Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.157
Filter
1.
Bull Exp Biol Med ; 176(6): 747-750, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38888651

ABSTRACT

In in vitro model of short-term therapeutic inhalation of Xe/O2 mixture, xenon in millimolar concentrations led to a pronounced decrease in induced platelet aggregation in the platelet-enriched blood plasma. The maximum and statistically significant decrease occurred in response to induction by collagen (by ≈30%, p≤0.01) and ADP (by ≈25%, p≤0.01). A slightly weaker but statistically significant reduction in aggregation appeared in response to ristocetin (by ≈12%, p≤0.01) and epinephrine (by ≈9%, p≤0.01). It should be noted that the spontaneous aggregation exceeded the reference values in the control group. Nevertheless, even at minimal absolute values, spontaneous platelet aggregation decreased by 2 times in response to xenon (p≤0.01). The reasons for the decrease of spontaneous and induced aggregation are xenon accumulation in the lipid bilayer of the membrane with subsequent nonspecific (mechanical) disassociation of membrane platelet structures and specific block of its distinct from neuronal NMDA receptor.


Subject(s)
Platelet Aggregation , Xenon , Xenon/pharmacology , Platelet Aggregation/drug effects , Humans , Blood Platelets/drug effects , Blood Platelets/metabolism , Adenosine Diphosphate/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet-Rich Plasma/metabolism , Epinephrine/pharmacology , Epinephrine/blood , Collagen/metabolism
2.
Vet Q ; 44(1): 1-8, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38823415

ABSTRACT

Dogs that had splenectomy are predisposed to fatal thrombotic conditions, and thrombocytosis is a risk factor for post-splenectomy hypercoagulability. However, in veterinary medicine, there are no specific therapeutic approaches for managing this hypercoagulability. This study aimed to determine the preventive effect of clopidogrel on post-operative hypercoagulability during the first 2 weeks post-splenectomy in dogs with splenic masses. This study included 12 dogs that had splenectomy. Seven dogs received no treatment (group A), and five were treated with clopidogrel (group B). Clopidogrel was loaded at 10 mg/kg on day 2 and continued at 2 mg/kg until day 14. Blood samples were collected on the day of surgery and 2, 7, and 14 days after splenectomy in both groups. In group B, thromboelastography (TEG) was performed on the same days. In group A, there was significant elevation of platelet counts on days 7 (p = 0.007) and 14 (p = 0.001) compared to day 0. In group B, the platelet counts were significantly elevated on day 7 (p = 0.032) but no significant difference was found on day 14 compared to day 0. Platelet counts on day 14 were significantly higher in group A than in group B (p = 0.03). The lower platelet counts were correlated with alterations in TEG parameters, and no significant differences were found in the K and α-angle values at all postoperative assessment points compared to day 0. Our study suggests that clopidogrel may reduce post-operative thrombocytosis and hypercoagulability in dogs that undergo splenectomy for splenic masses.


Subject(s)
Clopidogrel , Dog Diseases , Platelet Aggregation Inhibitors , Splenectomy , Thrombelastography , Thrombophilia , Animals , Dogs , Splenectomy/veterinary , Splenectomy/adverse effects , Clopidogrel/therapeutic use , Dog Diseases/blood , Dog Diseases/surgery , Dog Diseases/drug therapy , Platelet Count/veterinary , Female , Male , Thrombophilia/veterinary , Thrombophilia/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Thrombelastography/veterinary , Postoperative Complications/veterinary , Postoperative Complications/prevention & control , Splenic Neoplasms/veterinary , Splenic Neoplasms/surgery , Splenic Neoplasms/blood , Splenic Diseases/veterinary , Splenic Diseases/surgery , Splenic Diseases/blood , Thrombocytosis/veterinary
3.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892037

