Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.020
1.
Elife ; 122024 Jun 21.
Article En | MEDLINE | ID: mdl-38904663

Soil-free assays that induce water stress are routinely used to investigate drought responses in the plant Arabidopsis thaliana. Due to their ease of use, the research community often relies on polyethylene glycol (PEG), mannitol, and salt (NaCl) treatments to reduce the water potential of agar media, and thus induce drought conditions in the laboratory. However, while these types of stress can create phenotypes that resemble those of water deficit experienced by soil-grown plants, it remains unclear how these treatments compare at the transcriptional level. Here, we demonstrate that these different methods of lowering water potential elicit both shared and distinct transcriptional responses in Arabidopsis shoot and root tissue. When we compared these transcriptional responses to those found in Arabidopsis roots subject to vermiculite drying, we discovered many genes induced by vermiculite drying were repressed by low water potential treatments on agar plates (and vice versa). Additionally, we also tested another method for lowering water potential of agar media. By increasing the nutrient content and tensile strength of agar, we show the 'hard agar' (HA) treatment can be leveraged as a high-throughput assay to investigate natural variation in Arabidopsis growth responses to low water potential.


Arabidopsis , Plant Roots , Transcriptome , Water , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/drug effects , Water/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Regulation, Plant/drug effects , High-Throughput Screening Assays/methods , Droughts , Plant Shoots/growth & development , Plant Shoots/drug effects , Gene Expression Profiling/methods
2.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38853237

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Allelopathy , Antioxidants , Plant Extracts , Plant Growth Regulators , Rumex , Trifolium , Trifolium/growth & development , Trifolium/metabolism , Trifolium/drug effects , Plant Extracts/pharmacology , Antioxidants/metabolism , Rumex/growth & development , Rumex/metabolism , Rumex/drug effects , Rumex/chemistry , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Methanol , Plant Weeds/drug effects , Plant Weeds/growth & development , Pheromones/pharmacology , Pheromones/metabolism , Plant Shoots/growth & development , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Shoots/chemistry
3.
Sci Rep ; 14(1): 13259, 2024 06 10.
Article En | MEDLINE | ID: mdl-38858574

This study investigates Ni phytoremediation and accumulation potential in the presence of salicylic acid (SA) (0, 50 and 200 µM) and jasmonic acid (JA) (0, 5 and 10 µM) in two populations of Alyssum inflatum under various nickel (Ni) doses (0, 100 and 400 µM). By measuring Ni levels in the shoots and roots, values of bioaccumulation coefficient (BAC), biological concentration factor (BCF) and translocation factor (TF) were calculated to quantify Ni accumulation and translocation between plant organs. Additionally, the amounts of histidine (His), citric acid (CA) and malic acid (MA) were explored. The results showed that plant dry weight (DW) [in shoot (29.8%, 8.74%) and in root (21.6%, 24.4%)] and chlorophyll [a (17.1%, 32.5%), b (10.1%, 30.9%)] declined in M and NM populations respectively, when exposed to Ni (400 µM). Conversely, the levels of MA [in shoot (37.0%, 32.0%) and in root (25.5%, 21.2%)], CA [in shoot (17.0%, 10.0%) and in root (47.9%, 37.2%)] and His [in shoot (by 1.59- and 1.34-fold) and in root (by 1.24- and 1.18-fold)] increased. Also, in the presence 400 µM Ni, the highest accumulation of Ni was observed in shoots of M (1392 µg/g DW) and NM (1382 µg/g DW). However, the application of SA and JA (especially in Ni 400 µM + SA 200 µM + JA 5 and 10 µM treatments) mitigated the harmful impact of Ni on physiological parameters. Also, a decreasing trend was observed in the contents of MA, CA, and His. The reduction of these compounds as important chelators of Ni caused a decrease in root-to-shoot Ni transfer and reducing accumulation in the shoots of both populations. The values of phytoremediation indices in both populations exposed to Ni (400 µM) were above one. In presence of the SA and JA, these indices showed a decreasing trend, although the values remained above one (BAC, BCF and TF > 1). Overall, the results indicated that SA and JA can reduce phytoremediation potential of the two populations through different mechanisms.


