Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.076
Filter
1.
Mol Pharm ; 21(7): 3321-3329, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38843501

ABSTRACT

Poly ADP-ribose polymerase (PARP) plays an important role in the DNA repair process and has become an attractive target for cancer therapy in recent years. Given that niraparib has good clinical efficacy as a PARP inhibitor, this study aimed to develop radiolabeled niraparib derivatives for tumor imaging to detect PARP expression and improve the accuracy of stratified patient therapy. The niraparib isonitrile derivative (CNPN) was designed, synthesized, and radiolabeled to obtain the [99mTc]Tc-CNPN complex with high radiochemical purity (>95%). It was lipophilic and stable in vitro. In HeLa cell experiments, the uptake of [99mTc]Tc-CNPN was effectively inhibited by the ligand CNPN, indicating the binding affinity for PARP. According to the biodistribution studies of HeLa tumor-bearing mice, [99mTc]Tc-CNPN has moderate tumor uptake and can be effectively inhibited, demonstrating its specificity for targeting PARP. The SPECT imaging results showed that [99mTc]Tc-CNPN had tumor uptake at 2 h postinjection. All of the results of this study indicated that [99mTc]Tc-CNPN is a promising tumor imaging agent that targets PARP.


Subject(s)
Indazoles , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Humans , Mice , Piperidines/chemistry , Piperidines/pharmacokinetics , Indazoles/chemistry , Indazoles/pharmacokinetics , HeLa Cells , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon/methods , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Poly (ADP-Ribose) Polymerase-1/metabolism , Female , Technetium/chemistry , Nitriles/chemistry , Nitriles/pharmacokinetics , Mice, Nude , Mice, Inbred BALB C
2.
Clin Pharmacol Drug Dev ; 13(7): 755-769, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38752475

ABSTRACT

Pritelivir is a novel viral helicase-primase inhibitor active against herpes simplex virus. In vitro drug-drug interaction studies indicated that pritelivir has the potential for clinically relevant interactions on the cytochrome P450 (CYP) enzymes 2C8, 2C9, 3A4, and 2B6, and intestinal uptake transporter organic anion transporting polypeptide (OATP) 2B1 and efflux transporter breast cancer resistance protein (BCRP). This was evaluated in 2 clinical trials. In 1 trial the substrates flurbiprofen (CYP2C9), bupropion (CYP2B6), and midazolam (CYP3A4) were administered simultaneously as part of the Geneva cocktail, while the substrate celiprolol (OAPT2B1) was administered separately. In another trial, the substrates repaglinide (CYP2C8) and rosuvastatin (BCRP) were administered separately. Exposure parameters of the substrates and their metabolites (flurbiprofen and bupropion only) were compared after administration with or without pritelivir under therapeutic concentrations. The results of these trials indicated that pritelivir has no clinically relevant effect on the exposure of substrates for the intestinal uptake transporter OATP2B1 and the CYP enzymes 3A4, 2B6, 2C9, and 2C8, and has a weak inhibitory effect on the intestinal efflux transporter BCRP. In summary, the results suggest that pritelivir has a low drug-drug interaction potential.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Cytochrome P-450 Enzyme System , Drug Interactions , Humans , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/drug effects , Female , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Male , Adult , Bupropion/pharmacology , Bupropion/pharmacokinetics , Sulfonamides/pharmacology , Middle Aged , Rosuvastatin Calcium/pharmacology , Rosuvastatin Calcium/pharmacokinetics , Flurbiprofen/pharmacology , Flurbiprofen/pharmacokinetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors , Organic Anion Transporters/metabolism , Organic Anion Transporters/antagonists & inhibitors , Carbamates/pharmacology , Midazolam/pharmacokinetics , Midazolam/pharmacology , Young Adult , Piperidines/pharmacology , Piperidines/pharmacokinetics
3.
Biomed Pharmacother ; 175: 116421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719708

ABSTRACT

Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.


Subject(s)
Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP3A , Drug Interactions , Flavonoids , Microsomes, Liver , Piperidines , Pyrimidines , Humans , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Pyrimidines/pharmacology , Pyrimidines/metabolism , Animals , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Rats , Piperidines/pharmacology , Piperidines/pharmacokinetics , Piperidines/metabolism , Polymorphism, Genetic , Pyrroles/pharmacology , Pyrroles/metabolism
4.
Altern Ther Health Med ; 30(4): 18-23, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38702159

