Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.057
Filter
1.
Sci Rep ; 14(1): 16995, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043720

ABSTRACT

Cylicomorpha solmsii (Urb.) Urb (Caricaceae) is a wild relative of domesticated Carica papaya native to the humid tropical forest of Cameroon. C. solmsii is becoming extinct due to rapid urbanization of its habitat. There is currently no restoration planning, no available data on seed germination, details on morphological description and fruit phenology. We investigated the effects of light and soil on seed germination, updated its morphological description and provided cues of its fruit phenology. In two series of experiments, a germination test was first conducted under light and dark conditions with three seed pre-treatments (scarification, drying and cold). Secondly, pre-treated seeds were sown in native soils of C. solmsii habitat collected at Eloumden I and II, two ex-situ and mixtures soil with sand. Qualitative and quantitative data were collected on different part of the plant and analyzed using R package version 4.3.2. Our findings showed that C. solmsii seeds can germinate only under light. The seeds manifested a physiological embryonic dormancy. The native soils showed the highest germination percentage and seedling establishment. The dioicy of C. solmsii was clearly described with incomplete staminate and pistillate unisexual flower whorls. C. solmsii was observed to produce fruits throughout the year at varying intensity. This information is a vital cue to species restoration and policy makers towards C. solmsii conservation.


Subject(s)
Fruit , Germination , Seeds , Seeds/growth & development , Fruit/growth & development , Soil , Ecosystem , Seedlings/growth & development , Cameroon , Light , Conservation of Natural Resources/methods , Plant Dormancy
2.
Methods Mol Biol ; 2830: 35-49, 2024.
Article in English | MEDLINE | ID: mdl-38977566

ABSTRACT

Seed dormancy is an important trait in cereal breeding, as it prevents preharvest sprouting (PHS). Although seed dormancy is a multifactorial trait, seed color has been demonstrated to be a major dormancy-related factor controlled by few genes. The R-1 gene is a seed color regulator that encodes a MYB-type transcription factor in wheat. A set of genetic markers designed against R-1 can provide a powerful tool for swift wheat breeding. Depth of seed dormancy varies not only among lines but also during seed development in each line. In this chapter, we describe how developmental seeds can be collected to perform germination tests, how seed color can be observed after NaOH staining, and how to genotype wheat R-1 genes using multiplex PCR.


Subject(s)
Germination , Multiplex Polymerase Chain Reaction , Plant Dormancy , Seeds , Triticum , Triticum/genetics , Triticum/growth & development , Seeds/genetics , Seeds/growth & development , Plant Dormancy/genetics , Germination/genetics , Multiplex Polymerase Chain Reaction/methods , Genotype , Color , Plant Breeding/methods , Genetic Markers/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Methods Mol Biol ; 2830: 13-23, 2024.
Article in English | MEDLINE | ID: mdl-38977564

ABSTRACT

Wild progenitors of Triticeae crops generally have long dormancy periods. Domesticated crops inherited these longer dormancy alleles from their wild progenitors, which have since been modified and selected during cultivation and utilization by humans. Thus, allelic combinations at different seed dormancy loci are currently represented in Triticeae germplasm preserved in seed repositories and gene banks as accessions and materials of breeding programs. Methods to evaluate seed dormancy are key to explore, analyze, and exploit optimal alleles in dormancy genes. Recent developments in genomics have accelerated the identification and analysis of seed dormancy loci in Triticeae species. Transgenic experiments have been conducted to validate if candidate genes affect seed dormancy and more recently have yielded an array of mutations derived from genome editing for practical applications. The information gathered on these seed dormancy loci provides a deeper knowledge of germplasm diversity and offers strategies to control seed dormancy in breeding programs in Triticeae crops.


Subject(s)
Gene Expression Regulation, Plant , Plant Dormancy , Seeds , Plant Dormancy/genetics , Seeds/genetics , Seeds/growth & development , Plant Breeding/methods , Alleles , Crops, Agricultural/genetics , Genes, Plant , Plants, Genetically Modified/genetics , Gene Editing/methods
4.
Methods Mol Biol ; 2830: 27-34, 2024.
Article in English | MEDLINE | ID: mdl-38977565

ABSTRACT

Germination test is fundamental and commonly used technique for seed dormancy and germination studies, and proper assessment of dormancy level and germination ability of a given set of seeds is prerequisite for most of the studies. However, germination is very sensitive to imbibition conditions, and dormancy development is also sensitive to growth conditions of the mother plants. In this chapter, we describe tips for plant growth and germination test mainly for physiological and molecular genetic studies with Arabidopsis. This protocol can be applied for other plant species with relatively small seeds and for various studies to analyze the effect of light, phytohormones, and other chemicals in seed germination.