ABSTRACT

This review article focuses on the role of adenosine in coronary artery disease (CAD) diagnosis and treatment. Adenosine, an endogenous purine nucleoside, plays crucial roles in cardiovascular physiology and pathology. Its release and effects, mediated by specific receptors, influence vasomotor function, blood pressure regulation, heart rate, and platelet activity. Adenosine therapeutic effects include treatment of the no-reflow phenomenon and paroxysmal supraventricular tachycardia. The production of adenosine involves complex cellular pathways, with extracellular and intracellular synthesis mechanisms. Adenosine's rapid metabolism underscores its short half-life and physiological turnover. Furthermore, adenosine's involvement in side effects of antiplatelet therapy, particularly ticagrelor and cangrelor, highlights its clinical significance. Moreover, adenosine serves as a valuable tool in CAD diagnosis, aiding stress testing modalities and guiding intracoronary physiological assessments. Its use in assessing epicardial stenosis and microvascular dysfunction is pivotal for treatment decisions. Overall, understanding adenosine's mechanisms and clinical implications is essential for optimizing CAD management strategies, encompassing both therapeutic interventions and diagnostic approaches.


Subject(s)
Adenosine , Coronary Artery Disease , Humans , Adenosine/metabolism , Coronary Artery Disease/metabolism , Coronary Artery Disease/drug therapy , Animals , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adenosine Monophosphate/metabolism , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology
4.
BMC Med Genomics ; 17(1): 166, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902747

ABSTRACT

BACKGROUND: Mediators, genomic and epigenomic characteristics involving in metabolism of arachidonic acid by cyclooxygenase (COX) and lipoxygenase (ALOX) and hepatic activation of clopidogrel have been individually suggested as factors associated with resistance against aspirin and clopidogrel. The present multi-center prospective cohort study evaluated whether the mediators, genomic and epigenomic characteristics participating in arachidonic acid metabolism and clopidogrel activation could be factors that improve the prediction of the aspirin and clopidogrel resistance in addition to cardiovascular risks. METHODS: We enrolled 988 patients with transient ischemic attack and ischemic stroke who were evaluated for a recurrence of ischemic stroke to confirm clinical resistance, and measured aspirin (ARU) and P2Y12 reaction units (PRU) using VerifyNow to assess laboratory resistance 12 weeks after aspirin and clopidogrel administration. We investigated whether mediators, genotypes, and promoter methylation of genes involved in COX and ALOX metabolisms and clopidogrel activation could synergistically improve the prediction of ischemic stroke recurrence and the ARU and PRU levels by integrating to the established cardiovascular risk factors. RESULTS: The logistic model to predict the recurrence used thromboxane A synthase 1 (TXAS1, rs41708) A/A genotype and ALOX12 promoter methylation as independent variables, and, improved sensitivity of recurrence prediction from 3.4% before to 13.8% after adding the mediators, genomic and epigenomic variables to the cardiovascular risks. The linear model we used to predict the ARU level included leukotriene B4, COX2 (rs20417) C/G and thromboxane A2 receptor (rs1131882) A/A genotypes with the addition of COX1 and ALOX15 promoter methylations as variables. The linear PRU prediction model included G/A and prostaglandin I receptor (rs4987262) G/A genotypes, COX2 and TXAS1 promoter methylation, as well as cytochrome P450 2C19*2 (rs4244285) A/A, G/A, and *3 (rs4986893) A/A genotypes as variables. The linear models for predicting ARU (r = 0.291, R2 = 0.033, p < 0.01) and PRU (r = 0.503, R2 = 0.210, p < 0.001) levels had improved prediction performance after adding the genomic and epigenomic variables to the cardiovascular risks. CONCLUSIONS: This study demonstrates that different mediators, genomic and epigenomic characteristics of arachidonic acid metabolism and clopidogrel activation synergistically improved the prediction of the aspirin and clopidogrel resistance together with the cardiovascular risk factors. TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov ; Unique identifier: NCT03823274.


Subject(s)
Aspirin , Clopidogrel , Drug Resistance , Humans , Clopidogrel/therapeutic use , Clopidogrel/pharmacology , Male , Female , Aspirin/therapeutic use , Aspirin/pharmacology , Drug Resistance/genetics , Middle Aged , Aged , Epigenomics , Genomics , Prospective Studies , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , DNA Methylation/drug effects
5.
BMC Pharmacol Toxicol ; 25(1): 34, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845014