ABSTRACT

Objective: Curcuminoids, the major component of which is curcumin, are natural polyphenolic compounds from the rhizome of Curcuma longa Linn. and possess extensive biopharmacological properties that are limited in humans due to poor bioavailability. Currently, most commercial bioavailable turmeric extracts use synthetic excipients or the addition of piperine to enhance bioavailability, and are needed in multiple daily doses to achieve clinical efficacy. This study was conducted to compare the bioavailability of a natural, water-dispersible turmeric extract containing 60% natural curcuminoids, the test product, WDTE60N (1 × 250 mg per day), with the reference product, turmeric extract capsules (500 mg curcuminoids and 5 mg piperine, CPC; 3 × 500 mg per day). Methods: Sixteen healthy adult male subjects fasted overnight for 10 hours and then were dosed with either one capsule of the test product WDTE60N or three capsules of reference product CPC orally (One capsule administered at every 6 hours interval i.e. at 0.00 hrs, 6.00 hrs and at 12.00 hrs) in each study period. Blood sampling before and after dosing was carried out at defined time points at -12.00, -02.00, 00.00 (within 10 minutes prior to dosing) hours in morning before dosing and post-dose (First dose) at 00.50, 01.00, 02.00, 03.00, 04.00, 05.00, 06.50, 07.00, 08.00, 09.00, 10.00, 11.00, 12.50, 13.00, 14.00, 16.00, 18.00, 20.00 and 24.00 hours in each period. Plasma concentration of curcuminoids was determined using a validated liquid chromatography with tandem mass spectrometry bioanalytical method. Results: The Cmax (GLSM) for the test product WDTE60N was observed to be 74.56 ng/mL; and same for the reference CPC was 22.75 ng/mL. AUC0-t (GLSM) for test WDTE60N was 419.00 h∙ng/mL; and for reference CPC it was 359.86 h∙ng/mL for total curcuminoids. Conclusion: The test formulation WDTE60N showed improved relative absorption and equivalent exposure at a 10-fold-lower dose of actives than the reference formulation CPC.


Subject(s)
Alkaloids , Benzodioxoles , Cross-Over Studies , Curcuma , Curcumin , Piperidines , Plant Extracts , Humans , Male , Plant Extracts/pharmacology , Plant Extracts/pharmacokinetics , Curcuma/chemistry , Adult , Alkaloids/pharmacokinetics , Alkaloids/pharmacology , Benzodioxoles/pharmacokinetics , Benzodioxoles/pharmacology , Curcumin/pharmacokinetics , Curcumin/pharmacology , Piperidines/pharmacokinetics , Piperidines/pharmacology , Biological Availability , Young Adult , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/pharmacokinetics
5.
J Nucl Med ; 65(6): 956-961, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38604762

ABSTRACT

Molecular imaging of brain vesicular acetylcholine transporter provides a biomarker to explore cholinergic systems in humans. We aimed to characterize the distribution of, and optimize methods to quantify, the vesicular acetylcholine transporter-specific tracer (-)-(1-(8-(2-[18F]fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)-piperidin-4-yl)(4-fluorophenyl)methanone ([18F]VAT) in the brain using PET. Methods: Fifty-two healthy participants aged 21-97 y had brain PET with [18F]VAT. [3H]VAT autoradiography identified brain areas devoid of specific binding in cortical white matter. PET image-based white matter reference region size, model start time, and duration were optimized for calculations of Logan nondisplaceable binding potential (BPND). Ten participants had 2 scans to determine test-retest variability. Finally, we analyzed age-dependent differences in participants. Results: [18F]VAT was widely distributed in the brain, with high striatal, thalamic, amygdala, hippocampal, cerebellar vermis, and regionally specific uptake in the cerebral cortex. [3H]VAT autoradiography-specific binding and PET [18F]VAT uptake were low in white matter. [18F]VAT SUVs in the white matter reference region correlated with age, requiring stringent erosion parameters. Logan BPND estimates stabilized using at least 40 min of data starting 25 min after injection. Test-retest variability had excellent reproducibility and reliability in repeat BPND calculations for 10 participants (putamen, 6.8%; r > 0.93). We observed age-dependent decreases in the caudate and putamen (multiple comparisons corrected) and in numerous cortical regions. Finally, we provide power tables to indicate potential mean differences that can be detected between 2 groups of participants. Conclusion: These results validate a reference region for BPND calculations and demonstrate the viability, reproducibility, and utility of using the [18F]VAT tracer in humans to quantify cholinergic pathways.


Subject(s)
Brain , Piperidines , Positron-Emission Tomography , Humans , Adult , Middle Aged , Aged , Male , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Female , Reproducibility of Results , Young Adult , Aged, 80 and over , Piperidines/pharmacokinetics , Piperidines/metabolism , Aging/metabolism , Radiopharmaceuticals/pharmacokinetics , Vesicular Acetylcholine Transport Proteins/metabolism
6.
J Pharm Biomed Anal ; 245: 116150, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657366

ABSTRACT

Niraparib is a potent and orally bioavailable inhibitor of poly (ADP-ribose) polymerase (PARP) with high specificity for isoforms 1 and 2. It has been approved by the U.S. Food and Drug Administration for ovarian cancer maintenance therapy and is currently under development for various cancers, including glioblastoma. To assess central nervous system (CNS) penetration of niraparib in glioblastoma patients, a novel bioanalytical method was developed to measure total and unbound niraparib levels in human brain tumor tissue and cerebrospinal fluid (CSF). The method was validated using plasma as a surrogate matrix over the concentration range of 1-10,000 nM on an LC-MS/MS system. The MS/MS detection was conducted in positive electrospray ionization mode, while chromatography was performed using a Kinetex™ PS C18 column with a total 3.5-minute gradient elution run time. The maximum coefficient of variation for both intra- and inter-day precision was 10.6%, with accuracy ranging from 92.8% - 118.5% across all matrices. Niraparib was stable in human brain homogenate for at least 6 hours at room temperature (RT) and 32 days at -20°C, as well as in stock and working solutions for at least 21 hours (RT) and 278 days (4°C). Equilibrium dialysis experiments revealed the fractions unbound of 0.05 and 0.16 for niraparib in human brain and plasma, respectively. The validated method is currently employed to assess niraparib levels in human glioblastoma tissue, CSF, and plasma in an ongoing trial on newly diagnosed glioblastoma and recurrent IDH1/2(+) ATRX mutant glioma patients (NCT05076513). Initial results of calculated total (Kp) and unbound (Kp,uu) tumor-to-plasma partition coefficients indicate significant brain penetration ability of niraparib in glioblastoma patients.


