Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.081
Filter
1.
J Agric Food Chem ; 72(29): 16530-16540, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39001851

ABSTRACT

Brassica napus is currently the principal field crop for producing materials for primary, secondary and tertiary industries. B. napus shoots at stem elongation stage are rich in anthocyanins, vitamin C and mineral elements such as selenium, calcium and zinc, and represent a new type of green vegetable. However, the high crude fiber (CF) content of B. napus shoots affects their taste, and few studies have focused on the quality traits of these vegetables. In this study, we investigated five traits related to the CF components, including neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), hemicellulose (Hem) and cellulose (Cel), of B. napus shoots. Whole-genome resequencing at a depth of ∼20× was utilized to genotype an association panel of 202 diverse accessions, which resulted in the identification of 6,093,649 single nucleotide polymorphisms (SNPs) and 996,252 indels, respectively. A genome-wide association study (GWAS) was performed for the five CF-related traits based on the phenotypic data observed in four environments. A total of 1,285 significant SNPs were detected at the threshold of -log10 (p) = 5.16, and 97 significant association regions were obtained. In addition, seven candidate genes located on chromosomes A2 (one gene), A8 (three genes), A9 (two genes) and C9 (one gene) related to CF traits were identified, and ten lines containing low CF contents were selected as excellent germplasm resources for breeding. Our results contributed new insights into the genetic basis of CF traits and suggested germplasm resources for the quality improvement of B. napus shoots.


Subject(s)
Brassica napus , Genome-Wide Association Study , Plant Stems , Polymorphism, Single Nucleotide , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/metabolism , Brassica napus/chemistry , Plant Stems/genetics , Plant Stems/chemistry , Plant Stems/growth & development , Plant Stems/metabolism , Plant Shoots/growth & development , Plant Shoots/genetics , Plant Shoots/chemistry , Plant Shoots/metabolism , Genotype , Dietary Fiber/metabolism , Dietary Fiber/analysis , Phenotype , Cellulose/metabolism , Lignin/metabolism , Polysaccharides/metabolism , Polysaccharides/chemistry , Quantitative Trait Loci
2.
BMC Plant Biol ; 24(1): 708, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054432

ABSTRACT

BACKGROUND: Squamosa promoter-binding protein-like (SPL) proteins are essential to plant growth and development as plant-specific transcription factors. However, the functions of SPL proteins in wheat need to be further explored. RESULTS: We cloned and characterized TaSPL6B of wheat in this study. Analysis of physicochemical properties revealed that it contained 961 amino acids and had a molecular weight of 105 kDa. Full-length TaSPL6B transcription activity was not validated in yeast and subcellular localization analysis revealed that TaSPL6B was distributed in the nucleus. Ectopic expression of TaSPL6B in Arabidopsis led to increasing number of branches and early flowering. TaSPL6B was highly transcribed in internodes of transgenic Arabidopsis. The expression of AtSMXL6/AtSMXL7/AtSMXL8 (homologous genes of TaD53) was markedly increased, whereas the expression of AtSPL2 (homologous genes of TaSPL3) and AtBRC1 (homologous genes of TaTB1) was markedly reduced in the internodes of transgenic Arabidopsis. Besides, TaSPL6B, TaSPL3 and TaD53 interacted with one another, as demonstrated by yeast two-hybrid and bimolecular fluorescence complementation assays. Therefore, we speculated that TaSPL6B brought together TaD53 and TaSPL3 and enhanced the inhibition effect of TaD53 on TaSPL3 through integrating light and strigolactone signaling pathways, followed by suppression of TaTB1, a key repressor of tillering. CONCLUSIONS: As a whole, our findings contribute to a better understanding of how SPL genes work in wheat and will be useful for further research into how TaSPL6B affects yield-related traits in wheat.


