM in the Indian population. Lobeglitazone significantly improved glycemic parameters and was noninferior to pioglitazone; hence, it could be a promising insulin sensitizer in T2DM management in India.


Subject(s)
Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Glycated Hemoglobin , Hypoglycemic Agents , Metformin , Pioglitazone , Thiazolidinediones , Humans , Diabetes Mellitus, Type 2/drug therapy , Metformin/therapeutic use , Metformin/administration & dosage , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Male , Middle Aged , Double-Blind Method , Female , Thiazolidinediones/therapeutic use , Thiazolidinediones/administration & dosage , Glycated Hemoglobin/analysis , India , Pioglitazone/therapeutic use , Pioglitazone/administration & dosage , Blood Glucose/analysis , Blood Glucose/drug effects , Adult , Treatment Outcome , Aged , Pyrimidines
15.
Saudi J Gastroenterol ; 30(4): 252-259, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38726916

ABSTRACT

BACKGROUND: Metabolic dysfunction associated steatotic liver disease (MASLD) is the most common cause of chronic hepatitis in adult and pediatric patients. Adolescents with severe MASLD can demonstrate a more aggressive disease phenotype as they more commonly develop liver fibrosis than BMI matched adults. Therefore, MASLD is the fastest growing indication for liver transplants in young adults. METHODS: Pioglitazone has been shown to improve liver histology in adult patients with MASLD, and in some studies, it attenuated liver fibrosis. Despite its perceived efficacy, pioglitazone is not widely used, likely due to its side effect profile, specifically increased weight gain. Topiramate lowers body weight in adolescents and in combination with phentermine, is one of the few FDA-approved medications for the management of obesity in children over 12 years of age. We performed a retrospective review of the outcomes in pediatric patients with severe MASLD, treated with the combined pioglitazone and topiramate therapy. RESULTS: Here, we report a case series of seven adolescents with severe MASLD and ≥F2 liver fibrosis treated with the combined pioglitazone and topiramate therapy. The combined therapy improved mean serum ALT from 165 ± 80 U/L to 89 ± 62 U/L after 12 months mean duration of treatment. One patient who completed 24 months of the combined therapy demonstrated a decrease in liver stiffness from 8.9 kPa to 5.6 kPa, as assessed by FibroScan elastography. There was a significant increase in body weight during this time, however, body mass index as a percentage of the 95 th percentile adjusted for age and gender did not increase significantly, 151 ± 29% vs. 152 ± 28%. Moreover, waist circumference, mid-upper arm circumference, percent body fat, and muscle mass were not significantly different before and after treatment. Serum lipid levels and hemoglobin A1c also did not change with the treatment. CONCLUSION: In summary, this case series provides encouraging results about the efficacy of the combined pioglitazone and topiramate therapy for the management of adolescents with severe MASLD, which should be further explored in clinical studies.


Subject(s)
Drug Therapy, Combination , Pioglitazone , Topiramate , Humans , Topiramate/therapeutic use , Topiramate/administration & dosage , Pioglitazone/therapeutic use , Pioglitazone/administration & dosage , Adolescent , Male , Female , Retrospective Studies , Treatment Outcome , Child , Fatty Liver/drug therapy , Fructose/analogs & derivatives , Fructose/therapeutic use , Fructose/administration & dosage , Hypoglycemic Agents/therapeutic use , Liver Cirrhosis/drug therapy , Severity of Illness Index , Body Mass Index
16.
Nano Lett ; 24(15): 4354-4361, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563599

