Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
An Acad Bras Cienc ; 90(4): 3871-3878, 2018.
Article in English | MEDLINE | ID: mdl-30365720

ABSTRACT

Piper betle L., is an evergreen perennial creeper belonging to family Piperaceae and is known to possess numerous medicinal properties. Current study focuses on evaluating antioxidant and antimicrobial potential of betel leaf. For the present study, distilled water, hexane, acetone and ethanolic extracts of two varieties of betel leaves: Meetha paan and Banarasi paan were used. Biochemical tests such as proximate analysis (moisture, ash, protein, lipids, minerals viz., sodium and potassium), antioxidant activity tests (DPPH radical scavenging activity, total phenolics, ascorbic acid, reducing power) and antimicrobial test (antibacterial and antifungal susceptibility test) against four pathogens viz., B. subtilis, E. coli, A. niger and S. cerevisiae were determined. Ethanolic extract had the highest antioxidant activity (89.46% inhibition), while the aqueous extract exhibited lowest antioxidant activity (62.03% inhibition). With increasing concentration (5, 10, 25 and 50 µg/mL), the reducing power of leaf extracts also increased. The ascorbic acid was not significant in Banarasi paan (5.21mg/100 g) and Meetha paan (5.20mg/100 g). The highest antibacterial activity of ethanolic extract (Banarasi paan) may be attributed to the presence of phytosterols in the leaf varieties. Antioxidant and antimicrobial potential study will help to build a database and promote the utilization of betel leaf as a medicinal herb.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Aspergillus niger/drug effects , Bacillus subtilis/drug effects , Escherichia coli/drug effects , Piper betle/chemistry , Plant Extracts/pharmacology , Saccharomyces cerevisiae/drug effects , Anti-Bacterial Agents/isolation & purification , Antioxidants/isolation & purification , Microbial Sensitivity Tests , Plant Leaves/chemistry
2.
Clinics ; Clinics;67(12): 1447-1454, Dec. 2012. ilus
Article in English | LILACS | ID: lil-660474

ABSTRACT

OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging.


Subject(s)
Animals , Male , Mice , Antioxidants/pharmacology , Chlorella vulgaris/chemistry , Erythrocytes/metabolism , Piper betle/chemistry , Plant Extracts/pharmacology , Tocotrienols/pharmacology , Age Factors , Biomarkers/blood , Catalase/blood , Erythrocytes/enzymology , Glutathione Peroxidase/blood , Lipid Peroxidation , Models, Animal , Malondialdehyde/blood , Oxidative Stress/drug effects , Random Allocation , Superoxide Dismutase/blood
3.
Clinics (Sao Paulo) ; 67(12): 1447-54, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23295600

ABSTRACT

OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging.


Subject(s)
Antioxidants/pharmacology , Chlorella vulgaris/chemistry , Erythrocytes/metabolism , Piper betle/chemistry , Plant Extracts/pharmacology , Tocotrienols/pharmacology , Age Factors , Animals , Biomarkers/blood , Catalase/blood , Erythrocytes/enzymology , Glutathione Peroxidase/blood , Lipid Peroxidation , Male , Malondialdehyde/blood , Mice , Mice, Inbred C57BL , Models, Animal , Oxidative Stress/drug effects , Random Allocation , Superoxide Dismutase/blood
SELECTION OF CITATIONS
SEARCH DETAIL