Subject(s)
Arabidopsis , Plant Proteins , Plants, Genetically Modified , Triticum , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Flowers/growth & development , Flowers/genetics , Flowers/metabolism
3.
Plant Cell Rep ; 43(8): 195, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008098

ABSTRACT

KEY MESSAGE: ZmRLCK58, a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation in the shoot. Magnesium (Mg) deficiency is one of critical limiting factors for crop production in widespread acidic soils worldwide. However, the molecular mechanism of crop response to Mg deficiency is still largely unclear. Here, we found higher concentrations of H2O2, soluble sugars, and starch (1.5-, 1.9-, and 1.4-fold, respectively) in the shoot of low-Mg-treated maize seedlings, compared with Mg sufficient plants under hydroponic culture. Consistent with over-accumulation of H2O2, transcriptome profiling revealed significant enrichment of 175 differentially expressed genes (DEGs) in "response to oxygen-containing compound" out of 641 DEGs in the shoot under low Mg. Among 175 DEGs, a down-regulated receptor-like cytoplasmic kinase ZmRLCK58 underwent a recent duplication event before Poaceae divergence and was highly expressed in the maize shoot. ZmRLCK58 overexpression enhanced H2O2 accumulation in shoots by 21.3% and 29.8% under control and low-Mg conditions, respectively, while reducing biomass accumulation compared with wild-type plants. Low Mg further led to 39.7% less starch accumulation in the ZmRLCK58 overexpression shoot and lower Mg utilization efficiency. Compared with wild-type plants, overall down-regulated expression of genes related to response to carbohydrate, photosynthesis, H2O2 metabolic, oxidation-reduction, and ROS metabolic processes in ZmRLCK58 overexpression lines preconditioned aforementioned physiological alterations. Together, ZmRLCK58, as a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation.


Subject(s)
Gene Expression Regulation, Plant , Hydrogen Peroxide , Magnesium , Plant Proteins , Seedlings , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/drug effects , Hydrogen Peroxide/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/metabolism , Gene Expression Regulation, Plant/drug effects , Magnesium/metabolism , Magnesium/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Starch/metabolism , Gene Expression Profiling , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Shoots/drug effects , Plants, Genetically Modified
4.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063242

ABSTRACT

The promoter of the RECEPTOR-LIKE CYTOPLASMIC KINASE VI_A2 (RLCK VI_A2) gene contains nine binding sites for the REPLUMLESS (RPL) transcription factor. In agreement, the expression of the kinase gene was strongly downregulated in the rpl-4 mutant. Comparing phenotypes of loss-of-function mutants, it was revealed that both genes are involved in stem growth, phyllotaxis, organization of the vascular tissues, and the replum, highlighting potential functional interactions. The expression of the RLCKVI_A2 gene from the constitutive 35S promoter could not complement the rpl-4 phenotypes but exhibited a dominant positive effect on stem growth and affected vascular differentiation and organization. The results also indicated that the number of vascular bundles is regulated independently from stem thickness. Although our study cannot demonstrate a direct link between the RPL and RLVKVI_A2 genes, it highlights the significance of the proper developmental regulation of the RLCKVI_A2 promoter for balanced stem development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Fruit , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Plant Shoots/growth & development , Plant Shoots/genetics , Plant Shoots/metabolism
5.
Sci Rep ; 14(1): 17365, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075221

ABSTRACT

Drought stress poses a significant risk to soybean production, as it relies on optimum rainfall under rainfed conditions. Exposure to brief dry periods during early vegetative growth impacts soybean growth and development. Choosing a genotype that can withstand stress with minimal impact on physiology and growth might help sustain biomass or yields under low rainfall conditions. Therefore, this study characterized 64 soybean genotypes for traits associated with drought tolerance during the early vegetative stage under two soil moisture treatments, 100% evapotranspiration (well-watered) and 50% evapotranspiration (drought), using the Soil-Plant-Atmosphere Research (SPAR) units. Eighteen morpho-physiological traits responses were assessed, and their relationship with the early vegetative drought tolerance was investigated. Drought stress significantly increased root weight, root volume, and root-to-shoot ratio but reduced shoot weight. Drought-stressed plants increased the canopy temperature by 3.1 °C. Shoot weight positively correlated with root surface area (r = 0.52, P < 0.001) and root weight (r = 0.65, P < 0.001). There was a strong negative correlation between shoot weight and root-to-shoot ratio (P < 0.01). Further, the combined drought response index was strongly associated with the root response index and weakly with the physiological response index. These findings suggest that genotypes (S55-Q3 and R2C4775) with high above-ground biomass with a balanced root-to-shoot ratio improves drought tolerance during the early vegetative. These genotypes could serve as valuable genetic resources to dissect the molecular networks underlying drought tolerance and ultimately be used in breeding programs to improve root ability at the early vegetative stage.