ABSTRACT

The recent focus of cancer therapeutics research revolves around modulating the immunosuppressive tumor microenvironment (TME) to enhance efficacy. The tumor stroma, primarily composed of cancer-associated fibroblasts (CAFs), poses significant obstacles to therapeutic penetration, influencing resistance and tumor progression. Reprogramming CAFs into an inactivated state has emerged as a promising strategy, necessitating innovative approaches. This study pioneers the design of a nanoformulation using pioglitazone, a Food and Drug Administration-approved anti-diabetic drug, to reprogram CAFs in the breast cancer TME. Glutathione (GSH)-responsive dendritic mesoporous organosilica nanoparticles loaded with pioglitazone (DMON-P) are designed for the delivery of cargo to the GSH-rich cytosol of CAFs. DMON-P facilitates pioglitazone-mediated CAF reprogramming, enhancing the penetration of doxorubicin (Dox), a therapeutic drug. Treatment with DMON-P results in the downregulation of CAF biomarkers and inhibits tumor growth through the effective delivery of Dox. This innovative approach holds promise as an alternative strategy for enhancing therapeutic outcomes in CAF-abundant tumors, particularly in breast cancer.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Nanoparticles , Humans , Female , Pioglitazone/pharmacology , Pioglitazone/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Tumor Microenvironment
17.
Adv Ther ; 41(6): 2168-2195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683294

ABSTRACT

INTRODUCTION: Polycystic ovary syndrome (PCOS) is a complex endocrine condition affecting women of reproductive age. It is characterised by insulin resistance and is a risk for type 2 diabetes mellitus (T2DM). The aim of this study was to review the literature on the effect of pioglitazone and rosiglitazone in women with PCOS. METHODS: We searched PubMed, MEDLINE, Scopus, Embase, Cochrane Library and the Web of Science in April 2020 and updated in March 2023. Studies were deemed eligible if they were randomised controlled trials (RCTs) reporting the effect of pioglitazone and rosiglitazone in PCOS. The study follows the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Two reviewers independently extracted data and assessed the risk of bias using the Cochrane risk of bias tool. RESULTS: Out of 814 initially retrieved citations, 24 randomised clinical trials (RCTs) involving 976 participants were deemed eligible. Among women with PCOS, treatment with rosiglitazone compared to metformin resulted in a significant increase in the mean body weight (mean difference (MD) 1.95 kg; 95% CI 0.03-3.87, p = 0.05). Metformin treatment was associated with a reduction in mean body mass index (BMI) compared to pioglitazone (MD 0.85 kg/m2; 95% CI 0.13-1.57, p = 0.02). Both pioglitazone compared to placebo (MD 2.56 kg/m2; 95% CI 1.77-3.34, p < 0.00001) and rosiglitazone compared to metformin (MD 0.74 kg/m2; 95% CI 0.07-1.41, p = 0.03) were associated with a significant increase in BMI. Treatment with pioglitazone compared to placebo showed a significant reduction in triglycerides (MD - 0.20 mmol/L; 95% CI - 0.38 to - 0.03, p = 0.02) and fasting insulin levels (MD - 11.47 mmol/L; 95% CI - 20.20, - 2.27, p = 0.01). Rosiglitazone compared to metformin was marginally significantly associated with a reduction in the luteinising hormone (LH) (MD - 0.62; 95% CI - 1.25-0.00, p = 0.05). CONCLUSION: Both pioglitazone and rosiglitazone were associated with significant increases in body weight and BMI when compared with metformin or placebo. Pioglitazone significantly reduced triglycerides and fasting insulin when compared with placebo while rosiglitazone showed a modest reduction of LH when compared with metformin. PROSPERO REGISTRATION NO: CRD42020178783.


Subject(s)
Hypoglycemic Agents , Pioglitazone , Polycystic Ovary Syndrome , Randomized Controlled Trials as Topic , Rosiglitazone , Polycystic Ovary Syndrome/drug therapy , Humans , Female , Hypoglycemic Agents/therapeutic use , Pioglitazone/therapeutic use , Rosiglitazone/therapeutic use , Rosiglitazone/pharmacology , Thiazolidinediones/therapeutic use , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Body Mass Index
18.
Diabetes Obes Metab ; 26(7): 2606-2623, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558280

