Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.282
Filter
1.
Nat Commun ; 15(1): 5602, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961108

ABSTRACT

Abnormal trophoblast self-renewal and differentiation during early gestation is the major cause of miscarriage, yet the underlying regulatory mechanisms remain elusive. Here, we show that trophoblast specific deletion of Kat8, a MYST family histone acetyltransferase, leads to extraembryonic ectoderm abnormalities and embryonic lethality. Employing RNA-seq and CUT&Tag analyses on trophoblast stem cells (TSCs), we further discover that KAT8 regulates the transcriptional activation of the trophoblast stemness marker, CDX2, via acetylating H4K16. Remarkably, CDX2 overexpression partially rescues the defects arising from Kat8 knockout. Moreover, increasing H4K16ac via using deacetylase SIRT1 inhibitor, EX527, restores CDX2 levels and promoted placental development. Clinical analysis shows reduced KAT8, CDX2 and H4K16ac expression are associated with recurrent pregnancy loss (RPL). Trophoblast organoids derived from these patients exhibit impaired TSC self-renewal and growth, which are significantly ameliorated with EX527 treatment. These findings suggest the therapeutic potential of targeting the KAT8-H4K16ac-CDX2 axis for mitigating RPL, shedding light on early gestational abnormalities.


Subject(s)
CDX2 Transcription Factor , Cell Proliferation , Cell Self Renewal , Histone Acetyltransferases , Trophoblasts , Trophoblasts/metabolism , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Animals , Female , Humans , Mice , Pregnancy , Cell Self Renewal/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Mice, Knockout , Histones/metabolism , Cell Differentiation , Placentation/genetics
2.
Nutrients ; 16(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892661

ABSTRACT

Folic acid plays an important role in the synthesis, repair, and methylation of deoxyribonucleic acid (DNA). Currently, most studies have focused on the effects of periconceptional folic acid (FA) supplementation on fetal development, and there is still a lack of population-based research exploring the association between FA use during pregnancy and placental development. This study aimed to investigate the impacts of FA supplementation in different pregnancies on placenta-related parameters at delivery. The study included 2708 pregnant women recruited from Ma'anshan City, Anhui Province, China, between May 2013 and September 2014. Information on FA use from one month before conception to delivery was collected. Placental length, width, and thickness were measured. Multivariable logistic regression analysis was used to assess the effects of FA supplementation in different pregnancies on placenta-related parameters. Based on multiple regression analysis, propensity score weighting was adopted to enhance comparability between different FA supplementation groups. Compared with FA non-users, FA supplementation before conception was associated with increased placental width (0.241 cm, 95%CI: 0.052-0.429, p = 0.013) and increased placental surface area (6.398 cm2, 95%CI: 1.407-11.389, p = 0.012), and FA use in early/middle pregnancy was, respectively, related with increased placental thickness (0.061 cm, 95%CI: 0.004-0.117, p = 0.036; 0.066 cm, 95%CI: 0.004-0.129, p = 0.038). FA use before conception could increase placental width and area, and FA use in early/middle pregnancy could increase placental thickness. To confirm the findings, further investigations are needed.


Subject(s)
Dietary Supplements , Folic Acid , Placenta , Humans , Female , Pregnancy , Folic Acid/administration & dosage , Placenta/drug effects , Adult , China , Placentation/drug effects , Young Adult , Delivery, Obstetric/methods
3.
Redox Biol ; 74: 103238, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38870780