ABSTRACT

Antiplatelet therapy is an important factor influencing the postterm patency rate of carotid artery stenting (CAS). Clopidogrel is a platelet aggregation inhibitor mediated by the adenosine diphosphate receptor and is affected by CYP2C19 gene polymorphisms in vivo. When the CYP2C19 gene has a nonfunctional mutation, the activity of the encoded enzyme will be weakened or lost, which directly affects the metabolism of clopidogrel and ultimately weakens its antiplatelet aggregation ability. Therefore, based on network pharmacology, analyzing the influence of CYP2C19 gene polymorphisms on the antiplatelet therapeutic effect of clopidogrel after CAS is highly important for the formulation of individualized clinical drug regimens. The effect of the CYP2C19 gene polymorphism on the antiplatelet aggregation of clopidogrel after CAS was analyzed based on network pharmacology. A total of 100 patients with ischemic cerebrovascular disease who were confirmed by the neurology department and required CAS treatment were studied. CYP2C19 genotyping was performed on all patients via a gene chip. All patients were classified into the wild-type (WT) group (*1/*1), heterozygous mutation (HTM) group (CYP2C19*1/*2, CYP2C19*1/*3), and homozygous mutation (HMM) group (CYP2C19*2/*2, CYP2C19*2/*3, and CYP2C19*3/*3). High-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) was used to detect the blood concentration of clopidogrel and the plasma clopidogrel clearance (CL) rate in different groups of patients before and after clopidogrel treatment. The platelet aggregation rate of patients with different genotypes was measured by turbidimetry. The incidences of clopidogrel resistance (CR) and stent thrombosis in different groups after three months of treatment were analyzed. The results showed that among the different CYP2C19 genotypes, patients from the HTM group accounted for the most patients, while patients from the HTM group accounted for the least patients. Similarly, the clopidogrel CL of patients in the HMM group was lower than that of patients in the WT group and HTM group (P < 0.01). The platelet inhibition rate of patients in the HMM group was evidently inferior to that of patients in the WT group and HTM group (P < 0.01). The incidence of CR and stent thrombosis in the WT group was notably lower than that in the HTM and HMM groups (P < 0.01). These results indicate that the CYP2C19 gene can affect CR occurrence and stent thrombosis after CAS by influencing clopidogrel metabolism and platelet count.


Subject(s)
Clopidogrel , Cytochrome P-450 CYP2C19 , Platelet Aggregation Inhibitors , Platelet Aggregation , Stents , Humans , Cytochrome P-450 CYP2C19/genetics , Clopidogrel/therapeutic use , Clopidogrel/pharmacology , Clopidogrel/pharmacokinetics , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/pharmacokinetics , Male , Female , Platelet Aggregation/drug effects , Aged , Middle Aged , Polymorphism, Genetic , Ticlopidine/analogs & derivatives , Ticlopidine/therapeutic use , Ticlopidine/pharmacology , Genotype , Carotid Arteries/drug effects , Carotid Arteries/surgery
6.
PLoS One ; 19(6): e0304800, 2024.
Article in English | MEDLINE | ID: mdl-38924073

ABSTRACT

BACKGROUND: Despite Antiplatelet therapy (APT), cardiovascular patients undergoing revascularisation remain at high risk for thrombotic events. Individual response to APT varies substantially, resulting in insufficient protection from thrombotic events due to high on-treatment platelet reactivity (HTPR) in ≤40% of patients. Individual variation in platelet response impairs APT guidance on a single patient level. Unfortunately, little is known about individual platelet response to APT over time, timing for accurate residual platelet reactivity measurement, or the optimal test to monitor residual platelet reactivity. AIMS: To investigate residual platelet reactivity variability over time in individual patients undergoing carotid endarterectomy (CEA) treated with clopidogrel. METHODS: Platelet reactivity was determined in patients undergoing CEA in a prospective, single-centre, observational study using the VerifyNow (change in turbidity from ADP-induced binding to fibrinogen-coated beads), the VASP assay (quantification of phosphorylation of vasodilator-stimulated phosphoprotein), and a flow-cytometry-based assay (PACT) at four perioperative time points. Genotyping identified slow (CYP2C19*2 and CYP2C19*3) and fast (CYP2C19*17) metabolisers. RESULTS: Between December 2017 and November 2019, 50 patients undergoing CEA were included. Platelet reactivity measured with the VerifyNow (p = < .001) and VASP (p = .029) changed over time, while the PACT did not. The VerifyNow identified patients changing HTRP status after surgery. The VASP identified patients changing HTPR status after eight weeks (p = .018). CYP2C19 genotyping identified 13 slow metabolisers. CONCLUSION: In patients undergoing CEA, perioperative platelet reactivity measurements fluctuate over time with little agreement between platelet reactivity assays. Consequently, HTPR status of individual patients measured with the VerifyNow and VASP assay changed over time. Therefore, generally used perioperative platelet reactivity measurements seem unreliable for adjusting perioperative APT strategy.