ABSTRACT

AIMS: To evaluate the efficacy and cardiovascular outcomes of combination pioglitazone with either a glucagon-like peptide-1 receptor agonist (GLP-1RA) or a sodium-glucose cotransporter-2 (SGLT2) inhibitor in individuals with type 2 diabetes (T2D) by conducting a systematic review, meta-analysis, and analysis of a large international real-world database. METHODS: We searched MEDLINE, SCOPUS and Web of Science to identify relevant articles for inclusion (PROSPERO [CRD: 42023483126]). Nineteen studies assessing pioglitazone + SGLT2 inhibitors or GLP-1RAs versus controls were identified, 16 of which were randomized controlled trials. Risk of bias was assessed using Cochrane-endorsed tools and quality of evidence was assessed using GRADE. We additionally performed a retrospective cohort study of all individuals aged 18 years or over with T2D, using the TriNetX platform. We included propensity-score-matched individuals who were treated for at least 1 year with pioglitazone and a GLP-1RA or pioglitazone and an SGLT2 inhibitor, compared against GLP-1RA and SGLT2 inhibitor monotherapy. Outcomes were all-cause mortality, heart failure, chronic kidney disease and composite stroke and transient ischaemic attack. RESULTS: The average follow-up in the included studies ranged from 24 to 52 weeks. Combination of pioglitazone with a GLP-1RA reduced glycated haemoglobin (HbA1c) and weight greater than in controls: mean differences -1% (95% confidence interval [CI] -1.27, -0.74) and -1.19 kg (95% CI -1.80, -0.58), respectively. There was no statistically significant difference in systolic blood pressure (SBP) or mortality between groups: mean difference - 1.56 mmHg (95% CI -4.48, 1.35; p = 0.30) and relative risk (RR) 0.29 (95% CI 0.07-1.15; p = 0.08), respectively. Combination of pioglitazone with SGLT2 inhibitors reduced HbA1c, weight and SBP to a greater extent than control treatment: mean differences -0.48% (95% CI -0.67, -0.28), -2.3 kg (95% CI -2.72, -1.88) and -2.4 mmHg (95% CI -4.1, -0.7; p = 0.01), respectively. There was no statistically significant difference in mortality between groups (RR 1.81, 95% CI 0.30-10.97; p = 0.52). The included trials demonstrated a reduction in risk of heart failure with combination treatment. Similarly, from the real-world database (n = 25 230 identified), pioglitazone and SGLT2 inhibitor combination therapy was associated with reduced risk of heart failure compared to monotherapy alone (hazard ratio 0.50, 95% CI 0.38-0.65; p < 0.001). CONCLUSION: Both our systematic review/meta-analysis and the real-world dataset show that combination of pioglitazone with either GLP-1RAs or SGLT2 inhibitors is associated with increased weight loss and reduced risk of heart failure compared with monotherapy.


Subject(s)
Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Pioglitazone , Sodium-Glucose Transporter 2 Inhibitors , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Humans , Pioglitazone/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Treatment Outcome , Female , Male , Middle Aged , Retrospective Studies , Databases, Factual , Glycated Hemoglobin/analysis , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/epidemiology , Glucagon-Like Peptide-1 Receptor Agonists
19.
Diabetes Obes Metab ; 26(7): 2969-2978, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685616