ABSTRACT

Oxidative stress (OS) and endoplasmic reticulum stress (ERS) are at the genesis of placental disorders observed in preeclampsia, intrauterine growth restriction, and maternal hypothyroidism. In this regard, cationic manganese porphyrins (MnPs) comprise potent redox-active therapeutics of high antioxidant and anti-inflammatory potential, which have not been evaluated in metabolic gestational diseases yet. This study evaluated the therapeutic potential of two MnPs, [MnTE-2-PyP]5+ (MnP I) and [MnT(5-Br-3-E-Py)P]5+ (MnP II), in the fetal-placental dysfunction of hypothyroid rats. Hypothyroidism was induced by administration of 6-Propyl-2-thiouracil (PTU) and treatment with MnPs I and II 0.1 mg/kg/day started on the 8th day of gestation (DG). The fetal and placental development, and protein and/or mRNA expression of antioxidant mediators (SOD1, CAT, GPx1), hypoxia (HIF1α), oxidative damage (8-OHdG, MDA), ERS (GRP78 and CHOP), immunological (TNFα, IL-6, IL-10, IL-1ß, IL-18, NLRP3, Caspase1, Gasdermin D) and angiogenic (VEGF) were evaluated in the placenta and decidua on the 18th DG using immunohistochemistry and qPCR. ROS and peroxynitrite (PRX) were quantified by fluorometric assay, while enzyme activities of SOD, GST, and catalase were evaluated by colorimetric assay. MnPs I and II increased fetal body mass in hypothyroid rats, and MnP I increased fetal organ mass. MnPs restored the junctional zone morphology in hypothyroid rats and increased placental vascularization. MnPs blocked the increase of OS and ERS mediators caused by hypothyroidism, showing similar levels of expression of HIFα, 8-OHdG, MDA, Gpx1, GRP78, and Chop to the control. Moreover, MnPs I and/or II increased the protein expression of SOD1, Cat, and GPx1 and restored the expression of IL10, Nlrp3, and Caspase1 in the decidua and/or placenta. However, MnPs did not restore the low placental enzyme activity of SOD, CAT, and GST caused by hypothyroidism, while increased the decidual and placental protein expression of TNFα. The results show that treatment with MnPs improves the fetal-placental development and the placental inflammatory state of hypothyroid rats and protects against oxidative stress and reticular stress caused by hypothyroidism at the maternal-fetal interface.


Subject(s)
Hypothyroidism , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Animals , Pregnancy , Female , Rats , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Inflammasomes/metabolism , Disease Models, Animal , Placenta/metabolism , Placenta/drug effects , Placentation/drug effects , Antioxidants/pharmacology , Endoplasmic Reticulum Stress/drug effects , Fetal Development/drug effects , Manganese , Metalloporphyrins/pharmacology , Endoplasmic Reticulum Chaperone BiP
4.
Front Endocrinol (Lausanne) ; 15: 1386309, 2024.
Article in English | MEDLINE | ID: mdl-38846494

ABSTRACT

Introduction: Leptin and its receptors are expressed by the human placenta throughout gestation, yet the role of leptin in early human placental development is not well characterized. Leptin is overexpressed in the placentas from preeclamptic (PE) pregnancies. PE can result from the impaired invasion of fetal placental cells, cytotrophoblasts (CTBs), into the maternal decidua. We hypothesized that elevated leptin levels would impair human CTB invasion. Methods: The effects of leptin on the invasion of human CTBs were evaluated in three cell models, HTR-8/SVneo cells, primary CTBs, and placental villous explants using invasion assays. Further, leptin receptor expression was characterized in all three cell models using RT-PCR. Further phosphokinase assays were performed in HTR-8/SVneo cells to determine signaling pathways involved in CTB invasion in response to differential leptin doses. Results: We found that, prior to 8 weeks gestation, leptin promoted CTB invasion in the explant model. After 11 weeks gestation in explants, primary CTBs and in HTR-8/SVneo cells, leptin promoted invasion at moderate but not at high concentrations. Further, leptin receptor characterization revealed that leptin receptor expression did not vary over gestation, however, STAT, PI3K and MAPK pathways showed different signaling in response to varied leptin doses. Discussion: These data suggest that the excess placental leptin observed in PE may cause impaired CTB invasion as a second-trimester defect. Leptin's differential effect on trophoblast invasion may explain the role of hyperleptinemia in preeclampsia pathogenesis.


Subject(s)
Gestational Age , Leptin , Receptors, Leptin , Trophoblasts , Humans , Trophoblasts/metabolism , Trophoblasts/drug effects , Trophoblasts/pathology , Leptin/metabolism , Leptin/pharmacology , Female , Pregnancy , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Placenta/metabolism , Placenta/drug effects , Placenta/pathology , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Dose-Response Relationship, Drug , Signal Transduction , Placentation/drug effects , Cell Movement/drug effects
5.
Zool Res ; 45(3): 586-600, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766743

ABSTRACT

The placenta plays a crucial role in successful mammalian reproduction. Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons, essential for full-term fetal development. The cow placenta harbors at least two trophoblast cell populations: uninucleate (UNC) and binucleate (BNC) cells. However, the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches, and the molecular mechanisms governing trophoblast differentiation and functionalization. To fill this knowledge gap, we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation, attaining high-resolution, spatially resolved gene expression profiles. Based on clustering and cell marker gene expression analyses, key transcription factors, including YBX1 and NPAS2, were shown to regulate the heterogeneity of trophoblast cell subpopulations. Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment. Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation. Additionally, spatial modules and co-variant genes that help shape specific tissue structures were identified. Together, these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.