Subject(s)
Blood Platelets , Clopidogrel , Endarterectomy, Carotid , Platelet Aggregation Inhibitors , Humans , Male , Female , Aged , Pilot Projects , Blood Platelets/metabolism , Prospective Studies , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Clopidogrel/therapeutic use , Platelet Function Tests/methods , Middle Aged , Perioperative Period , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Vascular Surgical Procedures , Platelet Activation/drug effects , Aged, 80 and over , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/blood , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/blood
7.
J Ethnopharmacol ; 332: 118298, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38714238

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Green tea (Camellia sinensis) is a popular beverage consumed all over the world due to its health benefits. Many of these beneficial effects of green tea are attributed to polyphenols, particularly catechins. AIM OF THE STUDY: The present study focuses on underlying anti-platelet aggregation, anti-thrombotic, and anti-lipidemic molecular mechanisms of green tea in South Indian smokers. MATERIALS AND METHODS: We selected 120 South Indian male volunteers for this study to collect the blood and categorised them into four groups; control group individuals (Controls), smokers, healthy control individuals consuming green tea, and smokers consuming green tea. Smokers group subjects have been smoking an average 16-18 cigarettes per day for the last 7 years or more. The subjects (green tea consumed groups) consumed 100 mL of green tea each time, thrice a day for a one-year period. RESULTS: LC-MS analysis revealed the presence of multiple phytocompounds along with catechins in green tea extract. Increased plasma lipid peroxidation (LPO), protein carbonyls, cholesterol, triglycerides, and LDL-cholesterol with decreased HDL-cholesterol levels were observed in smokers compared to the control group and the consumption of green tea showed beneficial effect. Furthermore, docking studies revealed that natural compounds of green tea had high binding capacity with 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA) when compared to their positive controls, whereas (-) epigallocatechin-3-gallate (EGCG) and (-) epicatechin-gallate (ECG) had high binding capacity with sterol regulatory element-binding transcription factor 1 (SREBP1c). Further, our ex vivo studies showed that green tea extract (GTE) significantly inhibited platelet aggregation and increased thrombolytic activity in a dose dependent manner. CONCLUSION: In conclusion, in smokers, catechins synergistically lowered oxidative stress, platelet aggregation and modified the aberrant lipid profile. Furthermore, molecular docking studies supported green tea catechins' antihyperlipidemic efficacy through strong inhibitory activity on HMG-CoA reductase and SREBP1c. The mitigating effects of green tea on cardiovascular disease risk factors in smokers that have been reported can be attributed majorly to catechins or to their synergistic effects.


Subject(s)
Camellia sinensis , Molecular Docking Simulation , Plant Extracts , Tea , Humans , Male , India , Adult , Camellia sinensis/chemistry , Tea/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Smoking , Middle Aged , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Smokers , Catechin/pharmacology , Catechin/analogs & derivatives , Lipids/blood , Antioxidants/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects
8.
Life Sci ; 350: 122746, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38810792