Subject(s)
Arabidopsis , Germination , Plant Dormancy , Plant Growth Regulators , Seeds , Plant Dormancy/genetics , Seeds/growth & development , Seeds/genetics , Seeds/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/growth & development , Plant Growth Regulators/metabolism , Light
5.
Methods Mol Biol ; 2830: 107-120, 2024.
Article in English | MEDLINE | ID: mdl-38977572

ABSTRACT

Seed dormancy is an important agronomic trait in cereal crops. Throughout the domestication of cereals, seed dormancy has been reduced to obtain uniform germination. However, grain crops must retain moderate levels of seed dormancy to prevent problems such as preharvest sprouting in wheat (Triticum aestivum) and barley (Hordeum vulgare). To produce modern cultivars with the appropriate seed dormancy levels, it is important to identify the genes responsible for seed dormancy. With recent advances in sequencing technology, several causal genes for seed dormancy quantitative trait loci (QTLs) have been identified in barley and wheat. Here, we present a method to identify causal genes for seed dormancy QTLs in barley, a method that is also applicable to other cereals.


Subject(s)
Chromosome Mapping , Cloning, Molecular , Hordeum , Plant Dormancy , Quantitative Trait Loci , Hordeum/genetics , Hordeum/growth & development , Plant Dormancy/genetics , Chromosome Mapping/methods , Cloning, Molecular/methods , Genes, Plant , Seeds/genetics , Seeds/growth & development , Chromosomes, Plant/genetics
6.
Methods Mol Biol ; 2830: 131-136, 2024.
Article in English | MEDLINE | ID: mdl-38977574

ABSTRACT

Seed dormancy genes typically suppress germination and cell division. Therefore, overexpressing these genes can negatively affect tissue culture, interfering with the generation of transgenic plants and thus hampering the analysis of gene function. Transient expression in target cells is a useful approach for studying the function of seed dormancy genes. Here, we describe a protocol for transiently expressing genes related to seed dormancy in the scutellum of immature wheat (Triticum aestivum) embryos to analyze their effects on germination.


Subject(s)
Gene Expression Regulation, Plant , Germination , Plant Dormancy , Seeds , Triticum , Triticum/genetics , Triticum/growth & development , Plant Dormancy/genetics , Seeds/genetics , Seeds/growth & development , Germination/genetics , Biolistics/methods , Plants, Genetically Modified/genetics , Genes, Plant , Gene Expression/genetics
7.
Methods Mol Biol ; 2830: 149-161, 2024.
Article in English | MEDLINE | ID: mdl-38977576

ABSTRACT

Transgenesis technologies, such as overexpression or RNA interference-mediated suppression, have often been used to alter the activity of target genes. More recently developed targeted genome modification methods using customizable endonucleases allow for the regulation or knockout mutation of target genes without the necessity of integrating recombinant DNA. Such approaches make it possible to create novel alleles of target genes, thereby significantly contributing to crop improvement. Among these technologies, the Cas9 endonuclease-based method is widely applied to several crops, including barley (Hordeum vulgare). In this chapter, we describe an Agrobacterium-based approach to the targeted modification of grain dormancy genes in barley using RNA-guided Cas9 nuclease.


Subject(s)
CRISPR-Cas Systems , Hordeum , Plant Dormancy , Hordeum/genetics , Plant Dormancy/genetics , Plants, Genetically Modified/genetics , Gene Editing/methods , Agrobacterium/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Genes, Plant
8.
Methods Mol Biol ; 2830: 121-129, 2024.
Article in English | MEDLINE | ID: mdl-38977573

ABSTRACT

Genome-wide association study (GWAS) is widely used to characterize genes or quantitative trait loci (QTLs) associated with preharvest sprouting and seed dormancy. GWAS can identify both previously discovered and novel QTLs across diverse genetic panels. The high-throughput SNP arrays or next-generation sequencing technologies have facilitated the identification of numerous genetic markers, thereby significantly enhancing the resolution of GWAS. Although various methods have been developed, the fundamental principles underlying these techniques remain constant. Here, we provide a basic technological flow to perform seed dormancy assay, followed by GWAS using population structure control, and compared it with previous identified QTLs and genes.