Subject(s)
Gene Expression Profiling , Placenta , Placentation , Transcriptome , Animals , Cattle/genetics , Female , Pregnancy , Placenta/metabolism , Trophoblasts/metabolism
6.
Placenta ; 152: 53-64, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805949

ABSTRACT

INTRODUCTION: The placenta differs greatly among species, and deep extra-villous trophoblast (EVT) invasion is a unique feature of placentation of higher primates including humans. We reported serine protease HtrA4 being found predominantly in human placentas with aberrant expression linked to preeclampsia. However, it remains unclear where HtrA4 is produced in the placenta, how it is expressed in other species, and whether it is essential for human placentation. METHODS: We first compared HtrA4 protein sequences of over 100 species, then scrutinized the key characteristics of HtrA4 in the human, rhesus macaque and mouse, and determined cellular localization in the placenta. We next investigated functional significance of HtrA4 in EVT differentiation using human trophoblast stem cells (TSCs). RESULTS: Across broader species HtrA4 is well conserved only in higher primates. In humans, only the placenta expressed HtrA4, localising to trophoblasts of villous as well as extra-villous lineages. Rhesus macaques produced HtrA4 but again only in placentas, whereas mice showed no abundant HtrA4 expression anywhere including the placenta, yet it was an active protease if produced. The functional importance of HtrA4 in human EVT was demonstrated using TSCs, which expressed low levels of HtrA4 but significantly up-regulated it during EVT differentiation, and knockdown of HtrA4 severely inhibited the differentiation process. DISCUSSION: HtrA4 is expressed in placentas of humans and macaques but not mice; it is critical for human EVT differentiation. Together with previous reports showing HtrA4 is also indispensable for syncytialization, this study further revealed HtrA4 as a functionally important protease for human placentation.


Subject(s)
Cell Differentiation , Macaca mulatta , Serine Endopeptidases , Trophoblasts , Animals , Trophoblasts/metabolism , Humans , Female , Pregnancy , Cell Differentiation/physiology , Mice , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Placenta/metabolism , Placentation/physiology , Serine Proteases
7.
Ceska Gynekol ; 89(2): 151-155, 2024.
Article in English | MEDLINE | ID: mdl-38704229

ABSTRACT

The human placenta serves as a vital barrier between the mother and the developing fetus during pregnancy. A defect in the early development of the placenta is associated with severe pregnancy disorders. Despite its complex development, various molecular processes control placental development, and the specialization of trophoblast cells is still not fully understood. One primary obstacle is the lack of suitable cell model systems. Traditional two-dimensional (2D) cell cultures fail to mimic in vivo conditions and do not capture the intricate intercellular interactions vital for studying placental development. However, three-dimensional (3D) organoid models derived from stem cells that replicate natural cell organization and architecture have greatly improved our understanding of trophoblast behavior and its medicinal applications. Organoids with relevant phenotypes provide a valuable platform to model both placental physiology and pathology, including the modeling of placental disorders. They hold great promise for personalized medicine, improved diagnostics, and the evaluation of pharmaceutical drug efficacy and safety. This article provides a concise overview of trophoblast stem cells, trophoblast invasion, and the evolving role of organoids in gynecology.


Subject(s)
Organoids , Stem Cells , Trophoblasts , Humans , Trophoblasts/physiology , Organoids/physiology , Female , Pregnancy , Stem Cells/physiology , Placenta/cytology , Placenta/physiology , Placenta/pathology , Placentation/physiology
8.
Sci Rep ; 14(1): 12357, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811636

ABSTRACT

Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR < 0.001), with changes most evident after 30 weeks gestation. A significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR = 0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.