ABSTRACT

AIM: The response rate to pioglitazone and the predictive factors for its effects on improving liver biochemistry in patients with steatotic liver disease (SLD) remain elusive, so we aimed to investigate these issues. METHODS: A 3-year prospective cohort study of 126 Taiwanese patients with SLD treated with pioglitazone (15-30 mg/day) was conducted. Phospholipase domain-containing protein 3 I148M rs738409, methylenetetrahydrofolate reductase rs1801133, aldehyde dehydrogenase 2 (ALDH2) rs671 and lipoprotein lipase rs10099160 single nucleotide polymorphisms were assessed in the patients. RESULTS: Of 126 patients, 78 (61.9%) were men, and the mean and median ages were 54.3 and 56.5 years, respectively. Pioglitazone responders were defined as those with decreased alanine aminotransferase (ALT) levels at 6 months post-treatment, and 105 (83.3%) patients were responders. Compared with non-responders, responders were more frequently women and had higher baseline ALT levels. The proportion of patients with the ALDH2 rs671 GG genotype was lower among responders (38.6% vs. 66.6%, p = .028). Female sex [odds ratio (OR): 4.514, p = .023] and baseline ALT level (OR: 1.015, p = .046; cut-off level: ≥82 U/L) were associated with pioglitazone response. Among responders, the liver biochemistry and homeostasis model assessment of insulin resistance improved from 6 to 24 months post-treatment. The total cholesterol levels decreased within 6 months, while increases in high-density lipoprotein cholesterol levels and decreases in triglyceride levels and fibrosis-4 scores were noted only at 24 months post-treatment. The 2-year cumulative incidences of cardiovascular events, cancers and hepatic events were similar between responders and non-responders. CONCLUSIONS: Regarding liver biochemistry, over 80% of Taiwanese patients with SLD had a pioglitazone response, which was positively associated with female sex and baseline ALT levels. Insulin resistance improved as early as 6 months post-treatment, while liver fibrosis improvement was not observed until 24 months post-treatment. The link between the pioglitazone response and the ALDH2 genotype warrants further investigation.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Hypoglycemic Agents , Pioglitazone , Polymorphism, Single Nucleotide , Humans , Pioglitazone/therapeutic use , Male , Female , Middle Aged , Prospective Studies , Hypoglycemic Agents/therapeutic use , Treatment Outcome , Aldehyde Dehydrogenase, Mitochondrial/genetics , Taiwan/epidemiology , Alanine Transaminase/blood , Thiazolidinediones/therapeutic use , Fatty Liver/drug therapy , Fatty Liver/genetics , Aged , Lipoprotein Lipase/genetics , Liver/drug effects , Liver/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Genotype , Adult
20.
PLoS One ; 19(4): e0297572, 2024.
Article in English | MEDLINE | ID: mdl-38630788

ABSTRACT

BACKGROUND: Currently, it is acknowledged that vitamin E, insulin sensitizers and anti-diabetic drugs are used to manage non-alcoholic fatty liver disease (NAFLD), however, these therapeutic interventions harbour adverse side effects. Pioglitazone, an anti-diabetic drug, is currently the most effective therapy to manage NAFLD. The use of natural medicines is widely embraced due to the lack of evidence of their negative side effects. Rooibos has been previously shown to decrease inflammation and oxidative stress in experimental models of diabetes, however, this is yet to be explored in a setting of NAFLD. This study was aimed at investigating the effects of an aspalathin-rich green rooibos extract (Afriplex GRTTM) against markers of hepatic oxidative stress, inflammation and apoptosis in an in vitro model of NAFLD. METHODS: Oleic acid [1 mM] was used to induce hepatic steatosis in C3A liver cells. Thereafter, the therapeutic effect of Afriplex GRTTM, with or without pioglitazone, was determined by assessing its impact on cell viability, changes in mitochondrial membrane potential, intracellular lipid accumulation and the expression of genes and proteins (ChREBP, SREBF1, FASN, IRS1, SOD2, Caspase-3, GSTZ1, IRS1 and TNF-α) that are associated with the development of NAFLD. RESULTS: Key findings showed that Afriplex GRTTM added to the medium alone or combined with pioglitazone, could effectively block hepatic lipid accumulation without inducing cytotoxicity in C3A liver cells exposed oleic acid. This positive outcome was consistent with effective regulation of genes involved in insulin signaling, as well as carbohydrate and lipid metabolism (IRS1, SREBF1 and ChREBP). Interestingly, in addition to reducing protein levels of an inflammatory marker (TNF-α), the Afriplex GRTTM could ameliorate oleic acid-induced hepatic steatotic damage by decreasing the protein expression of oxidative stress and apoptosis related markers such as GSTZ1 and caspase-3. CONCLUSION: Afriplex GRTTM reduced hepatic steatosis in oleic acid induced C3A liver cells by modulating SREBF1, ChREBP and IRS-1 gene expression. The extract may also play a role in alleviating inflammation by reducing TNF-α expression, suggesting that additional experiments are required for its development as a suitable therapeutic option against NAFLD. Importantly, further research is needed to explore its antioxidant role in this model.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Caspase 3/metabolism , Oleic Acid/pharmacology , Pioglitazone/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Liver/metabolism , Lipid Metabolism , Inflammation/metabolism , Insulin/metabolism , Diet, High-Fat , Glutathione Transferase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL