Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.053
Filter
3.
Methods Mol Biol ; 2826: 151-163, 2024.
Article in English | MEDLINE | ID: mdl-39017892

ABSTRACT

Intracellular flow cytometry is a powerful technique that can be used to interrogate signalling in rare cellular populations. The strengths of the technique are that massively parallel readouts can be gained from thousands of single cells simultaneously, and the assay is fast and relatively straightforward. This plate-based protocol enables different doses and different timepoints of stimulation to be assessed and has been optimized for rare B cell populations. Combining this technique with high-dimensional flow cytometry enables multiple signalling proteins to be measured with high confidence.


Subject(s)
Flow Cytometry , Plasma Cells , Signal Transduction , Flow Cytometry/methods , Plasma Cells/metabolism , Plasma Cells/immunology , Plasma Cells/cytology , Humans , Memory B Cells/metabolism , Memory B Cells/immunology , Animals , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/immunology
4.
Proc Natl Acad Sci U S A ; 121(29): e2404309121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990948

ABSTRACT

Antibody-producing plasma cells fuel humoral immune responses. They also contribute to autoimmune diseases such as systemic lupus erythematosus or IgA nephropathy. Interleukin-6 and the tumor necrosis factor (TNF) family ligands BAFF (B cell-activating factor) and APRIL (a proliferation-inducing ligand) participate in plasma cell survival. BAFF binds to three receptors, BAFFR (BAFF receptor), TACI (transmembrane activator and CAML interactor), and BCMA (B cell maturation antigen), while APRIL binds to TACI, BCMA, and proteoglycans. However, which ligand-receptor pair(s) are required to maintain plasma cells in different body locations remains unknown. Here, by combining mouse genetic and pharmacological approaches, we found that plasma cells required BCMA and/or TACI but not BAFFR. BCMA responded exclusively to APRIL, while TACI responded to both BAFF and APRIL, identifying three self-sufficient ligand-receptor pairs for plasma cell maintenance: BAFF-TACI, APRIL-TACI, and APRIL-BCMA. Together, these actors accounted for 90% of circulating antibodies. In BAFF-ko mice, the reduction of plasma cells upon APRIL inhibition indicated that APRIL could function in the absence of BAFF-APRIL heteromers. No evidence was found that in the absence of BCMA and TACI, binding of APRIL to proteoglycans would help maintain plasma cells. IL-6, alone or together with BAFF and APRIL, supported mainly splenic plasmablasts and plasma cells and contributed to circulating IgG but not IgA levels. In conclusion, survival factors for plasma cells can vary with body location and with the antibody isotype that plasma cells produce. To efficiently target plasma cells, in particular IgA-producing ones, dual inhibition of BAFF and APRIL is required.


Subject(s)
B-Cell Activating Factor , B-Cell Activation Factor Receptor , B-Cell Maturation Antigen , Interleukin-6 , Transmembrane Activator and CAML Interactor Protein , Tumor Necrosis Factor Ligand Superfamily Member 13 , Animals , B-Cell Activating Factor/immunology , B-Cell Activating Factor/metabolism , B-Cell Activating Factor/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/metabolism , Transmembrane Activator and CAML Interactor Protein/metabolism , Transmembrane Activator and CAML Interactor Protein/genetics , Transmembrane Activator and CAML Interactor Protein/immunology , Interleukin-6/metabolism , Interleukin-6/immunology , Mice , B-Cell Activation Factor Receptor/metabolism , B-Cell Activation Factor Receptor/immunology , B-Cell Activation Factor Receptor/genetics , Plasma Cells/immunology , Plasma Cells/metabolism , Mice, Knockout , Antibody-Producing Cells/immunology , Antibody-Producing Cells/metabolism , Mice, Inbred C57BL
5.
Nat Immunol ; 25(8): 1432-1444, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969872