Subject(s)
Heart Defects, Congenital , Magnetic Resonance Imaging , Placenta , Placentation , Humans , Female , Pregnancy , Heart Defects, Congenital/diagnostic imaging , Adult , Placenta/diagnostic imaging , Placenta/pathology , Magnetic Resonance Imaging/methods , Case-Control Studies
9.
Placenta ; 151: 37-47, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703713

ABSTRACT

Caspases, a family of cysteine proteases, are pivotal regulators of apoptosis, the tightly controlled cell death process crucial for eliminating excessive or unnecessary cells during development, including placental development. Collecting research has unveiled the multifaceted roles of caspases in the placenta, extending beyond apoptosis. Apart from their involvement in placental tissue remodeling via apoptosis, caspases actively participate in essential regulatory processes, such as trophoblast fusion and differentiation, significantly influencing placental growth and functionality. In addition, growing evidence indicates an elevation in caspase activity under pathological conditions like pre-eclampsia (PE) and intrauterine growth restriction (IUGR), leading to excessive cell death as well as inflammation. Drawing from advancements in caspase research and placental development under both normal and abnormal conditions, we examine the significance of caspases in both cell death (apoptosis) and non-cell death-related processes within the placenta. We also discuss potential therapeutics targeting caspase-related pathways for placenta disorders.


Subject(s)
Apoptosis , Caspases , Placenta , Animals , Female , Humans , Pregnancy , Caspases/metabolism , Placenta/pathology , Placenta/metabolism , Placenta Diseases/pathology , Placenta Diseases/metabolism , Placentation/physiology , Pre-Eclampsia/pathology , Pre-Eclampsia/metabolism , Trophoblasts/physiology , Trophoblasts/pathology
10.
Front Immunol ; 15: 1385762, 2024.
Article in English | MEDLINE | ID: mdl-38707901

ABSTRACT

The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.


Subject(s)
Placenta , Humans , Pregnancy , Female , Placenta/immunology , Placenta/metabolism , Animals , Placentation , Endometrium/immunology , Endometrium/metabolism , Neoplasms/immunology , Neoplasms/etiology , Embryo Implantation/immunology
11.
Genome Biol ; 25(1): 117, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38715110

ABSTRACT

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Subject(s)
Pre-Eclampsia , Trophoblasts , Vascular Remodeling , Pre-Eclampsia/genetics , Pregnancy , Female , Humans , Trophoblasts/metabolism , Vascular Remodeling/genetics , Placenta/metabolism , DNA Methylation , Epigenesis, Genetic , Endothelial Cells/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomic Imprinting , Transforming Growth Factor beta/metabolism , Fetal Growth Retardation/genetics , Placentation/genetics , RNA-Binding Proteins , Apoptosis Regulatory Proteins
12.
Cell Mol Life Sci ; 81(1): 246, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819479

ABSTRACT

The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.


Subject(s)
Cell Differentiation , Glycosylphosphatidylinositols , Placentation , Trophoblasts , Trophoblasts/metabolism , Trophoblasts/cytology , Female , Pregnancy , Animals , Humans , Mice , Placentation/genetics , Glycosylphosphatidylinositols/metabolism , Glycosylphosphatidylinositols/biosynthesis , Placenta/metabolism , Placenta/cytology , Wnt Signaling Pathway , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Endoplasmic Reticulum/metabolism , Biosynthetic Pathways/genetics , Unfolded Protein Response , CRISPR-Cas Systems
13.
Dev Cell ; 59(12): 1506-1522.e11, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38582082

ABSTRACT

The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.


Subject(s)
Cell Differentiation , Homeodomain Proteins , Trophoblasts , Humans , Trophoblasts/metabolism , Trophoblasts/cytology , Female , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Pregnancy , Placenta/metabolism , Placenta/cytology , Cell Lineage , Placentation , Transcription Factors/metabolism , Transcription Factors/genetics , Stem Cells/metabolism , Stem Cells/cytology , Regulatory Sequences, Nucleic Acid/genetics , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology
14.
Acta Vet Hung ; 72(1): 51-55, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38573775

ABSTRACT

Placental abnormalities more frequently occur during pregnancy of somatic cell clones and may lead to pregnancy loss or dystocia. Adventitious placentation, or diffuse semi-placenta, is determined by the development of areas of accessory placentation between the cotyledons due to the abnormal growth of placentomes.After a full-term pregnancy, a 3-year-old Jersey heifer was referred for dystocia which resulted in the delivery of a dead calf. The cause of dystocia was found to be foetal malposition, while the placenta was physiologically expelled after dystocia resolution.Grossly, cotyledons appeared reduced in size and number in one placental horn, while the surface of the other horn was covered with microplacentomes. Numerous villous structures without trophoblastic coating were highlighted after histopathology. The dominant sign was an inflammatory reaction. The findings were consistent with inter-cotyledonal placentitis, which led to adventitial placentation.Diffuse semi-placenta compensates for the inadequate development of placentomes and may occur as a congenital or acquired defect. The outcome depends on its severity: in the worst scenario, pregnancy may not proceed beyond midterm and may be complicated by hydrallantois. In the case under examination, the dimensions of the cotyledons (from 2 to 10 cm) allowed for the natural course of pregnancy.


Subject(s)
Cattle Diseases , Dystocia , Cattle , Pregnancy , Animals , Female , Placenta/pathology , Placenta/physiology , Placentation , Pelvis , Dystocia/veterinary , Cattle Diseases/diagnosis , Cattle Diseases/pathology
16.
Toxicology ; 504: 153796, 2024 May.
Article in English | MEDLINE | ID: mdl-38582279

ABSTRACT

As a broad-spectrum and efficient insecticide, beta-Cypermethrin (ß-CYP) poses a health risk to pregnancy. It matters the mechanisms of maternal exposure to ß-CYP for impacting reproductive health. The placenta, a transient organ pivotal for maternal-fetal communication during pregnancy, plays a crucial role in embryonic development. The effect of ß-CYP exposure on the placenta and its underlying molecular mechanisms remain obscure. The objective of this study was to investigate the effect of ß-CYP exposure on placental development and the function of trophoblast, as well as the underlying mechanisms through CD-1 mouse model (1, 10, 20 mg/kg.bw) and in vitro HTR-8/SVneo cell model (12.5, 25, 50, 100 µM). We found slower weight gain and reduced uterine wet weight in pregnant mice with maternal exposure to ß-CYP during pregnancy, as well as adverse pregnancy outcomes such as uterine bleeding and embryo resorption. The abnormal placental development in response to ß-CYP was noticed, including imbalanced placental structure and disrupted labyrinthine vascular development. Trophoblasts, pivotal in placental development and vascular remodeling, displayed abnormal differentiation under ß-CYP exposure. This aberration was characterized by thickened trophoblast layers in the labyrinthine zone, accompanied by mitochondrial and endoplasmic reticulum swelling within trophoblasts. Further researches on human chorionic trophoblast cell lines revealed that ß-CYP exposure induced apoptosis in HTR-8/SVneo cells. This induction resulted in a notable decrease in migration and invasion abilities, coupled with oxidative stress and the inhibition of the Notch signaling pathway. N-acetylcysteine (an antioxidant) partially restored the impaired Notch signaling pathway in HTR-8/SVneo cells, and mitigated cellular functional damage attributed to ß-CYP exposure. Collectively, exposure to ß-CYP induced oxidative stress and then led to inhibition of the Notch signaling pathway and dysfunction of trophoblast cells, ultimately resulted in abnormal placenta and pregnancy. These findings indicate Reactive Oxygen Species as potential intervention targets to mitigate ß-CYP toxicity. The comprehensive elucidation contributes to our understanding of ß-CYP biosafety and offers an experimental basis for preventing and managing its reproductive toxicity.


Subject(s)
Insecticides , Oxidative Stress , Pyrethrins , Trophoblasts , Pyrethrins/toxicity , Female , Pregnancy , Trophoblasts/drug effects , Trophoblasts/pathology , Trophoblasts/metabolism , Oxidative Stress/drug effects , Animals , Mice , Insecticides/toxicity , Humans , Maternal Exposure/adverse effects , Placentation/drug effects , Cell Line , Placenta/drug effects , Placenta/pathology , Placenta/metabolism , Apoptosis/drug effects
17.
Am J Reprod Immunol ; 91(4): e13844, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627916