Biodegradation, Environmental , Cyclopentanes , Nickel , Oxylipins , Plant Roots , Salicylic Acid , Oxylipins/metabolism , Oxylipins/pharmacology , Nickel/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Salicylic Acid/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Soil Pollutants/metabolism , Plant Shoots/metabolism , Plant Shoots/drug effects , Brassicaceae/metabolism , Bioaccumulation
4.
J Agric Food Chem ; 72(25): 14419-14432, 2024 Jun 26.
Article En | MEDLINE | ID: mdl-38869198

Rapeseed (Brassica napus L.) is extremely sensitive to excessive NH4+ toxicity. There remains incomplete knowledge of the causal factors behind the growth suppression in NH4+-nourished plants, with limited studies conducted specifically on field crop plants. In this study, we found that NH4+ toxicity significantly increased salicylic acid (SA) accumulation by accelerating the conversion of SA precursors. Moreover, exogenous SA application significantly aggravated NH4+ toxicity symptoms in the rapeseed shoots. Genome-wide differential transcriptomic analysis showed that NH4+ toxicity increased the expression of genes involved in the biosynthesis, transport, signaling transduction, and conversion of SA. SA treatment significantly increased shoot NH4+ concentrations by reducing the activities of glutamine synthase and glutamate synthase in NH4+-treated rapeseed plants. The application of an SA biosynthesis inhibitor, ABT, alleviated NH4+ toxicity symptoms. Furthermore, SA induced putrescine (Put) accumulation, resulting in an elevated ratio of Put to [spermidine (Spd) + spermine (Spm)] in the NH4+-treated plants, while the opposite was true for ABT. The application of exogenous Put and its biosynthesis inhibitor DFMA induced opposite effects on NH4+ toxicity in rapeseed shoots. These results indicated that the increased endogenous SA contributed noticeably to the toxicity caused by the sole NH4+-N supply in rapeseed shoots. This study provided fresh perspectives on the mechanism underlying excessive NH4+-induced toxicity and the corresponding alleviating strategies in plants.


Ammonium Compounds , Brassica napus , Salicylic Acid , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/metabolism , Brassica napus/drug effects , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Ammonium Compounds/metabolism , Ammonium Compounds/toxicity , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Putrescine/metabolism , Putrescine/pharmacology , Plant Shoots/growth & development , Plant Shoots/drug effects , Plant Shoots/metabolism
5.
BMC Plant Biol ; 24(1): 426, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769488

To alleviate the selenium (Se) stress in fruit trees and improve its accumulation, the effects of exogenous indole-3-acetic acid (IAA) on the growth and Se accumulation of grapevine under Se stress were studied. The application of exogenous IAA increased the biomass of grapevine, and the concentration of exogenous IAA had a regression relationship with the biomass. The root and shoot biomass were the maximum at 60 mg L- 1 IAA, increasing by 15.61% and 23.95%, respectively, compared with the control. Exogenous IAA also increased the photosynthetic pigments and the activities of superoxide dismutase and peroxidase in grapevine. Moreover, exogenous IAA increased the contents of total Se, organic Se, and inorganic Se, and the concentration of exogenous IAA had a regression relationship with the total Se content. The highest contents of root total Se and shoot total Se were accumulated at 90 mg L- 1 IAA, increasing by 29.94% and 55.77% respectively,. In addition, the correlation and path analyses revealed that the carotenoid content and root total Se content were closely associated with the shoot total Se content. Therefore, the application of exogenous IAA can alleviate the stress of Se to grape and promote its uptake and the most effective amount for the uptake of Se is 90 mg L- 1 IAA.


Indoleacetic Acids , Plant Growth Regulators , Selenium , Vitis , Indoleacetic Acids/metabolism , Selenium/metabolism , Vitis/drug effects , Vitis/growth & development , Vitis/metabolism , Plant Growth Regulators/metabolism , Stress, Physiological , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Shoots/metabolism , Plant Shoots/growth & development , Plant Shoots/drug effects , Biomass
6.
Sci Rep ; 14(1): 10870, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740776

Pea, member of the plant family Leguminosae, play a pivotal role in global food security as essential legumes. However, their production faces challenges stemming from the detrimental impacts of abiotic stressors, leading to a concerning decline in output. Salinity stress is one of the major factors that limiting the growth and productivity of pea. However, biochar amendment in soil has a potential role in alleviating the oxidative damage caused by salinity stress. The purpose of the study was to evaluate the potential role of biochar amendment in soil that may mitigate the adverse effect of salinity stress on pea. The treatments of this study were, (a) Pea varieties; (i) V1 = Meteor and V2 = Green Grass, Salinity Stress, (b) Control (0 mM) and (ii) Salinity (80 mM) (c) Biochar applications; (i) Control, (ii) 8 g/kg soil (56 g) and (iii) 16 g/kg soil (112 g). Salinity stress demonstrated a considerable reduction in morphological parameters as Shoot and root length decreased by (29% and 47%), fresh weight and dry weight of shoot and root by (85, 63%) and (49, 68%), as well as area of leaf reduced by (71%) among both varieties. Photosynthetic pigments (chlorophyll a, b, and carotenoid contents decreased under 80 mM salinity up to (41, 63, 55 and 76%) in both varieties as compared to control. Exposure of pea plants to salinity stress increased the oxidative damage by enhancing hydrogen peroxide and malondialdehyde content by (79 and 89%), while amendment of biochar reduced their activities as, (56% and 59%) in both varieties. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were increased by biochar applications under salinity stress as, (49, 59, and 86%) as well as non-enzymatic antioxidants as, anthocyanin and flavonoids improved by (112 and 67%). Organic osmolytes such as total soluble proteins, sugars, and glycine betaine were increased up to (57, 83, and 140%) by biochar amendment. Among uptake of mineral ions, shoot and root Na+ uptake was greater (144 and 73%) in saline-stressed plants as compared to control, while shoot and root Ca2+ and K+ were greater up to (175, 119%) and (77, 146%) in biochar-treated plants. Overall findings revealed that 16 g/kg soil (112 g) biochar was found to be effective in reducing salinity toxicity by causing reduction in reactive oxygen species and root and shoot Na+ ions uptake and improving growth, physiological and anti-oxidative activities in pea plants (Fig. 1). Figure 1 A schematic diagram represents two different mechanisms of pea under salinity stress (control and 80 mM NaCl) with Biochar (8 and 16 g/kg soil).


Charcoal , Pisum sativum , Soil , Pisum sativum/drug effects , Pisum sativum/growth & development , Pisum sativum/metabolism , Soil/chemistry , Photosynthesis/drug effects , Salt Stress/drug effects , Salinity , Chlorophyll/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism
7.
J Hazard Mater ; 473: 134718, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38797079

Exogenous abscisic acid (ABA) presents a novel approach to mitigate heavy metal (HM) accumulation in plants, yet its efficacy against multiple HMs and potential enhancement methods remain underexplored. In this study, we demonstrated that the exogenous ABA application simultaneously decreased Zn, Cd and Ni accumulation by 22-25 %, 27-39 % and 60-62 %, respectively, in wild-type (WT) Arabidopsis. Conversely, ABA reduced Pb in shoots but increased its root concentration. ABA application also modulated the expression of HM uptake genes, inhibiting IRT1, NRAMP1, NRAMP4, and HMA3, and increasing ZIP1 and ZIP4 expressions. Further analysis revealed that overexpressing the ABA-importing transporter (AIT1) in plants intensified the reduction of Cd, Zn, and Ni, compared to WT. However, the inhibitory effect of exogenous ABA on Pb accumulation was mitigated in shoots with higher AIT1 expression. Furthermore, HMs-induced growth inhibition and the damage to photosynthesis were also alleviated with ABA treatment. Conclusively, AIT1's synergistic effect with ABA effectively reduces Cd, Zn and Ni accumulation, offering a synergistic approach to mitigate HM stress in plants.


Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Metals, Heavy , Abscisic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Shoots/metabolism , Plant Shoots/drug effects , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Soil Pollutants/toxicity , Soil Pollutants/metabolism
8.
PLoS One ; 19(5): e0304586, 2024.
Article En | MEDLINE | ID: mdl-38820507

The integration of nanoparticles (NPs) holds promising potential to bring substantial advancements to plant cryopreservation, a crucial technique in biodiversity conservation. To date, little attention has been focused on using nanoparticles in cryobiology research. This study aimed to assess the effectiveness of NPs in enhancing the efficiency of plant cryopreservation. In-vitro-derived shoot tips of bleeding heart (Lamprocapnos spectabilis (L.) Fukuhara) 'Gold Heart' and 'Valentine' were used as the plant material. The encapsulation-vitrification cryopreservation protocol included preculture, encapsulation, dehydration, storage in liquid nitrogen, rewarming, and recovery steps. Gold (AuNPs), silver (AgNPs), or zinc oxide (ZnONPs) nanoparticles were added at various concentrations either into the preculture medium or the protective bead matrix during encapsulation. The explant survival and further morphogenic and biochemical events were studied. Results showed that the impact of NPs on cryopreservation outcomes was cultivar-specific. In the 'Valentine' cultivar, incorporating 5 ppm AgNPs within the alginate bead matrix significantly improved cryopreservation efficiency by up to 12%. On the other hand, the 'Gold Heart' cultivar benefited from alginate supplementation with 5 ppm AgNPs and 5-15 ppm ZnONPs, leading to an over 28% increase in the survival rate of shoot tips. Interestingly, adding NPs to the preculture medium was less effective and sometimes counterproductive, despite promoting greater shoot proliferation and elongation in 'Valentine' explants compared to the control. Moreover, nanoparticles often induced oxidative stress (and enhanced the activity of APX, GPOX, and SOD enzymes), which in turn affected the biosynthesis of plant primary and secondary metabolites. It was found that supplementation of preculture medium with higher concentration (15 ppm) of gold, silver and zinc oxide nanoparticles stimulated the production of plant pigments, but in a cultivar-dependent matter. Our study confirmed the beneficial action of nanoparticles during cryopreservation of plant tissues.


Cryopreservation , Gold , Metal Nanoparticles , Cryopreservation/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Gold/pharmacology , Silver/chemistry , Silver/pharmacology , Plant Shoots/drug effects , Plant Shoots/growth & development , Morphogenesis/drug effects , Vitrification
9.
J Hazard Mater ; 473: 134610, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38776812

Mg-K homeostasis is essential for plant response to abiotic stress, but its regulation remains largely unknown. MsWRKY44 cloned from alfalfa was highly expressed in leaves and petioles. Overexpression of it inhibited alfalfa growth, and promoted leaf senescence and alfalfa sensitivities to acid and Al stresses. The leaf tips, margins and interveins of old leaves occurred yellow spots in MsWRKY44-OE plants under pH4.5 and pH4.5 +Al conditions. Meanwhile, Mg-K homeostasis was substantially changed with reduction of K accumulation and increases of Mg as well as Al accumulation in shoots of MsWRKY44-OE plants. Further, MsWRKY44 was found to directly bind to the promoters of MsMGT7 and MsCIPK23, and positively activated their expression. Transiently overexpressed MsMGT7 and MsCIPK23 in tobacco leaves increased the Mg and Al accumulations but decreased K accumulation. These results revealed a novel regulatory module MsWRKY44-MsMGT7/MsCIPK23, which affects the transport and accumulation of Mg and K in shoots, and promotes alfalfa sensitivities to acid and Al stresses.


Aluminum , Homeostasis , Magnesium , Medicago sativa , Plant Proteins , Plant Shoots , Potassium , Stress, Physiological , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/metabolism , Plant Shoots/drug effects , Potassium/metabolism , Aluminum/toxicity , Magnesium/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Acids/metabolism
10.
Funct Plant Biol ; 512024 04.
Article En | MEDLINE | ID: mdl-38648371

Lead (Pb) induces oxidative stress in plants, which results in different responses, including the production of antioxidants and changes in the profile of secondary metabolites. In this study, the responses of Scrophularia striata exposed to 250mgL-1 Pb (NO3 )2 in a hydroponic environment were determined. Growth parameters, oxidative and antioxidative responses, redox status, and the concentration of Pb were analysed in roots and shoots. Malondialdehyde and hydrogen peroxide (H2 O2 ) levels in the roots were significantly increased and reached their highest value at 72h after Pb treatment. Superoxide dismutase, catalase, and peroxidase, as an enzymatic antioxidant system, were responsible for reactive oxygen species scavenging, where their activities were increased in the shoot and root of Pb-treated plants. Enzymatic antioxidant activities were probably not enough to remove a significant H2 O2 content in response to Pb treatment. Therefore, other defence responses were activated. The results stated that the flavonoid components of S. striata progressed towards the increase of isoflavone, flavanol, and stilbenoid contents under Pb treatment. In general, S. striata stimulates the enzymatic defence system and activates the non-enzymatic system by modulating the profile of flavonoids toward the production of flavonoids with high antioxidant activity, such as quercetin and myricetin in response to Pb stress.