Subject(s)
Droughts , Genotype , Glycine max , Plant Roots , Stress, Physiological , Glycine max/genetics , Glycine max/growth & development , Glycine max/physiology , Plant Roots/genetics , Plant Roots/growth & development , Stress, Physiological/genetics , Biomass , Plant Shoots/growth & development , Plant Shoots/genetics , Soil
6.
New Phytol ; 243(5): 1810-1822, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970467

ABSTRACT

Shoot branching is determined by a balance between factors that promote axillary bud dormancy and factors that release buds from the quiescent state. The TCP family of transcription factors is classified into two classes, Class I and Class II, which usually play different roles. While the role of the Class II TCP BRANCHED1 (BRC1) in suppressing axillary bud development in Arabidopsis thaliana has been widely explored, the function of Class I TCPs in this process remains unknown. We analyzed the role of Class I TCP14 and TCP15 in axillary branch development in Arabidopsis through a series of genetic and molecular studies. In contrast to the increased branch number shown by brc1 mutants, tcp14 tcp15 plants exhibit a reduced number of branches compared with wild-type. Our findings provide evidence that TCP14 and TCP15 act by counteracting BRC1 function through two distinct mechanisms. First, they indirectly reduce BRC1 expression levels. Additionally, TCP15 directly interacts with BRC1 decoying it from chromatin and thereby preventing the transcriptional activation of a set of BRC1-dependent genes. We describe a molecular mechanism by which Class I TCPs physically antagonize the action of the Class II TCP BRC1, aligning with their opposite roles in axillary bud development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant/drug effects , Mutation/genetics , Protein Binding/drug effects , Chromatin/metabolism , Plant Shoots/growth & development , Plant Shoots/drug effects , Plant Shoots/genetics
7.
BMC Plant Biol ; 24(1): 492, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831289

ABSTRACT

Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.


Subject(s)
Diploidy , Plant Roots , Signal Transduction , Tetraploidy , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Cytokinins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics
8.
Sci Rep ; 14(1): 13488, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866862

ABSTRACT

Common bentgrass Agrostis capillaris L. is known as tolerant to toxic elements. A hypothesis was examined that its ecotypes growing in historically polluted sites show a limited arsenic uptake and have genetic features that distinguish them from commercially available cultivars. The study was conducted in Zloty Stok, a historical area of arsenic mining. Additionally, two commercial cultivars were grown in pots with arsenic-rich soils. Based on arsenic concentrations in plant roots and shoots, bioconcentration and translocation factors BCF and TF were calculated. Commercial cultivars indicated many times higher BCF shoots and TF values compared to field plants. DNA analysis of leaf blades showed a clear distinction between the plants growing in some sites and patches in the field, and also a gene overlap between the plants in the field and commercial forms. The research did not allow for identification of ecotypes with exceptionally limited arsenic uptake. Moreover, there were no significant differences between the genotypic characteristics of plants growing in polluted sites and those poorly tolerant grown from commercially available seeds. Apparently, other factors, and not genetically determined features, are responsible for A. capillaris tolerance to arsenic in Zloty Stok.


Subject(s)
Agrostis , Arsenic , Genetic Variation , Genotype , Mining , Plant Roots , Soil Pollutants , Arsenic/metabolism , Soil Pollutants/metabolism , Agrostis/genetics , Agrostis/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Leaves/metabolism , Plant Leaves/genetics
9.
BMC Plant Biol ; 24(1): 473, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811869

ABSTRACT

BACKGROUND: Carbon nano sol (CNS) can markedly affect the plant growth and development. However, few systematic analyses have been conducted on the underlying regulatory mechanisms in plants, including tobacco (Nicotiana tabacum L.). RESULTS: Integrated analyses of phenome, ionome, transcriptome, and metabolome were performed in this study to elucidate the physiological and molecular mechanisms underlying the CNS-promoting growth of tobacco plants. We found that 0.3% CNS, facilitating the shoot and root growth of tobacco plants, significantly increased shoot potassium concentrations. Antioxidant, metabolite, and phytohormone profiles showed that 0.3% CNS obviously reduced reactive oxygen species production and increased antioxidant enzyme activity and auxin accumulation. Comparative transcriptomics revealed that the GO and KEGG terms involving responses to oxidative stress, DNA binding, and photosynthesis were highly enriched in response to exogenous CNS application. Differential expression profiling showed that NtNPF7.3/NtNRT1.5, potentially involved in potassium/auxin transport, was significantly upregulated under the 0.3% CNS treatment. High-resolution metabolic fingerprints showed that 141 and 163 metabolites, some of which were proposed as growth regulators, were differentially accumulated in the roots and shoots under the 0.3% CNS treatment, respectively. CONCLUSIONS: Taken together, this study revealed the physiological and molecular mechanism underlying CNS-mediated growth promotion in tobacco plants, and these findings provide potential support for improving plant growth through the use of CNS.