ABSTRACT

Preeclampsia is one of the most common disorders that poses threat to both mothers and neonates and a major contributor to perinatal morbidity and mortality worldwide. Viral infection during pregnancy is not typically considered to cause preeclampsia; however, syndromic nature of preeclampsia etiology and the immunomodulatory effects of viral infections suggest that microbes could trigger a subset of preeclampsia. Notably, SARS-CoV-2 infection is associated with an increased risk of preeclampsia. Herein, we review the potential role of viral infections in this great obstetrical syndrome. According to in vitro and in vivo experimental studies, viral infections can cause preeclampsia by introducing poor placentation, syncytiotrophoblast stress, and/or maternal systemic inflammation, which are all known to play a critical role in the development of preeclampsia. Moreover, clinical and experimental investigations have suggested a link between several viruses and the onset of preeclampsia via multiple pathways. However, the results of experimental and clinical research are not always consistent. Therefore, future studies should investigate the causal link between viral infections and preeclampsia to elucidate the mechanism behind this relationship and the etiology of preeclampsia itself.


Subject(s)
Pre-Eclampsia , Virus Diseases , Viruses , Pregnancy , Infant, Newborn , Female , Humans , Pre-Eclampsia/metabolism , Placentation , Trophoblasts/metabolism , Virus Diseases/complications , Virus Diseases/metabolism , Placenta/metabolism
18.
Am J Reprod Immunol ; 91(3): e13835, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467995

ABSTRACT

Autophagy is a bulk degradation system that maintains cellular homeostasis by producing energy and/or recycling excess proteins. During early placentation, extravillous trophoblasts invade the decidua and uterine myometrium, facing maternal immune cells, which participate in the immune suppression of paternal and fetal antigens. Regulatory T cells will likely increase in response to a specific antigen before and during early pregnancy. Insufficient expansion of antigen-specific Treg cells, which possess the same T cell receptor, is associated with the pathophysiology of preeclampsia, suggesting sterile systemic inflammation. Autophagy is involved in reducing inflammation through the degradation of inflammasomes and in the differentiation and function of regulatory T cells. Autophagy dysregulation induces protein aggregation in trophoblasts, resulting in placental dysfunction. In this review, we discuss the role of regulatory T cells in normal pregnancies. In addition, we discuss the association between autophagy and regulatory T cells in the development of preeclampsia based on reports on the role of autophagy in autoimmune diseases.


Subject(s)
Placenta , Pre-Eclampsia , Pregnancy , Female , Humans , Placenta/metabolism , Placentation , Trophoblasts/physiology , Autophagy , Inflammation/metabolism , Decidua
19.
Hum Reprod Update ; 30(4): 442-471, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38519450

ABSTRACT

BACKGROUND: The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFß) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFß signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFß signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFß signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFß is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE: This comprehensive review aims to explore and elucidate the roles of the major members of the TGFß superfamily, including TGFßs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS: A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfß', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfß signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfß signalling', 'placental macrophages tgfß', 'endothelial cells tgfß', 'endothelium tgfß signalling', 'trophoblast invasion tgfß signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfß', 'tgfß preeclampsia', 'tgfß placental development', 'TGFß placental function', 'endothelial dysfunction preeclampsia tgfß signalling', 'vascular remodelling placenta TGFß', 'inflammation pregnancy tgfß', 'immune response pregnancy tgfß', 'immune tolerance pregnancy tgfß', 'TGFß pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfß pregnancy tregs', 'TGFß placenta NK cells', 'TGFß placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES: A comprehensive understanding of TGFß signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFß ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFß signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFß signalling. WIDER IMPLICATIONS: The dysregulation of TGFß signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFß signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.


Subject(s)
Inflammation , Placenta , Pre-Eclampsia , Signal Transduction , Transforming Growth Factor beta , Humans , Pregnancy , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/physiopathology , Transforming Growth Factor beta/metabolism , Placenta/metabolism , Inflammation/metabolism , Trophoblasts/metabolism , Trophoblasts/physiology , Placentation/physiology
20.
Sci Adv ; 10(12): eadk1278, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38507481

ABSTRACT

Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.


Subject(s)
Placenta , Placentation , Pregnancy , Female , Mice , Animals , Placenta/diagnostic imaging , Microscopy/methods , Optical Imaging , Intravital Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...