Antioxidants , Flavonoids , Hydrogen Peroxide , Lead , Oxidative Stress , Plant Roots , Scrophularia , Antioxidants/metabolism , Lead/metabolism , Lead/toxicity , Flavonoids/metabolism , Oxidative Stress/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Hydrogen Peroxide/metabolism , Scrophularia/metabolism , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Catalase/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism
11.
Plant Physiol Biochem ; 210: 108608, 2024 May.
Article En | MEDLINE | ID: mdl-38615445

Tonoplast Intrinsic Proteins (TIPs) are vital in transporting water and solutes across vacuolar membrane. The role of TIPs in the arsenic stress response is largely undefined. Rice shows sensitivity to the arsenite [As[III]] stress and its accumulation at high concentrations in grains poses severe health hazards. In this study, functional characterization of OsTIP1;2 from Oryza sativa indica cultivar Pusa Basmati-1 (PB-1) was done under the As[III] stress. Overexpression of OsTIP1;2 in PB-1 rice conferred tolerance to As[III] treatment measured in terms of enhanced shoot growth, biomass, and shoot/root ratio of overexpression (OE) lines compared to the wild-type (WT) plants. Moreover, seed priming with the IRW100 yeast cells (deficient in vacuolar membrane As[III] transporter YCF1) expressing OsTIP1;2 further increased As[III] stress tolerance of both WT and OE plants. The dithizone assay showed that WT plants accumulated high arsenic in shoots, while OE lines accumulated more arsenic in roots than shoots thereby limiting the translocation of arsenic to shoot. The activity of enzymatic and non-enzymatic antioxidants also increased in the OE lines on exposure to As[III]. The tissue-specific localization showed OsTIP1;2 promoter activity in root and root hairs, indicating its possible root-specific function. After As[III] treatment in hydroponic medium, the arsenic translocation factor (TF) for WT was around 0.8, while that of OE lines was around 0.2. Moreover, the arsenic content in the grains of OE lines reduced significantly compared to WT plants.


Arsenic , Arsenites , Oryza , Plant Proteins , Plant Roots , Plant Shoots , Plants, Genetically Modified , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Arsenic/metabolism , Plant Shoots/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Gene Expression Regulation, Plant/drug effects , Biological Transport/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics
12.
Plant Physiol ; 195(1): 518-533, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38365203

Shoot branching is an important biological trait affecting alfalfa (Medicago sativa L.) production, but its development is complicated and the mechanism is not fully clear. In the present study, pectin acetylesterase 12 (MsPAE12) and NAM/ATAF/CUC-domain transcription factor gene (MsNAC73) were isolated from alfalfa. MsPAE12 was highly expressed in shoot apexes, and MsNAC73 was found to be a key transcriptional repressor of MsPAE12 by directly binding to salicylic acid (SA) and jasmonic acid (JA) elements in the MsPAE12 promoter. The biological functions of MsPAE12 and MsNAC73 were studied through overexpression (OE) and down-expression (RNAi) of the 2 genes in alfalfa. The numbers of shoot branches increased in MsPAE12-OE lines but decreased in MsPAE12-RNAi and MsNAC73-OE plants, which was negatively related to their indole-3-acetic acid (IAA) accumulation in shoot apexes. Furthermore, the contents of acetic acid (AA) in shoot apexes decreased in MsPAE12-OE plants but increased in MsPAE12-RNAi and MsNAC73-OE plants. The changes of AA contents were positively related to the expression of TRYPTOPHAN AMINOTRANSFERASE 1 (MsTAA1), TRYPTOPHAN AMINOTRANSFERASE-RELATED 2 (MsTAR2), and YUCCA flavin monooxygenase (MsYUCC4) and the contents of tryptophan (Trp), indole-3-pyruvic acid (IPA), and IAA in shoot apexes of MsPAE12-OE, MsPAE12-RNAi, and MsNAC73-OE plants. Exogenous application of AA to wild type (WT) and MsPAE12-OE plants increased Trp, IPA, and IAA contents and decreased branch number. Exogenous IAA suppressed shoot branching in MsPAE12-OE plants, but exogenous IAA inhibitors increased shoot branching in MsPAE12-RNAi plants. These results indicate that the MsNAC73-MsPAE12 module regulates auxin-modulated shoot branching via affecting AA accumulation in shoot apexes of alfalfa.