Subject(s)
Carbon , Metabolomics , Nicotiana , Plant Growth Regulators , Transcriptome , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Carbon/metabolism , Plant Growth Regulators/metabolism , Gene Expression Profiling , Metabolome , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Shoots/metabolism , Plant Shoots/growth & development , Plant Shoots/genetics
10.
Plant Mol Biol ; 114(3): 55, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727895

ABSTRACT

Shoot branching significantly influences yield and timber quality in woody plants, with hybrid Liriodendron being particularly valuable due to its rapid growth. However, understanding of the mechanisms governing shoot branching in hybrid Liriodendron remains limited. In this study, we systematically examined axillary bud development using morphological and anatomical approaches and selected four distinct developmental stages for an extensive transcriptome analysis. A total of 9,449 differentially expressed genes have been identified, many of which are involved in plant hormone signal transduction pathways. Additionally, we identified several transcription factors downregulated during early axillary bud development, including a noteworthy gene annotated as CYC-like from the TCP TF family, which emerged as a strong candidate for modulating axillary bud development. Quantitative real-time polymerase chain reaction results confirmed the highest expression levels of LhCYCL in hybrid Liriodendron axillary buds, while histochemical ß-glucuronidase staining suggested its potential role in Arabidopsis thaliana leaf axil development. Ectopic expression of LhCYCL in A. thaliana led to an increase of branches and a decrease of plant height, accompanied by altered expression of genes involved in the plant hormone signaling pathways. This indicates the involvement of LhCYCL in regulating shoot branching through plant hormone signaling pathways. In summary, our results emphasize the pivotal role played by LhCYCL in shoot branching, offering insights into the function of the CYC-like gene and establishing a robust foundation for further investigations into the molecular mechanisms governing axillary bud development in hybrid Liriodendron.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Liriodendron , Plant Growth Regulators , Plant Proteins , Liriodendron/genetics , Liriodendron/growth & development , Liriodendron/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Shoots/growth & development , Plant Shoots/genetics , Plant Shoots/metabolism , Signal Transduction , Transcriptome , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism
11.
Plant Sci ; 345: 112114, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735397

ABSTRACT

Argonaute (AGO) proteins are the core components of the RNA-induced silencing complexes (RISC) in the cytoplasm and nucleus, and are necessary for the development of plant shoot meristem, which gives rise to the above-ground plant body. In this study, we identified 23 Phyllostachys edulis AGO genes (PhAGOs) that were distributed unequally on the 14 unmapped scaffolds. Gene collinearity and phylogeny analysis showed that the innovation of PhAGO genes was mainly due to dispersed duplication and whole-genome duplication, which resulted in the enlarged PhAGO family. PhAGO genes were expressed in a temporal-spatial expression pattern, and they encoded proteins differently localized in the cytoplasm and/or nucleus. Overexpression of the PhAGO2 and PhAGO4 genes increased the number of tillers or leaves in Oryza sativa and affected the shoot architecture of Arabidopsis thaliana. These results provided insight into the fact that PhAGO genes play important roles in plant development.


Subject(s)
Argonaute Proteins , Phylogeny , Plant Shoots , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Arabidopsis/genetics , Arabidopsis/growth & development
12.
BMC Genomics ; 25(1): 543, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822270

ABSTRACT

Recent studies on co-transformation of the growth regulator, TaGRF4-GIF1 chimera (Growth Regulating Factor 4-GRF Interacting Factor 1), in cultivated wheat varieties (Triticum aestivum), showed improved regeneration efficiency, marking a significant breakthrough. Here, a simple and reproducible protocol using the GRF4-GIF1 chimera was established and tested in the medicinal orchid Dendrobium catenatum, a monocot orchid species. TaGRF4-GIF1 from T. aestivum and DcGRF4-GIF1 from D. catenatum were reconstructed, with the chimeras significantly enhancing the regeneration efficiency of D. catenatum through in planta transformation. Further, mutating the microRNA396 (miR396) target sites in TaGRF4 and DcGRF4 improved regeneration efficiency. The target mimicry version of miR396 (MIM396) not only boosted shoot regeneration but also enhanced plant growth. Our methods revealed a powerful tool for the enhanced regeneration and genetic transformation of D. catenatum.