Subject(s)
Brain Neoplasms , Indazoles , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , Tandem Mass Spectrometry , Humans , Piperidines/pharmacokinetics , Piperidines/blood , Piperidines/administration & dosage , Piperidines/therapeutic use , Indazoles/pharmacokinetics , Indazoles/administration & dosage , Indazoles/therapeutic use , Tandem Mass Spectrometry/methods , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Chromatography, Liquid/methods , Glioblastoma/drug therapy , Glioblastoma/metabolism , Reproducibility of Results , Brain/metabolism , Sulfonamides/pharmacokinetics , Sulfonamides/analysis , Sulfonamides/administration & dosage , Liquid Chromatography-Mass Spectrometry
7.
J Biomater Sci Polym Ed ; 35(8): 1177-1196, 2024 06.
Article in English | MEDLINE | ID: mdl-38436277

ABSTRACT

This research aims to develop the formulation of Dissolving Microneedle Piperine (DMNs PIP) and evaluate the effect of polymer concentration on characterisation and permeation testing results in ex vivo. DMNs PIP were prepared from varying concentrations of piperine (PIP) (10, 15, and 20% w/w) and polymers of polyvinyl alcohol (PVA): Polyvinyl pyrrolidone (30:60 and 60:25), respectively. Then the morphological evaluation of the formula was carried out, followed by mechanical strength testing. Furthermore, the density, LOD, and weight percentage of piperine in the dried microneedle were calculated and the determination of volume, needle weight and piperine weight and analysed. Ex vivo testing, X-Ray Diffraction, FTIR and hemolysis tests were carried out. PIP with PVA and PVP (F1) polymers produced DMN with mechanical strength (8.35 ± 0.11%) and good penetration ability. In vitro tests showed that the F1 polymer mixture gave good penetration (95.02 ± 1.42 µg/cm2), significantly higher than the F2, F3, F4, and F5 polymer mixtures. The DMNs PIP characterisation results through XRD analysis showed a distinctive peak in the 20-30 region, indicating the presence of crystals. The FTIR study showed that the characteristics of piperine found in DMNs PIP indicated that piperine did not undergo interactions with polymers. The results of the ex vivo study through DMNs PIP hemolytic testing showed no hemolysis occurred, with the hemolysis index below the 5% threshold reported in the literature. These findings indicate that DMNs PIP is non-toxic and safe to use as alternative for treating inflammation.


Subject(s)
Administration, Cutaneous , Alkaloids , Benzodioxoles , Needles , Piperidines , Polyunsaturated Alkamides , Polyvinyl Alcohol , Benzodioxoles/administration & dosage , Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/administration & dosage , Polyunsaturated Alkamides/pharmacokinetics , Piperidines/chemistry , Piperidines/administration & dosage , Piperidines/pharmacology , Piperidines/pharmacokinetics , Alkaloids/chemistry , Alkaloids/administration & dosage , Alkaloids/pharmacology , Animals , Polyvinyl Alcohol/chemistry , Hemolysis/drug effects , Povidone/chemistry , Drug Delivery Systems , Solubility , Skin/metabolism , Skin/drug effects , Skin Absorption
8.
United European Gastroenterol J ; 12(5): 627-637, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532266

ABSTRACT

Small molecule drugs are becoming increasingly used in the treatment of inflammatory bowel diseases (IBD). However, unlike monoclonal antibody drugs, which have few interactions with other medications, the pharmacokinetics of small molecule drugs are complex and may be influenced by a myriad of drug-drug interactions (DDI) as well as by patient characteristics and food intake. This review aims to provide a concise practical guide to small molecule drug interactions for the use of IBD physicians. It starts with a brief overview of the main metabolizing enzymes and transporters involved in drug interactions and the Food and Drug Administration's (FDA) approach to determining drug-interaction hazard thresholds. It is then followed by a more detailed review of the pharmacokinetics of five novel small molecules approved in IBD: Tofacitinib, Upadacitinib, Filgotinib, Ozanimod, and Etrasimod, including their known interactions and specific warnings. This review will also inform readers on challenges in determining the actual magnitude of interactions and their clinical relevance, including the arbitrary nature of some hazard thresholds, the inference of the impact on metabolizing enzymes and transporters from single-drug assays which may not reflect poly-pharmaceutical regimens, and other challenges in this field which the IBD physician needs to be cognizant of. In practice, before administering a small molecule drug, it is advisable to evaluate any potential interactions with other medications the patient is receiving. An increased awareness by health care professionals and patients, may reduce the possible risks associated with DDI of small molecule IBD drugs.