Gene Expression Regulation, Plant , Indoleacetic Acids , Medicago sativa , Plant Proteins , Plant Shoots , Indoleacetic Acids/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Medicago sativa/growth & development , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Acetic Acid/metabolism , Plants, Genetically Modified , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Promoter Regions, Genetic/genetics , Salicylic Acid/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology
13.
Mutat Res ; 828: 111850, 2024.
Article En | MEDLINE | ID: mdl-38160536

In vitro mutation breeding in vegetatively propagated crops like banana offers a benefit in screening for beneficial variants in plant cells or cultured tissues. An attempt was made to induce mutants and determine the lethal dose, as it is the prerequisite to optimize the concentration and duration of the mutagen used to recover a larger population in mutation research. Shoot tip cultures were treated for 2 and 4 h at six different EMS concentrations ranging from 80 mM to 160 mM, whereas proliferating multiple shoots were exposed for 30 and 60 min at six different EMS concentrations ranging from 8 mM to 40 mM. Survival percentage, shoot length, and number of shoots reduced linearly and significantly as concentration and duration increased in both shoot tips and proliferating multiple buds. The probit curve-based analysis of mortality of treated explants revealed that the LD50 was 155.83 mM for 2 h and 113.72 mM for 4 h, respectively for shoot tip cultures, whereas for proliferating multiple buds, the LD50 value was adjusted to 39.11 mM for 30 min and 30.41 mM for 60 min. 160 mM EMS for 4 h resulted in a shorter shoot, a longer rooting duration, a lesser number of roots, and decreased root development. In proliferating multiple shoots, the smallest shoot, longest rooting duration, least number of roots, and shortest root were observed in 40 mM EMS for 60 min. Similar reductions in growth parameters were observed in proliferating multiple shoots at higher exposure to EMS for a longer duration.


Ethyl Methanesulfonate , Musa , Mutagens , Plant Shoots , Musa/genetics , Musa/growth & development , Musa/drug effects , Ethyl Methanesulfonate/toxicity , Ethyl Methanesulfonate/pharmacology , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/genetics , Mutagens/toxicity , Mutagens/pharmacology , Mutation , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/drug effects , Lethal Dose 50 , Dose-Response Relationship, Drug , Mutagenesis , Tissue Culture Techniques
14.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article En | MEDLINE | ID: mdl-35163497

In order to understand the effects of low nitrogen (LN) stress on the growth and development in different genotypes of Chinese cabbage, the L40 genotype with high nitrogen utilization and the L14 genotype with LN utilization were selected as experimental materials. Field experiments and indoor hydroponic methods were used to study the different responses of two Chinese cabbage genotypes to low nitrogen levels. In this study, we also analyzed the genome-wide gene expression profiles of L40 and L14 in response to LN stress by high-throughput RNA sequencing technology. The results reveal that the L40 root system responds better to LN compared with L14. After LN stress, L40 can effectively absorb and transport NO3- and store it in the ground. It is precisely because of this characteristic of the L40 genotype that LN treatment did not have a significant effect on the chlorophyll (Chl) content and net photosynthetic rate (Pn) of the L40 Chinese cabbage compared with the L14 Chinese cabbage. These two different Chinese cabbage genotypes were shown to have differently expressed genes related to nitrate transport, auxin synthesis, and glutamate dehydrogenase synthesis. These genes function in the nitrogen pathway, which are important candidates for understanding the molecular host-response mechanisms to LN stress.