Subject(s)
Dendrobium , MicroRNAs , Plant Shoots , Regeneration , Dendrobium/genetics , Dendrobium/growth & development , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Regeneration/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
13.
Gene ; 926: 148623, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38821328

ABSTRACT

Topping, an important tree shaping and pruning technique, can promote the outgrowth of citrus axillary buds. However, the underlying molecular mechanism is still unclear. In this study, spring shoots of Citrus reticulata 'Huagan No.2' were topped and transcriptome was compared between axillary buds of topped and untopped shoots at 6 and 11 days after topping (DAT). 1944 and 2394 differentially expressed genes (DEGs) were found at 6 and 11 DAT, respectively. KEGG analysis revealed that many DEGs were related to starch and sucrose metabolism, signal transduction of auxin, cytokinin and abscisic acid. Specially, transcript levels of auxin synthesis, transport, and signaling-related genes (SAURs and ARF5), cytokinin signal transduction related genes (CRE1, AHP and Type-A ARRs), ABA signal responsive genes (PYL and ABF) were up-regulated by topping; while transcript levels of auxin receptor TIR1, auxin responsive genes AUX/IAAs, ABA signal transduction related gene PP2Cs and synthesis related genes NCED3 were down-regulated. On the other hand, the contents of sucrose and fructose in axillary buds of topped shoots were significantly higher than those in untopped shoots; transcript levels of 16 genes related to sucrose synthase, hexokinase, sucrose phosphate synthase, endoglucanase and glucosidase, were up-regulated in axillary buds after topping. In addition, transcript levels of genes related to trehalose 6-phosphate metabolism and glycolysis/tricarboxylic acid (TCA) cycle, as well to some transcription factors including Pkinase, Pkinase_Tyr, Kinesin, AP2/ERF, P450, MYB, NAC and Cyclin_c, significantly responded to topping. Taken together, the present results suggested that topping promoted citrus axillary bud outgrowth through comprehensively regulating plant hormone and carbohydrate metabolism, as well as signal transduction. These results deepened our understanding of citrus axillary bud outgrowth by topping and laid a foundation for further research on the molecular mechanisms of citrus axillary bud outgrowth.


Subject(s)
Citrus , Gene Expression Profiling , Gene Expression Regulation, Plant , Citrus/genetics , Citrus/growth & development , Citrus/metabolism , Gene Expression Profiling/methods , Transcriptome , Signal Transduction , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Indoleacetic Acids/metabolism , Gene Regulatory Networks
14.
Nucleic Acids Res ; 52(13): 7910-7924, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38721772

ABSTRACT

Until recently, the general 5'-3' mRNA decay was placed in the cytosol after the mRNA was released from ribosomes. However, the discovery of an additional 5' to 3' pathway, the Co-Translational mRNA Decay (CTRD), changed this paradigm. Up to date, defining the real contribution of CTRD in the general mRNA turnover has been hardly possible as the enzyme involved in this pathway is also involved in cytosolic decay. Here we overcame this obstacle and created an Arabidopsis line specifically impaired for CTRD called XRN4ΔCTRD. Through a genome-wide analysis of mRNA decay rate in shoot and root, we tested the importance of CTRD in mRNA turnover. First, we observed that mRNAs tend to be more stable in root than in shoot. Next, using XRN4ΔCTRD line, we demonstrated that CTRD is a major determinant in mRNA turnover. In shoot, the absence of CTRD leads to the stabilization of thousands of transcripts while in root its absence is highly compensated resulting in faster decay rates. We demonstrated that this faster decay rate is partially due to the XRN4-dependent cytosolic decay. Finally, we correlated this organ-specific effect with XRN4ΔCTRD line phenotypes revealing a crucial role of CTRD in mRNA homeostasis and proper organ development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Plant Roots , Plant Shoots , RNA Stability , RNA, Messenger , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Roots/metabolism , Plant Roots/genetics , RNA Stability/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Shoots/metabolism , Plant Shoots/genetics , Genome, Plant , Exoribonucleases/metabolism , Exoribonucleases/genetics , Protein Biosynthesis , RNA, Plant/metabolism , RNA, Plant/genetics , Cytosol/metabolism
15.
Sci Rep ; 14(1): 11148, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750143