Subject(s)
Genome-Wide Association Study , Germination , Plant Dormancy , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum , Genome-Wide Association Study/methods , Triticum/genetics , Triticum/growth & development , Germination/genetics , Plant Dormancy/genetics , Seeds/genetics , Seeds/growth & development , Phenotype
9.
Methods Mol Biol ; 2830: 163-171, 2024.
Article in English | MEDLINE | ID: mdl-38977577

ABSTRACT

Dependency on in vitro culture and regeneration limits the ability to use genome editing on elite wheat (Triticum aestivum L.) varieties. We recently developed an in planta particle bombardment (iPB) technique for gene editing in wheat that utilizes shoot apical meristems (SAMs) as a target tissue. Since the method does not require in vitro culture, it can therefore be used on recalcitrant varieties. In this chapter, we describe in detail the steps used in the iPB method. With this protocol, 3% to 5% of T0 plants grown from bombarded SAMs typically carry mutant alleles and approximately 1% to 2% of the T0 plants inherit mutant alleles in the next generation.


Subject(s)
Gene Editing , Plant Dormancy , Triticum , Triticum/genetics , Triticum/growth & development , Gene Editing/methods , Plant Dormancy/genetics , Genome, Plant , Plants, Genetically Modified/genetics , Meristem/genetics , Seeds/genetics , Seeds/growth & development , CRISPR-Cas Systems
10.
Methods Mol Biol ; 2830: 137-148, 2024.
Article in English | MEDLINE | ID: mdl-38977575

ABSTRACT

Knockout mutants provide definitive information about the functions of genes related to agronomic traits, including seed dormancy. However, it takes many years to produce knockout mutants using conventional techniques in polyploid plants such as hexaploid wheat. Genome editing with sequence-specific nucleases is a promising approach for obtaining knockout mutations in all targeted homoeologs of wheat simultaneously. Here, we describe a procedure to produce a triple recessive mutant in wheat via genome editing. This protocol covers the evaluation of gRNA and Agrobacterium-mediated transformation to obtain edited wheat seedlings.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Knockout Techniques , Plant Dormancy , Triticum , Triticum/genetics , Gene Editing/methods , Plant Dormancy/genetics , Gene Knockout Techniques/methods , Mutation , Plants, Genetically Modified/genetics , Genome, Plant , RNA, Guide, CRISPR-Cas Systems/genetics , Seeds/genetics , Genes, Plant , Agrobacterium/genetics , Seedlings/genetics
11.
Methods Mol Biol ; 2830: 3-12, 2024.
Article in English | MEDLINE | ID: mdl-38977563

ABSTRACT

Seed germination is controlled by a combination of the seed dormancy level and environmental conditions such as light, temperature, moisture, and nitrate levels. Seed dormancy is programed genetically, but it is also sensitive to maternal environmental conditions before and after anthesis. Recent developments in molecular genetics and bioinformatics have greatly enhanced our understanding of the molecular mechanisms of seed dormancy and germination in model plants and economically important crop species. This chapter focuses on temperature as an environmental factor and discusses the genetic and epigenetic mechanisms of dormancy and germination.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Plant , Germination , Plant Dormancy , Seeds , Temperature , Germination/genetics , Plant Dormancy/genetics , Seeds/genetics , Seeds/growth & development
12.
Physiol Plant ; 176(4): e14425, 2024.
Article in English | MEDLINE | ID: mdl-38982330

ABSTRACT

Flowering plants adjust their reproductive period to maximize the success of the offspring. Monocarpic plants, those with a single reproductive cycle that precedes plant senescence and death, tightly regulate both flowering initiation and flowering cessation. The end of the flowering period involves the arrest of the inflorescence meristem activity, known as proliferative arrest, in what has been interpreted as an evolutionary adaptation to maximize the allocation of resources to seed production and the viability of the progeny. Factors influencing proliferative arrest were described for several monocarpic plant species many decades ago, but only in the last few years studies performed in Arabidopsis have allowed to approach proliferative arrest regulation in a comprehensive manner by studying the physiology, hormone dynamics, and genetic factors involved in its regulation. However, these studies remain restricted to Arabidopsis and there is a need to expand our knowledge to other monocarpic species to propose general mechanisms controlling the process. In this work, we have characterized proliferative arrest in Pisum sativum, trying to parallel available studies in Arabidopsis to maximize this comparative framework. We have assessed quantitatively the role of fruits/seeds in the process, the influence of the positional effect of these fruits/seeds in the behavior of the inflorescence meristem, and the transcriptomic changes in the inflorescence associated with the arrested state of the meristem. Our results support a high conservation of the factors triggering arrest in pea and Arabidopsis, but also reveal differences reinforcing the need to perform similar studies in other species.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Inflorescence , Meristem , Pisum sativum , Seeds , Meristem/genetics , Meristem/growth & development , Meristem/physiology , Pisum sativum/genetics , Pisum sativum/physiology , Pisum sativum/growth & development , Inflorescence/genetics , Inflorescence/physiology , Inflorescence/growth & development , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Plant Dormancy/genetics , Plant Dormancy/physiology
13.
Sci Rep ; 14(1): 14988, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951551