Subject(s)
Drug Interactions , Inflammatory Bowel Diseases , Piperidines , Humans , Inflammatory Bowel Diseases/drug therapy , Piperidines/therapeutic use , Piperidines/pharmacokinetics , Piperidines/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Gastrointestinal Agents/therapeutic use , Gastrointestinal Agents/pharmacokinetics , Gastroenterologists , United States Food and Drug Administration , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Pyridines/adverse effects , Heterocyclic Compounds, 3-Ring , Indans , Oxadiazoles , Triazoles
9.
Clin Pharmacokinet ; 63(4): 511-527, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436924

ABSTRACT

BACKGROUND AND OBJECTIVE: The combination of niraparib and abiraterone acetate (AA) plus prednisone is under investigation for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC) and metastatic castration-sensitive prostate cancer (mCSPC). Regular-strength (RS) and lower-strength (LS) dual-action tablets (DATs), comprising niraparib 100 mg/AA 500 mg and niraparib 50 mg/AA 500 mg, respectively, were developed to reduce pill burden and improve patient experience. A bioequivalence (BE)/bioavailability (BA) study was conducted under modified fasting conditions in patients with mCRPC to support approval of the DATs. METHODS: This open-label randomized BA/BE study (NCT04577833) was conducted at 14 sites in the USA and Europe. The study had a sequential design, including a 21-day screening phase, a pharmacokinetic (PK) assessment phase comprising three periods [namely (1) single-dose with up to 1-week run-in, (2) daily dose on days 1-11, and (3) daily dose on days 12-22], an extension where both niraparib and AA as single-agent combination (SAC; reference) or AA alone was continued from day 23 until discontinuation, and a 30-day follow-up phase. Patients were randomly assigned in a parallel-group design (four-sequence randomization) to receive a single oral dose of niraparib 100 mg/AA 1000 mg as a LS-DAT or SAC in period 1, and patients continued as randomized into a two-way crossover design during periods 2 and 3 where they received niraparib 200 mg/AA 1000 mg once daily as a RS-DAT or SAC. The design was powered on the basis of crossover assessment of RS-DAT versus SAC. During repeated dosing (periods 2 and 3, and extension phase), all patients also received prednisone/prednisolone 5 mg twice daily. Plasma samples were collected for measurement of niraparib and abiraterone plasma concentrations. Statistical assessment of the RS-DAT and LS-DAT versus SAC was performed on log-transformed pharmacokinetic parameters data from periods 2 and 3 (crossover) and from period 1 (parallel), respectively. Additional paired analyses and model-based bioequivalence assessments were conducted to evaluate the similarity between the LS-DAT and SAC. RESULTS: For the RS-DAT versus SAC, the 90% confidence intervals (CI) of geometric mean ratios (GMR) for maximum concentration at a steady state (Cmax,ss) and area under the plasma concentration-time curve from 0-24 h at a steady state (AUC 0-24h,ss) were respectively 99.18-106.12% and 97.91-104.31% for niraparib and 87.59-106.69 and 86.91-100.23% for abiraterone. For the LS-DAT vs SAC, the 90% CI of GMR for AUC0-72h of niraparib was 80.31-101.12% in primary analysis, the 90% CI of GMR for Cmax,ss and AUC 0-24h,ss of abiraterone was 85.41-118.34% and 86.51-121.64% respectively, and 96.4% of simulated LS-DAT versus SAC BE trials met the BE criteria for both niraparib and abiraterone. CONCLUSIONS: The RS-DAT met BE criteria (range 80%-125%) versus SAC based on 90% CI of GMR for Cmax,ss and AUC 0-24h,ss. The LS-DAT was considered BE to SAC on the basis of the niraparib component meeting the BE criteria in the primary analysis for AUC 0-72h; abiraterone meeting the BE criteria in additional paired analyses based on Cmax,ss and AUC 0-24h,ss; and the percentage of simulated LS-DAT versus SAC BE trials meeting the BE criteria for both. GOV IDENTIFIER: NCT04577833.


Subject(s)
Abiraterone Acetate , Indazoles , Piperidines , Prostatic Neoplasms, Castration-Resistant , Tablets , Therapeutic Equivalency , Humans , Indazoles/pharmacokinetics , Indazoles/administration & dosage , Male , Piperidines/pharmacokinetics , Piperidines/administration & dosage , Abiraterone Acetate/pharmacokinetics , Abiraterone Acetate/administration & dosage , Aged , Middle Aged , Prostatic Neoplasms, Castration-Resistant/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Models, Biological , Biological Availability , Cross-Over Studies , Aged, 80 and over , Computer Simulation , Prednisone/pharmacokinetics , Prednisone/administration & dosage
10.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 599-611, 2024 04.
Article in English | MEDLINE | ID: mdl-38298058

ABSTRACT

These analyses characterized tofacitinib pharmacokinetics (PKs) in children and adolescents with juvenile idiopathic arthritis (JIA). Data were pooled from phase I (NCT01513902), phase III (NCT02592434), and open-label, long-term extension (NCT01500551) studies of tofacitinib tablet/solution (weight-based doses administered twice daily [b.i.d.]) in patients with JIA aged 2 to less than 18 years. Population PK modeling used a nonlinear mixed-effects approach, with covariates identified using stepwise forward-inclusion backward-deletion procedures. Simulations were performed to derive dosing recommendations for children and adolescents with JIA. Two hundred forty-six pediatric patients were included in the population PK model. A one-compartment model with first-order elimination and absorption with body weight as a covariate for oral clearance and apparent volume of distribution sufficiently described the data. Oral solution was associated with comparable average concentration (Cavg) and slightly higher (113.9%) maximum concentration (Cmax) versus tablet, which was confirmed by a subsequent randomized, open-label, bioavailability study conducted in healthy adult participants (n = 12) by demonstrating adjusted geometric mean ratios (90% confidence interval) between oral solution and tablet of 1.04 (1.00-1.09) and 1.10 (1.00-1.21) for area under the curve extrapolated to infinity and Cmax, respectively (NCT04111614). A dosing regimen of 3.2 mg b.i.d. solution in patients 10 to less than 20 kg, 4 mg b.i.d. solution in patients 20 to less than 40 kg, and 5 mg b.i.d. tablet/solution in patients greater than or equal to 40 kg, irrespective of age, was proposed to achieve constant Cavg across weight groups. In summary, population PK characterization informed a simplified tofacitinib dosing regimen that has been implemented in pediatric patients with JIA.