ABSTRACT

Memory B cells (MBCs) differentiate into plasma cells (PCs) or germinal centers (GCs) upon antigen recall. How this decision is programmed is not understood. We found that the relative strength between two antagonistic transcription factors, B lymphocyte-induced maturation protein 1 (BLIMP1) and BTB domain and CNC homolog 2 (BACH2), progressively increases in favor of BLIMP1 in antigen-responding B cells through the course of primary responses. MBC subsets that preferentially produce secondary GCs expressed comparatively higher BACH2 but lower BLIMP1 than those predisposed for PC development. Skewing the BLIMP1-BACH2 balance in otherwise fate-predisposed MBC subsets could switch their fate preferences. Underlying the changing BLIMP1-over-BACH2 balance, we observed progressively increased accessibilities at chromatin loci that are specifically opened in PCs, particularly those that contain interferon-sensitive response elements (ISREs) and are controlled by interferon regulatory factor 4 (IRF4). IRF4 is upregulated by B cell receptor, CD40 or innate receptor signaling and it induces graded levels of PC-specifying epigenetic imprints according to the strength of stimulation. By analyzing history-stamped GC B cells, we found progressively increased chromatin accessibilities at PC-specific, IRF4-controlled gene loci over time. Therefore, the cumulative stimulation history of B cells is epigenetically recorded in an IRF4-dependent manner, determines the relative strength between BLIMP1 and BACH2 in individual MBCs and dictates their probabilities to develop into GCs or PCs upon restimulation.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Differentiation , Epigenesis, Genetic , Germinal Center , Immunologic Memory , Interferon Regulatory Factors , Memory B Cells , Plasma Cells , Positive Regulatory Domain I-Binding Factor 1 , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Animals , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Memory B Cells/immunology , Memory B Cells/metabolism , Plasma Cells/immunology , Plasma Cells/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Mice, Inbred C57BL , Signal Transduction , Lymphocyte Activation/genetics
6.
Biofabrication ; 16(4)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38955197

ABSTRACT

Plasma cells (PCs) in bone marrow (BM) play an important role in both protective and pathogenic humoral immune responses, e.g. in various malignant and non-malignant diseases such as multiple myeloma, primary and secondary immunodeficiencies and autoimmune diseases. Dedicated microenvironmental niches in the BM provide PCs with biomechanical and soluble factors that support their long-term survival. There is a high need for appropriate and robust model systems to better understand PCs biology, to develop new therapeutic strategies for PCs-related diseases and perform targeted preclinical studies with high predictive value. Most preclinical data have been derived fromin vivostudies in mice, asin vitrostudies of human PCs are limited due to restricted survival and functionality in conventional 2D cultures that do not reflect the unique niche architecture of the BM. We have developed a microphysiological, dynamic 3D BM culture system (BM-MPS) based on human primary tissue (femoral biopsies), mechanically supported by a hydrogel scaffold casing. While a bioinert agarose casing did not support PCs survival, a photo-crosslinked collagen-hyaluronic acid (Col-HA) hydrogel preserved the native BM niche architecture and allowed PCs survivalin vitrofor up to 2 weeks. Further, the Col-HA hydrogel was permissive to lymphocyte migration into the microphysiological system´s circulation. Long-term PCs survival was related to the stable presence in the culture of soluble factors, as APRIL, BAFF, and IL-6. Increasing immunoglobulins concentrations in the medium confirm their functionality over culture time. To the best of our knowledge, this study is the first report of successful long-term maintenance of primary-derived non-malignant PCsin vitro. Our innovative model system is suitable for in-depthin vitrostudies of human PCs regulation and exploration of targeted therapeutic approaches such as CAR-T cell therapy or biologics.


Subject(s)
Hydrogels , Plasma Cells , Humans , Plasma Cells/cytology , Plasma Cells/metabolism , Hydrogels/chemistry , Cell Survival/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Bone Marrow Cells/cytology , Collagen/chemistry , Bone Marrow/metabolism , Cells, Cultured , Cell Culture Techniques, Three Dimensional , Models, Biological , Tissue Scaffolds/chemistry , Sepharose/chemistry
7.
Front Immunol ; 15: 1402000, 2024.
Article in English | MEDLINE | ID: mdl-38827747

ABSTRACT

Sialic acids as terminal sugar residues on cell surface or secreted proteins have many functional roles. In particular, the presence or absence of α2,6-linked sialic acid residues at the immunoglobulin G (IgG) Fc fragment can switch IgG effector functions from pro- to anti-inflammatory activity. IgG glycosylation is considered to take place inside the plasma blast/plasma cell while the molecule travels through the endoplasmic reticulum and Golgi apparatus before being secreted. However, more recent studies have suggested that IgG sialylation may occur predominantly post-antibody secretion. To what extent this extracellular IgG sialylation process contributes to overall IgG sialylation remains unclear, however. By generating bone marrow chimeric mice with a B cell-specific deletion of ST6Gal1, the key enzyme required for IgG sialylation, we now show that sialylation of the IgG Fc fragment exclusively occurs within B cells pre-IgG secretion. We further demonstrate that B cells expressing ST6Gal1 have a developmental advantage over B cells lacking ST6Gal1 expression and thus dominate the plasma cell pool and the resulting serum IgG population in mouse models in which both ST6Gal1-sufficient and -deficient B cells are present.


Subject(s)
B-Lymphocytes , Immunoglobulin G , Sialyltransferases , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mice , Sialyltransferases/metabolism , Sialyltransferases/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice, Knockout , Glycosylation , Mice, Inbred C57BL , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/genetics , beta-D-Galactoside alpha 2-6-Sialyltransferase , Plasma Cells/immunology , Plasma Cells/metabolism , Antibody Formation
8.
Nat Commun ; 15(1): 5004, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902223

ABSTRACT

The differentiation of B cells into plasma cells is associated with substantial transcriptional and epigenetic remodeling. H3.3 histone variant marks active chromatin via replication-independent nucleosome assembly. However, its role in plasma cell development remains elusive. Herein, we show that during plasma cell differentiation, H3.3 is downregulated, and the deposition of H3.3 and chromatin accessibility are dynamically changed. Blockade of H3.3 downregulation by enforced H3.3 expression impairs plasma cell differentiation in an H3.3-specific sequence-dependent manner. Mechanistically, enforced H3.3 expression inhibits the upregulation of plasma cell-associated genes such as Irf4, Prdm1, and Xbp1 and maintains the expression of B cell-associated genes, Pax5, Bach2, and Bcl6. Concomitantly, sustained H3.3 expression prevents the structure of chromatin accessibility characteristic for plasma cells. Our findings suggest that appropriate H3.3 expression and deposition control plasma cell differentiation.


Subject(s)
Cell Differentiation , Histones , Plasma Cells , Cell Differentiation/genetics , Histones/metabolism , Plasma Cells/metabolism , Plasma Cells/cytology , Animals , Mice , Chromatin/metabolism , Chromatin/genetics , Humans , Mice, Inbred C57BL , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Gene Expression Regulation
9.
Blood Cancer J ; 14(1): 94, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849344

ABSTRACT

Additional copies of chromosome 1 long arm (1q) are frequently found in multiple myeloma (MM) and predict high-risk disease. Available data suggest a different outcome and biology of patients with amplification (Amp1q, ≥4 copies of 1q) vs. gain (Gain1q, 3 copies of 1q) of 1q. We evaluated the impact of Amp1q/Gain1q on the outcome of newly diagnosed MM patients enrolled in the FORTE trial (NCT02203643). Among 400 patients with available 1q data, 52 (13%) had Amp1q and 129 (32%) Gain1q. After a median follow-up of 62 months, median progression-free survival (PFS) was 21.2 months in the Amp1q group, 54.9 months in Gain1q, and not reached (NR) in Normal 1q. PFS was significantly hampered by the presence of Amp1q (HR 3.34 vs. Normal 1q, P < 0.0001; HR 1.99 vs. Gain1q, P = 0.0008). Patients with Gain1q had also a significantly shorter PFS compared with Normal 1q (HR 1.68, P = 0.0031). Concomitant poor prognostic factors or the failure to achieve MRD negativity predicted a median PFS < 12 months in Amp1q patients. Carfilzomib-lenalidomide-dexamethasone plus autologous stem cell transplantation treatment improved the adverse effect of Gain1q but not Amp1q. Transcriptomic data showed that additional 1q copies were associated with deregulation in apoptosis signaling, p38 MAPK signaling, and Myc-related genes.


Subject(s)
Chromosomes, Human, Pair 1 , Multiple Myeloma , Transcriptome , Humans , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Multiple Myeloma/therapy , Female , Male , Middle Aged , Aged , Chromosomes, Human, Pair 1/genetics , Plasma Cells/metabolism , Plasma Cells/pathology , Adult , Gene Expression Regulation, Neoplastic , Prognosis , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
10.
Elife ; 122024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896451

ABSTRACT

Durable serological memory following vaccination is critically dependent on the production and survival of long-lived plasma cells (LLPCs). Yet, the factors that control LLPC specification and survival remain poorly resolved. Using intravital two-photon imaging, we find that in contrast to most plasma cells (PCs) in the bone marrow (BM), LLPCs are uniquely sessile and organized into clusters that are dependent on APRIL, an important survival factor. Using deep, bulk RNA sequencing, and surface protein flow-based phenotyping, we find that LLPCs express a unique transcriptome and phenotype compared to bulk PCs, fine-tuning expression of key cell surface molecules, CD93, CD81, CXCR4, CD326, CD44, and CD48, important for adhesion and homing. Conditional deletion of Cxcr4 in PCs following immunization leads to rapid mobilization from the BM, reduced survival of antigen-specific PCs, and ultimately accelerated decay of antibody titer. In naïve mice, the endogenous LLPCs BCR repertoire exhibits reduced diversity, reduced somatic mutations, and increased public clones and IgM isotypes, particularly in young mice, suggesting LLPC specification is non-random. As mice age, the BM PC compartment becomes enriched in LLPCs, which may outcompete and limit entry of new PCs into the LLPC niche and pool.


Subject(s)
Plasma Cells , Animals , Mice , Plasma Cells/immunology , Plasma Cells/metabolism , Mice, Inbred C57BL , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Cell Survival , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Spatio-Temporal Analysis
11.
Nat Commun ; 15(1): 4991, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862501

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific T and B cells. Here, we perform single-cell RNA and repertoire sequencing on paired synovial tissue and blood samples from 12 seropositive RA patients. We identify clonally expanded CD4 + T cells, including CCL5+ cells and T peripheral helper (Tph) cells, which show a prominent transcriptomic signature of recent activation and effector function. CD8 + T cells show higher oligoclonality than CD4 + T cells, with the largest synovial clones enriched in GZMK+ cells. CD8 + T cells with possibly virus-reactive TCRs are distributed across transcriptomic clusters. In the B cell compartment, NR4A1+ activated B cells, and plasma cells are enriched in the synovium and demonstrate substantial clonal expansion. We identify synovial plasma cells that share BCRs with synovial ABC, memory, and activated B cells. Receptor-ligand analysis predicted IFNG and TNFRSF members as mediators of synovial Tph-B cell interactions. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate the synovium of patients with RA.


Subject(s)
Arthritis, Rheumatoid , B-Lymphocytes , Synovial Membrane , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Synovial Membrane/immunology , Synovial Membrane/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Female , Male , Middle Aged , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Single-Cell Analysis , Transcriptome , Plasma Cells/immunology , Plasma Cells/metabolism , Aged , Lymphocyte Activation , Adult
12.
Nat Immunol ; 25(7): 1283-1295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862796

ABSTRACT

While some infections elicit germinal centers, others produce only extrafollicular responses. The mechanisms controlling these dichotomous fates are poorly understood. We identify IL-12 as a cytokine switch, acting directly on B cells to promote extrafollicular and suppress germinal center responses. IL-12 initiates a B cell-intrinsic feed-forward loop between IL-12 and IFNγ, amplifying IFNγ production, which promotes proliferation and plasmablast differentiation from mouse and human B cells, in synergy with IL-12. IL-12 sustains the expression of a portion of IFNγ-inducible genes. Together, they also induce unique gene changes, reflecting both IFNγ amplification and cooperative effects between both cytokines. In vivo, cells lacking both IL-12 and IFNγ receptors are more impaired in plasmablast production than those lacking either receptor alone. Further, B cell-derived IL-12 enhances both plasmablast responses and T helper 1 cell commitment. Thus, B cell-derived IL-12, acting on T and B cells, determines the immune response mode, with implications for vaccines, pathogen protection and autoimmunity.


Subject(s)
B-Lymphocytes , Cell Differentiation , Germinal Center , Interferon-gamma , Interleukin-12 , Animals , Interleukin-12/immunology , Interleukin-12/metabolism , Mice , Interferon-gamma/metabolism , Interferon-gamma/immunology , Germinal Center/immunology , Humans , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Mice, Knockout , Mice, Inbred C57BL , Plasma Cells/immunology , Plasma Cells/metabolism , Lymphocyte Activation/immunology , Receptors, Interferon/metabolism , Receptors, Interferon/genetics , Cells, Cultured , Cell Proliferation
13.
J Neuroinflammation ; 21(1): 161, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915059

ABSTRACT

BACKGROUND: Pediatric acute transverse myelitis (ATM) accounts for 20-30% of children presenting with a first acquired demyelinating syndrome (ADS) and may be the first clinical presentation of a relapsing ADS such as multiple sclerosis (MS). B cells have been strongly implicated in the pathogenesis of adult MS. However, little is known about B cells in pediatric MS, and even less so in pediatric ATM. Our lab previously showed that plasmablasts (PB), the earliest B cell subtype producing antibody, are expanded in adult ATM, and that these PBs produce self-reactive antibodies that target neurons. The goal of this study was to examine PB frequency and phenotype, immunoglobulin selection, and B cell receptor reactivity in pediatric patients presenting with ATM to gain insight to B cell involvement in disease. METHODS: We compared the PB frequency and phenotype of 5 pediatric ATM patients and 10 pediatric healthy controls (HC) and compared them to previously reported adult ATM patients using cytometric data. We purified bulk IgG from the plasma samples and cloned 20 recombinant human antibodies (rhAbs) from individual PBs isolated from the blood. Plasma-derived IgG and rhAb autoreactivity was measured by mean fluorescence intensity (MFI) in neurons and astrocytes of murine brain or spinal cord and primary human astrocytes. We determined the potential impact of these rhAbs on astrocyte health by measuring stress and apoptotic response. RESULTS: We found that pediatric ATM patients had a reduced frequency of peripheral blood PB. Serum IgG autoreactivity to neurons in EAE spinal cord was similar in the pediatric ATM patients and HC. However, serum IgG autoreactivity to astrocytes in EAE spinal cord was reduced in pediatric ATM patients compared to pediatric HC. Astrocyte-binding strength of rhAbs cloned from PBs was dependent on somatic hypermutation accumulation in the pediatric ATM cohort, but not HC. A similar observation in predilection for astrocyte binding over neuron binding of individual antibodies cloned from PBs was made in EAE brain tissue. Finally, exposure of human primary astrocytes to these astrocyte-binding antibodies increased astrocytic stress but did not lead to apoptosis. CONCLUSIONS: Discordance in humoral immune responses to astrocytes may distinguish pediatric ATM from HC.


Subject(s)
Astrocytes , Myelitis, Transverse , Humans , Myelitis, Transverse/immunology , Animals , Female , Astrocytes/metabolism , Astrocytes/immunology , Child , Mice , Male , Adolescent , Plasma Cells/immunology , Plasma Cells/metabolism , Autoantibodies/immunology , Autoantibodies/blood , Mice, Inbred C57BL , Cells, Cultured , Child, Preschool , Immunoglobulin G/immunology , Immunoglobulin G/blood , Spinal Cord/metabolism , Spinal Cord/immunology , Spinal Cord/pathology
14.
J Transl Med ; 22(1): 548, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849800

ABSTRACT

BACKGROUND: Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS: To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS: Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION: Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.


Subject(s)
Disease Progression , Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Humans , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Monoclonal Gammopathy of Undetermined Significance/immunology , Proteomics , Male , Female , Protein Biosynthesis , Middle Aged , Aged , Cluster Analysis , Plasma Cells/immunology , Plasma Cells/pathology , Plasma Cells/metabolism , Signal Transduction , Proteome/metabolism , Quality Control
15.
Cancer Cell ; 42(7): 1185-1201.e14, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38906156

ABSTRACT

Multiple myeloma (MM) is an incurable plasma cell malignancy that exploits transcriptional networks driven by IRF4. We employ a multi-omics approach to discover IRF4 vulnerabilities, integrating functional genomics screening, spatial proteomics, and global chromatin mapping. ARID1A, a member of the SWI/SNF chromatin remodeling complex, is required for IRF4 expression and functionally associates with IRF4 protein on chromatin. Deleting Arid1a in activated murine B cells disrupts IRF4-dependent transcriptional networks and blocks plasma cell differentiation. Targeting SWI/SNF activity leads to rapid loss of IRF4-target gene expression and quenches global amplification of oncogenic gene expression by MYC, resulting in profound toxicity to MM cells. Notably, MM patients with aggressive disease bear the signature of SWI/SNF activity, and SMARCA2/4 inhibitors remain effective in immunomodulatory drug (IMiD)-resistant MM cells. Moreover, combinations of SWI/SNF and MEK inhibitors demonstrate synergistic toxicity to MM cells, providing a promising strategy for relapsed/refractory disease.


Subject(s)
DNA-Binding Proteins , Interferon Regulatory Factors , Multiple Myeloma , Plasma Cells , Transcription Factors , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Plasma Cells/drug effects , Plasma Cells/metabolism , Plasma Cells/pathology , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Cell Differentiation/drug effects
16.
Cancer Lett ; 597: 217045, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38871246

ABSTRACT

To maintain protein homeostasis, X-box binding protein 1 (XBP1) undergoes splicing following the activation of the unfolded protein response (UPR) in response to endoplasmic reticulum (ER) stress. Although targeting ER stress represents a promising therapeutic strategy, a comprehensive understanding of XBP1 at the cellular level and the link between XBP1 and the innate nervous system is lacking. Here, TCGA pancancer datasets from 33 cancer types, scRNA pancancer datasets from 454 patients and bulk RNA-seq datasets from 155 paired esophageal squamous cell carcinoma (ESCC) patients were analyzed. To cope with ER stress, plasma cells tend to activate XBP1 after undergoing bacterial infection and inflammatory signaling from the innate immune system. Patients with high XBP1 expression in their plasma cells have a higher tumor grade and worse survival. However, activation of the innate immune system with increased XBP1 expression in plasma cells correlates with an increased lymphocyte ratio, indicative of a more robust immune response. Moreover, XBP1 activation appears to initiate leukocyte migration at the transcriptional level. Our study revealed that the XBP1-induced UPR could mediate the crosstalk between optimal acquired humoral immune responses and innate immunity in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immunity, Innate , Plasma Cells , Unfolded Protein Response , X-Box Binding Protein 1 , Humans , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , Esophageal Neoplasms/immunology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Plasma Cells/immunology , Plasma Cells/metabolism , Male , Female , Endoplasmic Reticulum Stress/immunology , Gene Expression Regulation, Neoplastic , Middle Aged , Aged , Prognosis
17.
Blood Adv ; 8(15): 3972-3984, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38830132

ABSTRACT

ABSTRACT: Smoldering multiple myeloma (SMM) is an asymptomatic plasma cell (PC) neoplasm that may evolve with variable frequency into multiple myeloma (MM). SMM is initiated by chromosomal translocations involving the immunoglobulin heavy-chain locus or by hyperdiploidy and evolves through acquisition of additional genetic lesions. In this scenario, we aimed at establishing a reliable analysis pipeline to infer genomic lesions from transcriptomic analysis, by combining single-cell RNA sequencing (scRNA-seq) with B-cell receptor sequencing and copy number abnormality (CNA) analysis to identify clonal PCs at the genetic level along their specific transcriptional landscape. We profiled 20 465 bone marrow PCs derived from 5 patients with SMM/MM and unbiasedly identified clonal and polyclonal PCs. Hyperdiploidy, t(11;14), and t(6;14) were identified at the scRNA level by analysis of chimeric reads. Subclone functional analysis was improved by combining transcriptome with CNA analysis. As examples, we illustrate the different functional properties of a light-chain escape subclone in SMM and of different B-cell and PC subclones in a patient affected by Wäldenstrom macroglobulinemia and SMM. Overall, our data provide a proof of principle for inference of clinically relevant genotypic data from scRNA-seq, which in turn will refine functional annotation of the clonal architecture of PC dyscrasias.