ABSTRACT

Breeding high yielding groundnut cultivars with 2-3 weeks of fresh seed dormancy, particularly in Spanish-type cultivars, enhances the sustainability of agriculture in groundnuts. In this context, we conducted a comprehensive phenotypic and genotypic evaluation of advanced breeding lines developed in the genetic background of Spanish types. By employing multi-phenotyping and marker data, we identified PBS 15044, 16004, 16013, 16015, 16016, 16017, 16020, 16021, 16026, 16031, 16035, 16037, 16038, 16039, 16041, and 16042 with 2-3 weeks dormancy (> 90%).The various parametric and non-parametric estimates identified the stable fresh dormant genotypes with one or more superior economic trait. PBS 16021, 15044, 16038, and 16039 identified with high hundred pod weight (HPW) were also reported having high intensity of dormancy (> 90% for up to 3 weeks); PBS 15044, 16016, PBS 16038 and PBS 16039 with high hundred kernel weight (HKW) also reported with up to 3 weeks fresh seed dormancy; and PBS 16013, 16031, and 16038 with up to 3 weeks fresh seed dormancy had high shelling percentage (SP). They can be used to develop lines with the desired level of dormancy, and high yields, by designing appropriate breeding strategies.


Subject(s)
Genotype , Phenotype , Plant Breeding , Plant Dormancy , Seeds , Plant Dormancy/genetics , Plant Breeding/methods , Seeds/genetics , Seeds/growth & development , Spain , Arachis/genetics , Crosses, Genetic
14.
Proc Natl Acad Sci U S A ; 121(28): e2404887121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968100

ABSTRACT

The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Germination , Seeds , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 3/genetics , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Plant Dormancy/genetics , Plant Dormancy/physiology , Seeds/growth & development , Seeds/metabolism , Seeds/genetics , Signal Transduction , Temperature
15.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927602

ABSTRACT

The low survival rate of transplanted plantlets, which has limited the utility of tissue-culture-based methods for the rapid propagation of tree peonies, is due to plantlet dormancy after rooting. We previously determined that the auxin response factor PsARF may be a key regulator of tree peony dormancy. To clarify the mechanism mediating tree peony plantlet dormancy, PsARF genes were systematically identified and analyzed. Additionally, PsARF16a was transiently expressed in the leaves of tree peony plantlets to examine its regulatory effects on a downstream gene network. Nineteen PsARF genes were identified and divided into four classes. All PsARF genes encoded proteins with conserved B3 and ARF domains. The number of motifs, exons, and introns varied between PsARF genes in different classes. The overexpression of PsARF16a altered the expression of NCED, ZEP, PYL, GA2ox1, GID1, and other key genes in abscisic acid (ABA) and gibberellin (GA) signal transduction pathways, thereby promoting ABA synthesis and decreasing GA synthesis. Significant changes to the expression of some key genes contributing to starch and sugar metabolism (e.g., AMY2A, BAM3, BGLU, STP, and SUS2) may be associated with the gradual conversion of sugar into starch. This study provides important insights into PsARF functions in tree peonies.


Subject(s)
Gene Expression Regulation, Plant , Paeonia , Plant Dormancy , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Dormancy/genetics , Paeonia/genetics , Paeonia/growth & development , Paeonia/metabolism , Abscisic Acid/metabolism , Gibberellins/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Trees/genetics , Trees/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Signal Transduction/genetics
16.
BMC Plant Biol ; 24(1): 604, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926703