Subject(s)
Arthritis, Juvenile , Adult , Humans , Child , Adolescent , Arthritis, Juvenile/drug therapy , Piperidines/pharmacokinetics , Pyrimidines , Tablets
11.
Psychopharmacology (Berl) ; 241(6): 1227-1236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38383903

ABSTRACT

RATIONALE: Understanding mechanisms of drug use decisions will inform the development of treatments for opioid use disorder (OUD). Decision-making experiments using neurobehavioral approaches require many trials or events of interest for statistical analysis, but the pharmacokinetics of most opioids limit dosing in humans. OBJECTIVES: This experiment characterized the effects of repeated infusions of the ultra-short acting opioid remifentanil in people with OUD and physical opioid dependence. METHODS: An inpatient study using a within-subjects, single-blind, escalating, within-session, pre-post design was conducted. Seven (3 female) subjects were maintained on oral oxycodone (40-60 mg, 4x/day = 160-240 total mg/day) for seven days prior to the dose-ranging session. Subjects received infusions of three ascending remifentanil doses (0.03, 0.1, 0.3 mcg/kg/infusion in 2 subjects; 0.1, 0.3, 1.0 mcg/kg/infusion in 5 subjects) every minute for 40 min per dose, with infusions administered over 5 s to model naturalistic delivery rates. End tidal carbon dioxide, respiration rate, oxygen saturation (SpO2) and heart rate were measured continuously. Blood pressure (BP), pupil diameter and self-reported drug effects were measured every 5 min. RESULTS: Pupil diameter, SpO2 and systolic BP decreased, and ratings on prototypic subjective effects questionnaire items increased, as a function of remifentanil dose. The number of infusions held because of sedation or physiological parameters exceeding predetermined cutoffs also increased with dose. CONCLUSIONS: This experiment established doses and procedures for the safe delivery of rapid, repeated remifentanil infusions to individuals with OUD and physical fentanyl dependence, which can be applied to the mechanistic study of opioid use decisions.


Subject(s)
Analgesics, Opioid , Blood Pressure , Dose-Response Relationship, Drug , Fentanyl , Heart Rate , Opioid-Related Disorders , Piperidines , Remifentanil , Humans , Remifentanil/administration & dosage , Remifentanil/pharmacology , Female , Male , Adult , Opioid-Related Disorders/drug therapy , Fentanyl/administration & dosage , Fentanyl/pharmacokinetics , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacokinetics , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Piperidines/pharmacology , Single-Blind Method , Heart Rate/drug effects , Blood Pressure/drug effects , Infusions, Intravenous , Middle Aged , Self Report , Young Adult , Oxycodone/administration & dosage , Oxycodone/pharmacokinetics
12.
Clin Pharmacol Drug Dev ; 13(5): 465-473, 2024 May.
Article in English | MEDLINE | ID: mdl-38174905

ABSTRACT

Rimegepant is a calcitonin gene-related peptide receptor antagonist approved for migraine treatment. This phase 1, open-label, single-center, fixed-sequence study evaluated the effect of rimegepant on the pharmacokinetics (PK) of metformin. Twenty-eight healthy participants received metformin 500 mg twice daily from Days 1 to 4 and Days 7 to 10, and once daily on Days 5 and 11. Rimegepant, 75 mg tablet, was administered once daily from Days 9 to 12. At pre-specified time points, plasma metformin concentration, serum glucose levels, and safety and tolerability were evaluated. A 16% increase in the area under the plasma metformin concentration-time curve (AUC) for 1 dosing interval (AUC0-τ,ss), a statistically insignificant increase in maximum and minimum steady-state metformin concentration (Cmax,ss and Cmin,ss), and a decrease in metformin renal clearance were observed on Day 11 following metformin-rimegepant coadministration compared with metformin alone; however, the changes were not clinically relevant. Additionally, coadministration of rimegepant with metformin did not induce clinically meaningful change in the maximum observed glucose concentration (Gmax) or AUCgluc compared with metformin alone. Overall, rimegepant and metformin coadministration did not result in clinically relevant changes in metformin PK, renal clearance, or the antihyperglycemic effects of metformin. Rimegepant is considered safe for use with metformin.