ABSTRACT

The one-leaf plant Monophyllaea glabra exhibits a unique developmental manner in which only one cotyledon continues growing without producing new vegetative organs. This morphology is formed by specific meristems, the groove meristem (GM) and the basal meristem (BM), which are thought to be modified shoot apical meristem (SAM) and leaf meristem. In this study, we analysed the expression of the organ boundary gene CUP-SHAPED COTYLEDON (CUC) and the SAM maintenance gene SHOOT MERISTEMLESS (STM) orthologs by whole-mount in situ hybridisation. We found that CUCs did not show clear border patterns around GM and BM during the vegetative phase. Furthermore, double-colour detection analysis at the cellular level revealed that CUC and STM expression overlapped in the GM region during the vegetative phase. We also found that this overlap is dissolved in the reproductive phase when normal shoot organogenesis is observed. Since co-expression of these genes occurs during SAM initiation under embryogenesis in Arabidopsis, our results demonstrate that GM is a prolonged stage of pre-mature SAM. Therefore, we propose that neotenic meristems could be a novel plant trait acquired by one-leaf plants.


Subject(s)
Cotyledon , Gene Expression Regulation, Plant , Meristem , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Cotyledon/genetics , Cotyledon/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development
16.
Physiol Plant ; 176(3): e14336, 2024.
Article in English | MEDLINE | ID: mdl-38783514

ABSTRACT

The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.


Subject(s)
Phenotype , Plant Roots , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/physiology , Triticum/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/anatomy & histology , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Genes, Plant/genetics , Biomass
17.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38752444

ABSTRACT

Stem cell homeostasis in the shoot apical meristem involves a core regulatory feedback loop between the signalling peptide CLAVATA3 (CLV3), produced in stem cells, and the transcription factor WUSCHEL, expressed in the underlying organising centre. clv3 mutant meristems display massive overgrowth, which is thought to be caused by stem cell overproliferation, although it is unknown how uncontrolled stem cell divisions lead to this altered morphology. Here, we reveal local buckling defects in mutant meristems, and use analytical models to show how mechanical properties and growth rates may contribute to the phenotype. Indeed, clv3 mutant meristems are mechanically more heterogeneous than the wild type, and also display regional growth heterogeneities. Furthermore, stereotypical wild-type meristem organisation, in which cells simultaneously express distinct fate markers, is lost in mutants. Finally, cells in mutant meristems are auxin responsive, suggesting that they are functionally distinguishable from wild-type stem cells. Thus, all benchmarks show that clv3 mutant meristem cells are different from wild-type stem cells, suggesting that overgrowth is caused by the disruption of a more complex regulatory framework that maintains distinct genetic and functional domains in the meristem.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Meristem , Mutation , Plant Shoots , Stem Cells , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Meristem/metabolism , Meristem/cytology , Meristem/growth & development , Meristem/genetics , Mutation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Plant Shoots/growth & development , Plant Shoots/genetics , Plant Shoots/metabolism , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant , Phenotype , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics
18.
BMC Plant Biol ; 24(1): 367, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711041

ABSTRACT

BACKGROUND: The formation of shoots plays a pivotal role in plant organogenesis and productivity. Despite its significance, the underlying molecular mechanism of de novo regeneration has not been extensively elucidated in Capsicum annuum 'Dempsey', a bell pepper cultivar. To address this, we performed a comparative transcriptome analysis focusing on the differential expression in C. annuum 'Dempsey' shoot, callus, and leaf tissue. We further investigated phytohormone-related biological processes and their interacting genes in the C. annuum 'Dempsey' transcriptome based on comparative transcriptomic analysis across five species. RESULTS: We provided a comprehensive view of the gene networks regulating shoot formation on the callus, revealing a strong involvement of hypoxia responses and oxidative stress. Our comparative transcriptome analysis revealed a significant conservation in the increase of gene expression patterns related to auxin and defense mechanisms in both callus and shoot tissues. Consequently, hypoxia response and defense mechanism emerged as critical regulators in callus and shoot formation in C. annuum 'Dempsey'. Current transcriptome data also indicated a substantial decline in gene expression linked to photosynthesis within regenerative tissues, implying a deactivation of the regulatory system governing photosynthesis in C. annuum 'Dempsey'. CONCLUSION: Coupled with defense mechanisms, we thus considered spatial redistribution of auxin to play a critical role in the shoot morphogenesis via primordia outgrowth. Our findings shed light on shoot formation mechanisms in C. annuum 'Dempsey' explants, important information for regeneration programs, and have broader implications for precise molecular breeding in recalcitrant crops.