Brassica/genetics , Nitrogen/metabolism , Stress, Physiological/genetics , Chlorophyll/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Library , Gene Ontology , Genotype , Hydroponics , Nitrate Reductase/metabolism , Nitrogen/pharmacology , Phenotype , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Shoots/anatomy & histology , Plant Shoots/drug effects
15.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article En | MEDLINE | ID: mdl-35163530

Harvested water bamboo shoots can be stored for only a few days before they lose weight and become soft. Nitrogen oxide (NO) and modified atmosphere packaging (MAP) have previously been used to prolong horticultural crop storage. In the present study, we analyzed the joint effect of these two methods on extending the postharvest quality of water bamboo shoots. Water bamboo shoots were treated with (1) 30 µL L-1 NO, (2) MAP, and (3) a combination of NO and MAP. The NO treatment delayed the softness and weight loss through maintaining the integrity of the mitochondrial ultrastructure and enhancing the ATP level by activating the expressions and activities of succinic dehydrogenase, malic acid dehydrogenase, and cytochrome oxidase. MAP improved the effect of NO on the mitochondrial energy metabolism. These results indicate that NO and MAP treatments are effective at suppressing the quality deterioration of water bamboo shoots, MAP improves the effect of NO in extending postharvest life, and NO may be the main effective factor in the combination of NO and MAP.


Energy Metabolism/drug effects , Mitochondria/metabolism , Nitric Oxide/pharmacology , Poaceae/growth & development , Adenosine Triphosphate/metabolism , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Electron Transport Complex IV , Gene Expression Regulation, Plant/drug effects , Mitochondria/drug effects , Plant Proteins/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Poaceae/drug effects , Poaceae/metabolism , Succinate Dehydrogenase/metabolism
16.
PLoS One ; 17(1): e0262099, 2022.
Article En | MEDLINE | ID: mdl-34995297

Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.


Antioxidants/pharmacology , Beta vulgaris/metabolism , Droughts , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Putrescine/pharmacology , Stress, Physiological , Beta vulgaris/drug effects , Beta vulgaris/genetics , Oxidative Stress , Photosynthesis , Plant Proteins/genetics , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism , Reactive Oxygen Species/metabolism
17.
Biomed Res Int ; 2021: 6829806, 2021.
Article En | MEDLINE | ID: mdl-34912896

Biogenic nanoparticles have potential roles in the growth and development of plants and animals as they are ecofriendly and free of chemical contaminants. In this study, we assessed the effects of phytomediated zinc oxide nanoparticles (ZnONPs) on shoot growth, biochemical markers, and antioxidant system response in Ochradenus arabicus, which is a medicinal plant. The shoot length and fresh and dry weights were found to be higher in groups with 5 and 10 mg/L ZnONPs than in the control. At high concentrations of ZnONPs (50, 100, and 300 mg/L), biomass was decreased in a concentration-dependent manner. The shoot number was observed to be highest at 50 mg/L among all applied concentrations of ZnONPs. The levels of the stress markers proline and TBARS were found to be higher in shoots treated with 100 and 300 mg/L ZnONPs than in the control as well as NP-treated shoots. The levels of antioxidant enzymes were significantly increased at high concentrations of nanoparticles compared with the control. Thus, synthesized phytomediated ZnONPs from shoots of O. arabicus and their application to the same organ of O. arabicus in vitro were found to be effective as a low concentration of nanoparticles promoted shoot growth, resulting in high biomass accumulation. Thus, using green nanotechnology, such endemic plants could be conserved in vitro and multiple shoots could be produced by reducing the phytohormone concentration for multiple uses, such as the production of potential secondary metabolites.


Nanoparticles/administration & dosage , Oxidative Stress/drug effects , Plant Shoots/drug effects , Resedaceae/drug effects , Zinc Oxide/pharmacology , Antioxidants/metabolism , Biomarkers/metabolism , Biomass , Nanotechnology/methods , Oxidation-Reduction/drug effects , Plant Growth Regulators/pharmacology , Plant Shoots/metabolism , Proline/metabolism , Resedaceae/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology
18.
PLoS One ; 16(12): e0259585, 2021.
Article En | MEDLINE | ID: mdl-34882694

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


Helianthus/growth & development , Methionine/pharmacology , Oxidative Stress/drug effects , Secondary Metabolism/drug effects , Ascorbic Acid/metabolism , Betaine/metabolism , Chlorophyll A/metabolism , Dehydration , Gene Expression Regulation, Plant/drug effects , Helianthus/drug effects , Helianthus/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde , Peroxidase/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism
19.
Sci Rep ; 11(1): 24408, 2021 12 23.
Article En | MEDLINE | ID: mdl-34949763