ABSTRACT

AIMS: Dysregulated platelet aggregation is a fatal condition in many bacterial- and virus-induced diseases. However, classical antithrombotics cannot completely prevent immunothrombosis, due to the unaddressed mechanisms towards inflammation. Thus, targeting platelet hyperactivation together with inflammation might provide new treatment options in diseases, characterized by immunothrombosis, such as COVID-19 and sepsis. The aim of this study was to investigate the antiaggregatory effect and mode of action of 1.8-cineole, a monoterpene derived from the essential oil of eucalyptus leaves, known for its anti-inflammatory proprieties. MAIN METHODS: Platelet activity was monitored by measuring the expression and release of platelet activation markers, i.e., P-selectin, CD63 and CCL5, as well as platelet aggregation, upon treatment with 1.8-cineole and stimulation with several classical stimuli and bacteria. A kinase activity assay was used to elucidate the mode of action, followed by a detailed analysis of the involvement of the adenylyl-cyclase (AC)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway by Western blot and ELISA. KEY FINDINGS: 1.8-cineole prevented the expression and release of platelet activation markers, as well as platelet aggregation, upon induction of aggregation with classical stimuli and immunological agonists. Mechanistically, 1.8- cineole influences the activation of the AC-cAMP-PKA pathway, leading to higher cAMP levels and vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Finally, blocking the adenosine A2A receptor reversed the antithrombotic effect of 1.8-cineole. SIGNIFICANCE: Given the recognized anti-inflammatory attributes of 1.8-cineole, coupled with our findings, 1.8-cineole might emerge as a promising candidate for treating conditions marked by platelet activation and abnormal inflammation.


Subject(s)
Cyclic AMP , Eucalyptol , Platelet Activation , Platelet Aggregation , Receptor, Adenosine A2A , Eucalyptol/pharmacology , Receptor, Adenosine A2A/metabolism , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Humans , Cyclic AMP/metabolism , Blood Platelets/metabolism , Blood Platelets/drug effects , Signal Transduction/drug effects , P-Selectin/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Platelet Aggregation Inhibitors/pharmacology , Anti-Inflammatory Agents/pharmacology , COVID-19/metabolism
9.
Drug Metab Dispos ; 52(7): 654-661, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38729662

ABSTRACT

The delicate balance between ischemic and bleeding risks is a critical factor in antiplatelet therapy administration. Clopidogrel and prasugrel, belonging to the thienopyridine class of antiplatelet drugs, are known for their variability in individual responsiveness and high incidence of bleeding events, respectively. The present study is centered on the development and assessment of a range of deuterated thienopyridine derivatives, leveraging insights from structure-pharmacokinetic relationships of clopidogrel and prasugrel. Our approaches were grounded in the molecular framework of clopidogrel and incorporated the C2-pharmacophore design from prasugrel. The selection of ester or carbamate substituents at the C2-position facilitated the generation of the 2-oxointermediate through hydrolysis, akin to prasugrel, thereby bypassing the issue of CYP2C19 dependency. The bulky C2-pharmacophore in our approach distinguishes itself from prasugrel's acetyloxy substituent by exhibiting a moderated hydrolysis rate, resulting in a more gradual formation of the active metabolite. Excessive and rapid release of the active metabolite, believed to be linked with an elevated risk of bleeding, is thus mitigated. Our proposed structural modification retains the hydrolysis-sensitive methyl ester of clopidogrel but substitutes it with a deuterated methyl group, shown to effectively reduce metabolic deactivation. Three promising compounds demonstrated a pharmacokinetic profile similar to that of clopidogrel at four times the dose, while also augmenting its antiplatelet activity. SIGNIFICANCE STATEMENT: Inspired by the structure-pharmacokinetic relationship of clopidogrel and prasugrel, a range of clopidogrel derivatives were designed, synthesized, and assessed. Among them, three promising compounds have been identified, striking a delicate balance between efficacy and safety for antiplatelet therapy. Additionally, the ozagrel prodrug conjugate was discovered to exert a synergistic therapeutic effect alongside clopidogrel.


Subject(s)
Clopidogrel , Platelet Aggregation Inhibitors , Prasugrel Hydrochloride , Clopidogrel/pharmacokinetics , Clopidogrel/pharmacology , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Humans , Prasugrel Hydrochloride/pharmacokinetics , Prasugrel Hydrochloride/pharmacology , Cytochrome P-450 CYP2C19/metabolism , Structure-Activity Relationship , Activation, Metabolic , Male , Hydrolysis , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects
10.
Food Chem ; 454: 139794, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38797094