Subject(s)
Area Under Curve , Drug Interactions , Healthy Volunteers , Hypoglycemic Agents , Metformin , Organic Cation Transport Proteins , Organic Cation Transporter 2 , Piperidines , Pyridines , Humans , Metformin/pharmacokinetics , Metformin/administration & dosage , Metformin/pharmacology , Male , Adult , Female , Organic Cation Transport Proteins/metabolism , Young Adult , Pyridines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacology , Pyridines/adverse effects , Piperidines/pharmacokinetics , Piperidines/administration & dosage , Piperidines/pharmacology , Piperidines/adverse effects , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Organic Cation Transporter 2/metabolism , Middle Aged , Blood Glucose/drug effects , Blood Glucose/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists/administration & dosage , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacokinetics , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/adverse effects , Biological Transport
13.
Clin Transl Sci ; 16(12): 2557-2564, 2023 12.
Article in English | MEDLINE | ID: mdl-37828717

ABSTRACT

The traditional design of food-effect studies has a high patient burden for toxic drugs with long half-lives (e.g., anticancer agents). Microtracers could be used to assess food-effect in patients without influencing their ongoing treatment. The feasibility of a microtracer food-effect study during steady-state of the therapeutic drug was investigated in an in silico simulation study with alectinib as an example for a relative toxic drug with a long half-life. Microtracer pharmacokinetics were simulated based on a previously published population pharmacokinetic model and used for estimation of a model with and a model without food as a covariate on oral bioavailability of alectinib (assuming a 40% food-effect). Power was defined as the fraction of clinical trials where a significant (p < 0.01) food-effect was identified. The proposed study design of 10 patients on steady-state treatment, 10 blood samples collected within 24 h after administration and an assumed food-effect of 40% had a power of 99.9%. The mean estimated food-effect was 39.8% (80% confidence interval: 31.0%-48.6%). The feasibility of microtracer food-effect studies was demonstrated. The design of the microtracer food-effect study allowed estimation of the food-effect with minimal influence on therapeutic treatment and reducing patient burden compared to the traditional study design for toxic drugs with long half-lives.


Subject(s)
Carbazoles , Piperidines , Humans , Pharmaceutical Preparations , Half-Life , Carbazoles/adverse effects , Carbazoles/pharmacokinetics , Piperidines/adverse effects , Piperidines/pharmacokinetics , Administration, Oral
14.
J Clin Pharmacol ; 63(5): 613-621, 2023 05.
Article in English | MEDLINE | ID: mdl-36597869

ABSTRACT

The population pharmacokinetic (PK) and exposure-response (E-R) analyses for the safety of ibrutinib for the treatment of chronic graft-versus-host disease (cGVHD) is presented. This work aims to develop a population PK model for ibrutinib based on data from clinical studies in subjects with cGVHD, to evaluate the impact of intrinsic and extrinsic factors on PK parameters as well as systemic exposure levels, and to assess an E-R relationship for selected safety end points. Pooled data from 162 subjects with cGVHD enrolled in 4 clinical studies were included in the population PK analysis. In the studies, an ibrutinib dose of 420 mg once daily was administered orally. With the exception of 1 study, the study protocols instructed for a reduction of the ibrutinib dose to 140 or 280 mg once daily, depending on concomitant CYP3A inhibitor use. Concomitant CYP3A inhibitor use was found to be a primary covariate for relative bioavailability (F1): the F1 value increased 2.22-fold with concomitant moderate CYP3A inhibitors and 3.09-fold with concomitant strong CYP3A inhibitors, compared with the F1 value in the absence of CYP3A inhibitors. In addition, Japanese ethnicity led to an F1 value that was 1.70-fold higher than that in the non-Japanese population. Simulations using the final PK model suggest that ibrutinib exposure was appropriately controlled within the therapeutic range in the entire cGVHD population by applying dose reductions depending on the use of CYP3A inhibitors, and that additional dose modification for the Japanese population would not be required. The subsequent E-R analysis suggests no apparent association between the systemic exposure to ibrutinib and the selected safety end points.


Subject(s)
Bronchiolitis Obliterans Syndrome , Cytochrome P-450 CYP3A Inhibitors , Humans , Adenine/adverse effects , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Piperidines/adverse effects , Piperidines/pharmacokinetics , Piperidines/therapeutic use
15.
J Assoc Physicians India ; 71(11): 58-61, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38720498

ABSTRACT

Allergic rhinitis (AR) is considered a trivial disease and is often self-treated with over-the-counter drugs and home remedies. However, AR is a contributing risk factor for asthma associated with complications, including chronic cough, eosinophilic esophagitis, and otitis media with effusion. In AR, inflammation is primarily mediated by histamines. Guidelines advise using second-generation oral H1 antihistamines as the primary treatment for AR. Second-generation H1 antihistamines strongly prefer the H1 receptor, limiting their ability to enter the central nervous system. Thus, they have minimal adverse effects. Among these H1 antihistamines, bilastine is highly specific for H1 receptors with a slight affinity for other receptors. It has a rapid and prolonged action, which reduces the need for frequent dosing and has better compliance. In the long term, bilastine is well-tolerated with minimal adverse effects. It is not associated with drug interactions, so dosage adjustment is unnecessary. Bilastine does not penetrate the brain and is nonsedating at 80 mg once daily. The low possibility of drug-drug interactions and pharmacokinetics of bilastine makes it suitable for elderly patients, even with compromised hepatic and renal function, without dose adjustment. This review comprehensively discusses the guidelines and the role of bilastine in treating AR. How to cite this article: Tiwaskar M, Vora A, Tewary K, et al. Role of Bilastine in Allergic Rhinitis: A Narrative Review. J Assoc Physicians India 2023;71(11):58-61.