ABSTRACT

BACKGROUND AND AIMS: Seed heteromorphism is a plant strategy that an individual plant produces two or more distinct types of diaspores, which have diverse morphology, dispersal ability, ecological functions and different effects on plant life history traits. The aim of this study was to test the effects of seasonal soil salinity and burial depth on the dynamics of dormancy/germination and persistence/depletion of buried trimorphic diaspores of a desert annual halophyte Atriplex centralasiatica. METHODS: We investigated the effects of salinity and seasonal fluctuations of temperature on germination, recovery of germination and mortality of types A, B, C diaspores of A. centralasiatica in the laboratory and buried diaspores in situ at four soil salinities and three depths. Diaspores were collected monthly from the seedbank from December 2016 to November 2018, and the number of viable diaspores remaining (not depleted) and their germinability were determined. RESULTS: Non-dormant type A diaspores were depleted in the low salinity "window" in the first year. Dormant diaspore types B and C germinated to high percentages at 0.3 and 0.1 mol L-1 soil salinity, respectively. High salinity and shallow burial delayed depletion of diaspore types B and C. High salinity delayed depletion time of the three diaspore types and delayed dormancy release of types B and C diaspores from autumn to spring. Soil salinity modified the response of diaspores in the seedbank by delaying seed dormancy release in autum and winter and by providing a low-salt concentration window for germination of non-dormant diaspores in spring and early summer. CONCLUSIONS: Buried trimorphic diaspores of annual desert halophyte A. centralasiatica exhibited diverse dormancy/germination behavior in respond to seasonal soil salinity fluctuation. Prolonging persistence of the seedbank and delaying depletion of diaspores under salt stress in situ primarily is due to inhibition of dormancy-break. The differences in dormancy/germination and seed persistence in the soil seedbank may be a bet-hadging strategy adapted to stressful temporal and spatial heterogeneity, and allows A. centralasiatica to persist in the unpredictable cold desert enevironment.


Subject(s)
Atriplex , Germination , Salinity , Salt-Tolerant Plants , Seasons , Seeds , Soil , Germination/physiology , Salt-Tolerant Plants/physiology , Salt-Tolerant Plants/growth & development , China , Soil/chemistry , Seeds/physiology , Seeds/growth & development , Atriplex/physiology , Atriplex/growth & development , Seed Bank , Plant Dormancy/physiology , Temperature
17.
New Phytol ; 243(3): 1017-1033, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877710

ABSTRACT

Tree peony (Paeonia suffruticosa) undergoes bud endodormancy, and gibberellin (GA) pathway plays a crucial role in dormancy regulation. Recently, a key DELLA protein PsRGL1 has been identified as a negative regulator of bud dormancy release. However, the mechanism of GA signal to break bud dormancy remains unknown. In this study, yeast two-hybrid screened PsSOC1 interacting with PsRGL1 through its MADS domain, and interaction was identified using pull-down and luciferase complementation imaging assays Transformation in tree peony and hybrid poplar confirmed that PsSOC1 facilitated bud dormancy release. Transcriptome analysis of PsSOC1-overexpressed buds indicated PsCYCD3.3 and PsEBB3 were its potential downstream targets combining with promoter survey, and they also accelerated bud dormancy release verified by genetic analysis. Yeast one-hybrid, electrophoretic mobility shifts assays, chromatin immunoprecipitation quantitative PCR, and dual luciferase assays confirmed that PsSOC1 could directly bind to the CArG motif of PsCYCD3.3 and PsEBB3 promoters via its MADS domain. PsRGL1-PsSOC1 interaction inhibited the DNA-binding activity of PsSOC1. Additionally, PsCYCD3.3 promoted bud dormancy release by rebooting cell proliferation. These findings elucidated a novel GA pathway, GA-PsRGL1-PsSOC1-PsCYCDs, which expanded our understanding of the GA pathway in bud dormancy release.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Promoter Regions, Genetic , Plant Proteins/metabolism , Plant Proteins/genetics , Gibberellins/metabolism , Promoter Regions, Genetic/genetics , Plant Dormancy/genetics , Signal Transduction , Protein Binding
18.
Curr Biol ; 34(13): 2893-2906.e3, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38876102

ABSTRACT

Secondary dormancy is an adaptive trait that increases reproductive success by aligning seed germination with permissive conditions for seedling establishment. Aethionema arabicum is an annual plant and member of the Brassicaceae that grows in environments characterized by hot and dry summers. Aethionema arabicum seeds may germinate in early spring when seedling establishment is permissible. We demonstrate that long-day light regimes induce secondary dormancy in the seeds of Aethionema arabicum (CYP accession), repressing germination in summer when seedling establishment is riskier. Characterization of mutants screened for defective secondary dormancy demonstrated that RGL2 mediates repression of genes involved in gibberellin (GA) signaling. Exposure to high temperature alleviates secondary dormancy, restoring germination potential. These data are consistent with the hypothesis that long-day-induced secondary dormancy and its alleviation by high temperatures may be part of an adaptive response limiting germination to conditions permissive for seedling establishment in spring and autumn.