ABSTRACT

Sweet potatoes are rich in cardioprotective phytochemicals with potential anti-platelet aggregation activity, although this benefit may vary among cultivars/genotypes. The phenolic profile [HPLC-ESI(-)-qTOF-MS2], cheminformatics (ADMET properties, affinity toward platelet proteins) and anti-PA activity of phenolic-rich hydroalcoholic extracts obtained from orange (OSP) and purple (PSP) sweet potato storage roots, was evaluated. The phenolic richness [Hydroxycinnamic acids> flavonoids> benzoic acids] was PSP > OSP. Their main chlorogenic acids could interact with platelet proteins (integrins/adhesins, kinases/metalloenzymes) but their bioavailability could be poor. Just OSP exhibited a dose-dependent anti-platelet aggregation activity [inductor (IC50, mg.ml-1): thrombin receptor activator peptide-6 (0.55) > Adenosine-5'-diphosphate (1.02) > collagen (1.56)] and reduced P-selectin expression (0.75-1.0 mg.ml-1) but not glycoprotein IIb/IIIa secretion. The explored anti-PA activity of OSP/PSP seems to be inversely related to their phenolic richness. The poor first-pass bioavailability of its chlorogenic acids (documented in silico) may represent a further obstacle for their anti-PA in vivo.


Subject(s)
Ipomoea batatas , Phenols , Plant Extracts , Plant Roots , Platelet Aggregation Inhibitors , Platelet Aggregation , Ipomoea batatas/chemistry , Phenols/chemistry , Platelet Aggregation/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacology , Plant Roots/chemistry , Humans , Cheminformatics , Animals , Blood Platelets/metabolism , Blood Platelets/drug effects
11.
Biomed Khim ; 70(2): 99-108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711409

ABSTRACT

Platelet functional activity was assessed in healthy volunteers (HV, n=92), patients with stable angina pectoris (SA, n=42) and acute coronary syndrome (ACS, n=73), treated with acetylsalicylic acid (ASA) + clopidogrel and ASA + ticagrelor, respectively. In all HV and patients we have compared parameters of platelet aggregation (maximum light transmission and velocity, Tmax and Vmax) and parameters, characterizing exposure of platelet activation markers, evaluated by flow cytometry. HV platelets were activated by 10 µM, 1 µM TRAP, and 20 µM, 5 µM, 2.5 µM ADP; patient platelets were activated by 10 µM TRAP and by 20 µM and 5 µM ADP. Strong and significant correlations between the aggregation and flow cytometry parameters (the r correlation coefficient from 0.4 up to >0.6) most frequently were registered in HV platelet during activation by 1 µM TRAP and in SA patients during platelet activation by 20 µM and 5 µM ADP. However, in many other cases these correlations were rather weak (r < 0.3) and sometimes statistically insignificant. In HV the differences in PAC-1 binding parameters between platelets activated by 10 µM TRAP (the strongest agonist) and all ADP concentrations were negligible (≤ 10%), while CD62P binding (at all ADP concentrations) and LTA parameters for (5 µM and 2.5 µM ADP) were significantly lower (by 40-60%). Antiplatelet therapy in patients decreased all parameters as compared to HV, but to varying extents. For 10 µM TRAP the MFI index for PAC-1 binding (40-50% decrease) and for both ADP concentrations the Tmax values (60-85% decrease) appeared to be the most sensitive in comparison with the other parameters that decreased to a lesser extent. The data obtained indicate a possibility of inconsistency between different LTA and flow cytometry parameters in assessing platelet activity and efficacy of antiplatelet drugs.


Subject(s)
Acute Coronary Syndrome , Aspirin , Blood Platelets , Clopidogrel , Flow Cytometry , Platelet Aggregation Inhibitors , Platelet Aggregation , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Male , Aspirin/pharmacology , Aspirin/therapeutic use , Female , Blood Platelets/drug effects , Blood Platelets/metabolism , Middle Aged , Clopidogrel/pharmacology , Aged , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/blood , Adult , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Platelet Function Tests/methods , Platelet Activation/drug effects , Angina, Stable/drug therapy , Angina, Stable/blood , Adenosine Diphosphate/pharmacology
12.
BMC Complement Med Ther ; 24(1): 183, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704537