Subject(s)
Piperidines , Rhinitis, Allergic , Humans , Rhinitis, Allergic/drug therapy , Piperidines/therapeutic use , Piperidines/pharmacokinetics , Benzimidazoles/therapeutic use , Benzimidazoles/pharmacokinetics , Histamine H1 Antagonists/therapeutic use , Histamine H1 Antagonists/pharmacokinetics , Histamine H1 Antagonists/administration & dosage
16.
Int Arch Allergy Immunol ; 183(12): 1241-1250, 2022.
Article in English | MEDLINE | ID: mdl-35700691

ABSTRACT

INTRODUCTION: The aim of this study was to compare the pharmacodynamic activity of bilastine administered under fasting and fed conditions in healthy volunteers. METHODS: In this randomized, open-label, two-period, crossover study involving 24 healthy subjects, once-daily oral bilastine 20 mg was administered for 4 days under fasting and fed conditions, with a 7-day washout period. Bilastine plasma concentrations were measured for 24 h after the first and fourth doses in each period. Pharmacodynamic activity was assessed by wheal and flare surface inhibition and subjective assessment of itching, after intradermal injection of histamine 5 µg. RESULTS: When administered under fed versus fasting conditions, exposure to bilastine 20 mg decreased (mean maximum plasma concentration and area under the curve from time 0 to 24 h decreased by 34.27% and 32.72% [day 1], respectively, and 33.08% and 28.87% [day 4]). Despite this, the antihistaminic effect of bilastine 20 mg was not altered by food. On day 1, as assessed by wheal and flare surface inhibition, the maximum effect and duration of action of bilastine did not differ to a significant extent between fasting and fed conditions, with only a short 30-min delay in the onset of wheal inhibition. At steady state (day 4), bilastine's pharmacodynamic effects were not significantly affected under fasting or fed conditions. CONCLUSION: The pharmacokinetic interaction of bilastine with food does not imply a significant reduction of its peripheral antihistaminic efficacy. Despite a slight delay in onset of action on the first treatment day, the global clinical efficacy of bilastine is not affected by coadministration with food.


Subject(s)
Food-Drug Interactions , Urticaria , Humans , Cross-Over Studies , Urticaria/drug therapy , Piperidines/pharmacokinetics , Area Under Curve
17.
Rapid Commun Mass Spectrom ; 36(14): e9325, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35560672

ABSTRACT

RATIONALE: SCO-267 is a potent full agonist of G-protein-coupled receptor 40. As a promising therapeutic agent for type 2 diabetes mellitus, it is necessary to elucidate its metabolite profiles during the stage of drug development for safety considerations. METHODS: The in vitro metabolism was investigated by incubating SCO-267 (5 µM) with liver microsomes and hepatocytes (rat and human). For in vivo metabolism, SCO-267 (10 mg/kg) was orally administered to rats and plasma samples were collected. The metabolites were identified via measurements of accurate mass, elemental composition and product ions using liquid chromatography coupled to hybrid quadrupole Orbitrap high-resolution mass spectrometry (LC-Orbitrap-MS). RESULTS: A total of 19 metabolites were structurally identified. M2 (hydroxyl-SCO-267), M15 (SCO-267-acyl-glucuronide), M16 (desmethyl-SCO-267) and M17 (desneopentyl-SCO-267) were verified with reference standards. M2, M11, M16 and M17 were the major metabolites originating from hydroxylation, O-demethylation and N-dealkylation, respectively. Phenotyping study with recombinant human P450 enzymes demonstrated that hydroxylation (M2 and M11) was mainly catalyzed by CYP2C8 and 3A4; demethylation (M16) was mainly catalyzed by CYP2D6, and less catalyzed by CYP2C8 and 3A4; and N-dealkylation (M17) was exclusively triggered by CYP3A4. CONCLUSIONS: Hydroxylation, O-demethylation, N-dealkylation and acyl glucuronidation were the major metabolic pathways of SCO-267. This study is the first to discover the metabolic fates of SCO-267, which provides a basis for safety assessment of this drug candidate.


Subject(s)
Diabetes Mellitus, Type 2 , Piperidines , Pyridines , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Cytochrome P-450 CYP2C8/metabolism , Diabetes Mellitus, Type 2/metabolism , Microsomes, Liver/metabolism , Piperidines/chemistry , Piperidines/pharmacokinetics , Pyridines/chemistry , Pyridines/pharmacokinetics , Rats , Tandem Mass Spectrometry/methods
18.
Pharm Res ; 39(7): 1303-1319, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35606598

ABSTRACT

BACKGROUND: Very little knowledge exists on the impact of Alzheimer's disease on the CNS target site pharmacokinetics (PK). AIM: To predict the CNS PK of cognitively healthy young and elderly and of Alzheimer's patients using the physiologically based LeiCNS-PK3.0 model. METHODS: LeiCNS-PK3.0 was used to predict the PK profiles in brain extracellular (brainECF) and intracellular (brainICF) fluids and cerebrospinal fluid of the subarachnoid space (CSFSAS) of donepezil, galantamine, memantine, rivastigmine, and semagacestat in young, elderly, and Alzheimer's patients. The physiological parameters of LeiCNS-PK3.0 were adapted for aging and Alzheimer's based on an extensive literature search. The CNS PK profiles at plateau for clinical dose regimens were related to in vitro IC50 values of acetylcholinesterase, butyrylcholinesterase, N-methyl-D-aspartate, or gamma-secretase. RESULTS: The PK profiles of all drugs differed between the CNS compartments regarding plateau levels and fluctuation. BrainECF, brainICF and CSFSAS PK profile relationships were different between the drugs. Aging and Alzheimer's had little to no impact on CNS PK. Rivastigmine acetylcholinesterase IC50 values were not reached. Semagacestat brain PK plateau levels were below the IC50 of gamma-secretase for half of the interdose interval, unlike CSFSAS PK profiles that were consistently above IC50. CONCLUSION: This study provides insights into the relations between CNS compartments PK profiles, including target sites. CSFSAS PK appears to be an unreliable predictor of brain PK. Also, despite extensive changes in blood-brain barrier and brain properties in Alzheimer's, this study shows that the impact of aging and Alzheimer's pathology on CNS distribution of the five drugs is insignificant.