Subject(s)
Multiple Myeloma , RNA-Seq , Single-Cell Analysis , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Single-Cell Analysis/methods , Genomics/methods , Plasma Cells/metabolism , Plasma Cells/pathology , Gene Expression Profiling , Single-Cell Gene Expression Analysis
18.
J Autoimmun ; 146: 103241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754235

ABSTRACT

Many antibody responses induced by infection, vaccination or autoimmunity show signs of convergence across individuals with epitope-dependent selection of particular variable region gene segments and complementarity determining region 3 properties. However, not much is known about the relationship between antigen-specific effector cells and antigen-specific precursors present in the naïve B-cell repertoire. Here, we sought to address this relationship in the context of celiac disease, where there is a stereotyped autoantibody response against the enzyme transglutaminase 2 (TG2). By generating TG2-specific monoclonal antibodies from both duodenal plasma cells and circulating naïve B cells, we demonstrate a discord between the naïve TG2-specific repertoire and the cells that are selected for autoantibody production. Hence, the naïve repertoire does not fully reflect the epitope preference and gene usage observed for memory B cells and plasma cells. Instead, distinct naïve B cells that target particular TG2 epitopes appear to be selectively activated at the expense of TG2-binding B cells targeting other epitopes.


Subject(s)
Autoantibodies , B-Lymphocytes , Celiac Disease , Epitopes, B-Lymphocyte , GTP-Binding Proteins , Lymphocyte Activation , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Celiac Disease/immunology , Humans , Autoantibodies/immunology , Transglutaminases/immunology , Epitopes, B-Lymphocyte/immunology , GTP-Binding Proteins/immunology , Lymphocyte Activation/immunology , B-Lymphocytes/immunology , Plasma Cells/immunology , Plasma Cells/metabolism , Female , Antibodies, Monoclonal/immunology , Epitopes/immunology , Male , Adult , Duodenum/immunology , Duodenum/pathology
19.
Nat Immunol ; 25(6): 1097-1109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698087

ABSTRACT

Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Here, using a model antigen in mice, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using single-cell RNA sequencing and B cell antigen receptor sequencing in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveals a new PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters in the GC.


Subject(s)
Cell Differentiation , Germinal Center , Plasma Cells , Animals , Plasma Cells/immunology , Plasma Cells/metabolism , Mice , Germinal Center/immunology , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Mice, Inbred C57BL , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Mice, Transgenic
20.
Nat Commun ; 15(1): 4144, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755140

ABSTRACT

Multiple Myeloma is an incurable plasma cell malignancy with a poor survival rate that is usually treated with immunomodulatory drugs (iMiDs) and proteosome inhibitors (PIs). The malignant plasma cells quickly become resistant to these agents causing relapse and uncontrolled growth of resistant clones. From whole genome sequencing (WGS) and RNA sequencing (RNA-seq) studies, different high-risk translocation, copy number, mutational, and transcriptional markers can be identified. One of these markers, PHF19, epigenetically regulates cell cycle and other processes and is already studied using RNA-seq. In this study, we generate a large (325,025 cells and 49 patients) single cell multi-omic dataset and jointly quantify ATAC- and RNA-seq for each cell and matched genomic profiles for each patient. We identify an association between one plasma cell subtype with myeloma progression that we call relapsed/refractory plasma cells (RRPCs). These cells are associated with chromosome 1q alterations, TP53 mutations, and higher expression of PHF19. We also identify downstream regulation of cell cycle inhibitors in these cells, possible regulation by the transcription factor (TF) PBX1 on chromosome 1q, and determine that PHF19 may be acting primarily through this subset of cells.


Subject(s)
Chromosomes, Human, Pair 1 , DNA-Binding Proteins , Multiple Myeloma , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/drug therapy , Humans , Chromosomes, Human, Pair 1/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Plasma Cells/metabolism , Mutation , Neoplasm Recurrence, Local/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Drug Resistance, Neoplasm/genetics , Gene Amplification
SELECTION OF CITATIONS
SEARCH DETAIL