ABSTRACT

BACKGROUND: Highlighting affordable alternative crops that are rich in bioactive phytoconstituents is essential for advancing nutrition and ensuring food security. Amaranthus blitum L. (AB) stands out as one such crop with a traditional history of being used to treat intestinal disorders, roundworm infections, and hemorrhage. This study aimed to evaluate the anthelmintic and hematologic activities across various extracts of AB and investigate the phytoconstituents responsible for these activities. METHODS: In vitro anthelmintic activity against Trichinella spiralis was evaluated in terms of larval viability reduction. The anti-platelet activities were assessed based on the inhibitory effect against induced platelet aggregation. Further, effects on the extrinsic pathway, the intrinsic pathway, and the ultimate common stage of blood coagulation, were monitored through measuring blood coagulation parameters: prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT), respectively. The structures of isolated compounds were elucidated by spectroscopic analysis. RESULTS: Interestingly, a previously undescribed compound (19), N-(cis-p-coumaroyl)-ʟ-tryptophan, was isolated and identified along with 21 known compounds. Significant in vitro larvicidal activities were demonstrated by the investigated AB extracts at 1 mg/mL. Among tested compounds, compound 18 (rutin) displayed the highest larvicidal activity. Moreover, compounds 19 and 20 (N-(trans-p-coumaroyl)-ʟ-tryptophan) induced complete larval death within 48 h. The crude extract exhibited the minimal platelet aggregation of 43.42 ± 11.69%, compared with 76.22 ± 14.34% in the control plasma. Additionally, the crude extract and two compounds 19 and 20 significantly inhibited the extrinsic coagulation pathway. CONCLUSIONS: These findings extend awareness about the nutritional value of AB as a food, with thrombosis-preventing capabilities and introducing a promising source for new anthelmintic and anticoagulant agents.


Subject(s)
Amaranthus , Anthelmintics , Anticoagulants , Phytochemicals , Plant Extracts , Platelet Aggregation Inhibitors , Animals , Anthelmintics/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Anticoagulants/pharmacology , Larva/drug effects
13.
Dokl Biochem Biophys ; 516(1): 83-92, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700818

ABSTRACT

Oxidative stress plays a crucial role in the pathogenesis of peripheral artery disease (PAD). This study aimed to investigate the effect of clopidogrel on oxidative stress in PAD patients. Seventy subjects were divided into three groups: PAD patients before treatment (B-PAD), PAD patients after treatment with clopidogrel (A-PAD), and healthy controls. Serum levels of superoxide dismutase (SOD), copper (Cu), zinc (Zn), manganese (Mn), and oxidized protein were measured. SOD activities were also determined. The results showed that SOD activities, and SOD specific activities were significantly decreased in PAD patients compared to healthy individuals. After treatment with clopidogrel, SOD activities, and SOD specific activities were continuously decrease in PAD patients. The SOD and oxidized protein concentrations were significantly increased in PAD patients compared to healthy individuals. After treatment with clopidogrel, the oxidized protein concentration was significantly decreased, while SOD concentration was significantly increased in PAD patients. These findings suggest that the treatment by clopidogrel stimulated the production of the enzyme but the ratio of active enzyme remained low. The decrease in oxidized protein can be explained by the treatment having antioxidant efficacy that may have compensated for the deficiency in enzyme activity and led to a decrease in oxidized protein. Additionally, the results of this study provide promising evidence that oxidative stress biomarkers including SOD concentration, T-SOD activity, Mn-SOD activity, and oxidized protein levels have potential utility in the diagnosis and management of PAD.


Subject(s)
Clopidogrel , Oxidative Stress , Peripheral Arterial Disease , Superoxide Dismutase , Humans , Clopidogrel/therapeutic use , Clopidogrel/pharmacology , Superoxide Dismutase/blood , Superoxide Dismutase/metabolism , Peripheral Arterial Disease/drug therapy , Peripheral Arterial Disease/blood , Peripheral Arterial Disease/metabolism , Male , Female , Middle Aged , Oxidative Stress/drug effects , Aged , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use
14.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732081

ABSTRACT

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.