Subject(s)
Alzheimer Disease , Acetylcholinesterase , Aged , Aging , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases , Brain , Butyrylcholinesterase , Cholinesterase Inhibitors/pharmacokinetics , Humans , Indans/pharmacokinetics , Piperidines/pharmacokinetics , Rivastigmine
19.
Cancer Chemother Pharmacol ; 90(1): 97-104, 2022 07.
Article in English | MEDLINE | ID: mdl-35598186

ABSTRACT

INTRODUCTION: The combination of vemurafenib, a proto-oncogene B-Raf inhibitor (BRAFi) and cobimetinib, an inhibitor of mitogen-activated protein kinase kinase (MEKi) has shown to improve survival in patients with BRAF V600-mutated melanoma. BRAF mutations are also frequently detected driver mutations in other tumor types, including thyroid carcinoma. Since thyroid carcinoma is not a labeled indication for BRAF/MEKi, a cohort for patients with BRAF V600-mutated thyroid carcinoma was opened within the Drug Rediscovery Protocol (DRUP), a national ongoing pan-cancer multi-drug trial, in which patients receive off-label treatment with approved drugs based on their molecular tumor profile. RESULTS: Here, we present two patients with BRAF-mutated thyroid carcinoma, who were successfully treated with vemurafenib/cobimetinib administered via a feeding tube. Plasma concentrations of vemurafenib and cobimetinib were determined. A partial response was observed in both patients, but they experienced significant toxicity. CONCLUSION: Our cases show that vemurafenib/cobimetinib treatment is effective in BRAF V600-mutated thyroid carcinoma, also when administered via a feeding tube. Although serious side effects occurred in both patients, we hypothesize that this was not attributable to the administration route. Therefore, administration of vemurafenib/cobimetinib by feeding tube is feasible and effective. TRIAL REGISTRATION: Clinical trial identification: NCT02925234.


Subject(s)
Antineoplastic Agents , Azetidines , Piperidines , Skin Neoplasms , Thyroid Neoplasms , Vemurafenib , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Azetidines/adverse effects , Azetidines/pharmacokinetics , Humans , Piperidines/adverse effects , Piperidines/pharmacokinetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Vemurafenib/adverse effects , Vemurafenib/pharmacokinetics
20.
Clin Pharmacol Drug Dev ; 11(7): 889-897, 2022 07.
Article in English | MEDLINE | ID: mdl-35304977

ABSTRACT

Rimegepant (Nurtec ODT)-an orally administered, small-molecule calcitonin gene-related peptide receptor antagonist indicated for the acute and preventive treatment of migraine-is a substrate for both the P-glycoprotein and breast cancer resistance protein transporters in vitro. We evaluated the effects of concomitant administration of strong inhibitors of these transporters on the pharmacokinetics of rimegepant in healthy subjects. This single-center, open-label, randomized study was conducted in 2 parts, both of which were 2-period, 2-sequence, crossover studies. Part 1 (n = 15) evaluated the effect of a single oral dose of 200-mg cyclosporine, a strong inhibitor of the P-glycoprotein and breast cancer resistance protein transporters, on the pharmacokinetics of rimegepant 75 mg. Part 2 (n = 12) evaluated the effect of a single oral dose of 600-mg quinidine, a strong selective P-glycoprotein transporter, on the pharmacokinetics of rimegepant 75 mg. Coadministration with cyclosporine showed an increase in rimegepant area under the plasma concentration-time curve from time 0 to infinity and maximum observed concentration based on geometric mean ratios (90% confidence intervals [CIs]) of 1.6 (1.49-1.72) and 1.41 (1.27-1.57), respectively, versus rimegepant alone. Coadministration with quinidine showed an increase in rimegepant area under the plasma concentration-time curve from time 0 to infinity and maximum observed concentration geometric mean ratios (90% CIs) of 1.55 (1.40-1.72) and 1.67 (1.46-1.91), respectively, versus rimegepant alone. Strong P-glycoprotein inhibitors (cyclosporine, quinidine) increased rimegepant exposures (>50%, <2-fold). In parts 1 and 2, rimegepant coadministration was well tolerated and safe. The similar effect of cyclosporine and quinidine coadministration on rimegepant exposure suggests that inhibition of breast cancer resistance protein inhibition may have less influence on rimegepant exposure.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Breast Neoplasms , Cyclosporine , Piperidines , Pyridines , Quinidine , Cross-Over Studies , Cyclosporine/therapeutic use , Female , Healthy Volunteers , Humans , Membrane Transport Proteins , Neoplasm Proteins , Piperidines/pharmacokinetics , Pyridines/pharmacokinetics , Quinidine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...