Subject(s)
Brassicaceae , Germination , Plant Dormancy , Seeds , Seeds/growth & development , Seeds/physiology , Brassicaceae/physiology , Photoperiod , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gibberellins/metabolism , Seasons , Seedlings/growth & development , Seedlings/physiology , Adaptation, Physiological
19.
Theor Appl Genet ; 137(7): 146, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834825

ABSTRACT

KEY MESSAGE: The major QTL Sdp1.1+ controlling seed dormancy in cowpea was finely mapped, and two CCoAOMT1 genes were identified as candidate genes for the dormancy. Seed dormancy in wild cowpea may be useful in breeding cultivated cowpea with pre-harvest sprouting resistance. A previous study identified a major quantitative trait locus (QTL) for seed dormancy, Sdp1.1+ , using the population of the cross between cultivated cowpea 'JP81610' and wild cowpea 'JP89083.' However, the molecular basis of seed dormancy in cowpea is not yet known. In this study, we aimed to finely map the locus Sdp1.1+ and identify candidate gene(s) for it. Germination tests demonstrated that the seed coat is the major factor controlling seed dormancy in the wild cowpea JP89083. Microscopic observations revealed that wild cowpea seeds, unlike cultivated cowpea seeds, possessed a palisade cuticle layer. Fine mapping using a large F2 population of the cross JP81610 × JP89083 grown in Thailand revealed a single QTL, Sdp1.1+ , controlling seed dormancy. The Sdp1.1+ was confirmed using a small F2 population of the same cross grown in Japan. The Sdp1.1+ was mapped to a 37.34-Kb region containing three genes. Two closely linked genes, Vigun03g278900 (VuCCoAOMT1a) and Vigun03g290000 (VuCCoAOMT1b), located 4.844 Kb apart were considered as candidate genes for seed dormancy. The two genes encoded caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1). DNA sequencing and alignment of VuCCoAOMT1a and VuCCoAOMT1b between JP89083 and JP81610 revealed a single nucleotide polymorphism (SNP) causing an amino acid change in VuCCoAOMT1a and several SNPs leading to six amino acid changes in VuCCoAOMT1b. Altogether, these results indicate that VuCCoAOMT1a and VuCCoAOMT1b are candidate genes controlling physical seed dormancy in the wild cowpea JP89083.


Subject(s)
Chromosome Mapping , Germination , Methyltransferases , Plant Dormancy , Quantitative Trait Loci , Seeds , Vigna , Plant Dormancy/genetics , Vigna/genetics , Vigna/growth & development , Vigna/physiology , Seeds/genetics , Seeds/growth & development , Methyltransferases/genetics , Methyltransferases/metabolism , Germination/genetics , Genes, Plant , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Tree Physiol ; 44(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38905284

ABSTRACT

Epigenetic changes serve as a cellular memory for cumulative cold recognition in both herbaceous and tree species, including bud dormancy. However, most studies have discussed predicted chromatin structure with respect to histone marks. In the present study, we investigated the structural dynamics of bona fide chromatin to determine how plants recognize prolonged chilling during the initial stage of bud dormancy. The vegetative axillary buds of the 'Fuji' apple, which shows typical low temperature-dependent, but not photoperiod, dormancy induction, were used for the chromatin structure and transcriptional change analyses. The results were integrated using a deep-learning model and interpreted using statistical models, including Bayesian estimation. Although our model was constructed using a small dataset of two time points, chromatin remodelling due to random changes was excluded. The involvement of most nucleosome structural changes in transcriptional changes and the pivotal contribution of cold-driven circadian rhythm-dependent pathways regulated by the mobility of cis-regulatory elements were predicted. These findings may help to develop potential genetic targets for breeding species with less bud dormancy to overcome the effects of short winters during global warming. Our artificial intelligence concept can improve epigenetic analysis using a small dataset, especially in non-model plants with immature genome databases.


Subject(s)
Chromatin Assembly and Disassembly , Deep Learning , Malus , Plant Dormancy , Malus/genetics , Malus/physiology , Malus/growth & development , Plant Dormancy/genetics , Seasons , Cold Temperature , Epigenesis, Genetic , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Gene Expression Regulation, Plant , Bayes Theorem
SELECTION OF CITATIONS
SEARCH DETAIL