Some forest trees have been polyploidized to improve their traits and to supply new germplasms for breeding programs. As trees have a long juvenile stage, the early characterization of the chromosome set doubling effects is crucial for previous selection. Thus, we aimed to characterize the chemical variability of essential oils from diploid and autotetraploid germplasms (autotetraploid A and B) of Eucalyptus benthamii, as well as to evaluate their larvicidal and allelopathic effects. Autotetraploid A showed a higher essential oil yield than diploid and autotetraploid B, which did not differ quantitatively. Aromadendrene, viridiflorol and α-pinene were the major compounds in the diploid essential oil. In contrast, compounds were present in autotetraploids, such as 1,8-cineole, limonene, α-terpineol, and α-terpinyl-acetate. Essential oils from the diploid at 50-200 ppm were twice as larvicidal than those from autotetraploids against Aedes aegypti larvae. Considering the phytotoxicity bioassays using Lactuca sativa, essential oils from both ploidy levels affected root growth. Moreover, the essential oils inhibited shoot growth at all concentrations tested (187.5; 375; 750; 1500; and 3000 ppm). Autotetraploid A and B had the same effect on shoot growth as glyphosate. The essential oils had no cytogenotoxic effect on root meristematic cells of L. sativa, whereas phytotoxic potential was identified mainly in shoot growth. This work demonstrated a dramatic change in secondary metabolism (terpene composition) related to an increase in the ploidy level in Eucalyptus germplasms. In addition, we report the novelty of the chemical composition of essential oils among germplasms and their potential use as larvicidal and post-emergence weed control agents.


Eucalyptus Oil/chemistry , Eucalyptus Oil/pharmacology , Eucalyptus/chemistry , Eucalyptus/genetics , Herbicides , Insecticides , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Tetraploidy , Aedes/drug effects , Allelopathy/drug effects , Animals , Biological Assay , Dose-Response Relationship, Drug , Larva/drug effects , Lactuca/drug effects , Lactuca/growth & development , Plant Breeding , Plant Shoots/drug effects , Plant Shoots/growth & development
20.
Plant Sci ; 313: 111054, 2021 Dec.
Article En | MEDLINE | ID: mdl-34763852

Consumption of rice grains contaminated with high concentrations of cadmium (Cd) can cause serious long-term health problems. Moreover, even low Cd concentrations present in the soil can result in the abatement of plant performance, leading to lower grain yield. Studies examining the molecular basis of plant defense against Cd-induced oxidative stress could pave the way in creating superior rice varieties that display an optimal antioxidative defense system to cope with Cd toxicity. In this study, we showed that after one day of Cd exposure, hydroponically grown rice plants exhibited adverse shoot biomass and leaf growth effects. Cadmium accumulates especially in the roots and the leaf meristematic region, leading to a disturbance of manganese homeostasis in both the roots and leaves. The leaf growth zone showed an increased amount of lipid peroxidation indicating that Cd exposure disturbed the oxidative balance. We propose that an increased expression of genes related to the glutathione metabolism such as glutathione synthetase 2, glutathione reductase and phytochelatin synthase 2, rather than genes encoding for antioxidant enzymes, is important in combating early Cd toxicity within the leaves of rice plants. Furthermore, the upregulation of two RESPIRATORY BURST OXIDASE HOMOLOG genes together with a Cd concentration-dependent increase of abscisic acid might cause stomatal closure or cell wall modification, potentially leading to the observed leaf growth reduction. Whereas abscisic acid was also elevated at long term exposure, a decrease of the growth hormone auxin might further contribute to growth inhibition and concomitantly, an increase in salicylic acid might stimulate the activity of antioxidative enzymes after a longer period of Cd exposure. In conclusion, a clear interplay between phytohormones and the oxidative challenge affect plant growth and acclimation during exposure to Cd stress.


Biological Transport/physiology , Cadmium/toxicity , Oryza/growth & development , Oryza/genetics , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Biological Transport/genetics , Crop Production/statistics & numerical data , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Glutathione Reductase/genetics , Glutathione Reductase/metabolism , Manganese/metabolism , Oryza/drug effects , Plant Leaves/genetics , Plant Shoots/genetics , Soil Pollutants/metabolism
...