Subject(s)
Capsicum , Gene Expression Profiling , Plant Shoots , Transcriptome , Capsicum/genetics , Capsicum/growth & development , Capsicum/physiology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism
19.
Plant Physiol ; 195(4): 2683-2693, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38761402

ABSTRACT

Rice (Oryza sativa) as a staple food is a potential intake source of antimony (Sb), a toxic metalloid. However, how rice accumulates this element is still poorly understood. Here, we investigated tissue-specific deposition, speciation, and transport of Sb in rice. We found that Sb(III) is the preferential form of Sb uptake in rice, but most Sb accumulates in the roots, resulting in a very low root-to-shoot translocation (less than 2%). Analysis of Sb deposition with laser ablation-inductively coupled plasma-mass spectrometry showed that most Sb deposits at the root exodermis. Furthermore, we found that Sb is mainly present as Sb(III) in the root cell sap after uptake. Further characterization showed that Sb(III) uptake is mediated by Low silicon rice 1 (Lsi1), a Si permeable transporter. Lsi1 showed transport activity for Sb(III) rather than Sb(V) in yeast (Saccharomyces cerevisiae). Knockout of Lsi1 resulted in a significant decrease in Sb accumulation in both roots and shoots. Sb concentration in the root cell sap of two independent lsi1 mutants decreased to less than 3% of that in wild-type rice, indicating that Lsi1 is a major transporter for Sb(III) uptake. Knockout of Lsi1 also enhanced rice tolerance to Sb toxicity. However, knockout of Si efflux transporter genes, including Lsi2 and Lsi3, did not affect Sb accumulation. Taken together, our results showed that Sb(III) is taken up by Lsi1 localized at the root exodermis and is deposited at this cell layer due to lack of Sb efflux transporters in rice.


Subject(s)
Antimony , Oryza , Plant Roots , Oryza/metabolism , Oryza/genetics , Antimony/metabolism , Plant Roots/metabolism , Biological Transport , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Shoots/metabolism , Plant Shoots/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
20.
Plant Cell Environ ; 47(8): 2936-2953, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38629324

ABSTRACT

Plants use light as a resource and signal. Photons within the 400-700 nm waveband are considered photosynthetically active. Far-red photons (FR, 700-800 nm) are used by plants to detect nearby vegetation and elicit the shade avoidance syndrome. In addition, FR photons have also been shown to contribute to photosynthesis, but knowledge about these dual effects remains scarce. Here, we study shoot-architectural and photosynthetic responses to supplemental FR light during the photoperiod in several rice varieties. We observed that FR enrichment only mildly affected the rice transcriptome and shoot architecture as compared to established model species, whereas leaf formation, tillering and biomass accumulation were clearly promoted. Consistent with this growth promotion, we found that CO2-fixation in supplemental FR was strongly enhanced, especially in plants acclimated to FR-enriched conditions as compared to control conditions. This growth promotion dominates the effects of FR photons on shoot development and architecture. When substituting FR enrichment with an end-of-day FR pulse, this prevented photosynthesis-promoting effects and elicited shade avoidance responses. We conclude that FR photons can have a dual role, where effects depend on the environmental context: in addition to being an environmental signal, they are also a potent source of harvestable energy.


Subject(s)
Gene Expression Regulation, Plant , Light , Oryza , Photosynthesis , Plant Shoots , Oryza/genetics , Oryza/growth & development , Oryza/radiation effects , Oryza/physiology , Photosynthesis/radiation effects , Gene Expression Regulation, Plant/radiation effects , Plant Shoots/growth & development , Plant Shoots/radiation effects , Plant Shoots/genetics , Plant Leaves/radiation effects , Plant Leaves/growth & development , Plant Leaves/genetics , Plant Leaves/physiology , Carbon Dioxide/metabolism , Photoperiod , Biomass , Transcriptome , Red Light
SELECTION OF CITATIONS
SEARCH DETAIL