Subject(s)
Blood Platelets , Flavonoids , Platelet Activation , Platelet Aggregation Inhibitors , Reactive Oxygen Species , Flavonoids/pharmacology , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Activation/drug effects , Blood Platelets/metabolism , Blood Platelets/drug effects , Reactive Oxygen Species/metabolism , Apigenin/pharmacology , Quercetin/pharmacology , Luteolin/pharmacology , Signal Transduction/drug effects , Kaempferols/pharmacology , Thrombin/metabolism , Flavanones
15.
J Feline Med Surg ; 26(4): 1098612X241241404, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38682957

ABSTRACT

OBJECTIVES: Clopidogrel is the recommended first-line antithrombotic in cats for a variety of conditions; however, it is ineffective in 15-20% of cats. The determination of clopidogrel effectiveness with platelet function assays has historically been limited to specialty centers; however, recent work has suggested that in-hospital or shipped analyses of samples may be feasible. The aim of the present study was to investigate the utility of an in-house analysis and shipping of blood samples collected in primary practices for the determination of clopidogrel effectiveness. METHODS: Citrated blood samples were collected from cats receiving clopidogrel therapy by veterinarians in clinical practices across Canada, a median of 304.4 km from the reference laboratory (range 8-4425). Samples were analyzed in-house using Plateletworks ADP and shipped for remote analysis using PFA-200 P2Y and COL/ADP cartridges. RESULTS: A total of 30 samples were collected from 25 cats. Of these, the percentage of samples analyzable for the presence or absence of the clopidogrel effect was 86% for Plateletworks ADP, 90% for PFA-200 P2Y and 87% for PFA-200 COL/ADP. There was no significant difference in the number of samples unable to be analyzed by each modality (P = 0.689) due to flow obstruction or other sample characteristics. The prevalence of absence of clopidogrel effectiveness on platelet function assays was 8% with the PFA-200 COL/ADP assay, 25% with the PFA-200 P2Y assay and 30% with the Plateletworks ADP assay. CONCLUSIONS AND RELEVANCE: The results of this study confirm that samples of feline blood can be collected in clinical practices and shipped to a reference laboratory for PFA-200 analysis with a high rate of success, comparable to point-of-care analysis.


Subject(s)
Clopidogrel , Platelet Function Tests , Animals , Cats , Cat Diseases/blood , Cat Diseases/drug therapy , Clopidogrel/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Platelet Function Tests/veterinary , Point-of-Care Systems
16.
Pathol Res Pract ; 257: 155290, 2024 May.
Article in English | MEDLINE | ID: mdl-38640781

ABSTRACT

The intricate relationship between smoking and the effects of the antiplatelet drug clopidogrel has been termed the "smoker's paradox". This paradox details the enhanced efficacy of clopidogrel in smokers compared to non-smokers. This review begins with an exploration of the proposed mechanisms of the smoker's paradox, particularly drawing attention to the induction of cytochrome P450 (CYP) isoenzymes via tobacco smoke, specifically the enzymes CYP1A2 and CYP2C19. Moreover, an investigation of the effects of genetic variability on the smoker's paradox was undertaken from both clinical and molecular perspectives, delving into the effects of ethnicity and genetic polymorphisms. The intriguing role of CYP1A2 genotypes and the response to clopidogrel in smoking and non-smoking populations was examined conferring insight into the individuality rather than universality of the smoker's paradox. CYP1A2 induction is hypothesised to elucidate the potency of smoking in exerting a counteracting effect in those taking clopidogrel who possess CYP2C19 loss of function polymorphisms. Furthermore, we assess the comparative efficacies of clopidogrel and other antiplatelet agents, namely prasugrel and ticagrelor. Studies indicated that prasugrel and ticagrelor provided a more consistent effect and further reduced platelet reactivity compared to clopidogrel within both smoking and non-smoking populations. Personalised dosing was another focus of the review considering patient comorbidities, genetic makeup, and smoking status with the objective of improving the antiplatelet response of those taking clopidogrel. In summation, this review provides insight into multiple areas of research concerning clopidogrel and the smoker's paradox taking into account proposed mechanisms, genetics, other antiplatelet agents, and personalised dosing.


Subject(s)
Clopidogrel , Platelet Aggregation Inhibitors , Smoking , Humans , Clopidogrel/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Smoking/adverse effects , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Smokers , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism
17.
Eur J Intern Med ; 124: 32-34, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582734

ABSTRACT

Complement-stimulated neutrophils are able to adhere to the endothelium and damage endothelial cells both in vitro and in vivo. These blood cells participate in the early stages, growth and complications of atherosclerotic plaques. Recent findings, based on mendelian randomization analysis, support the concept that high neutrophil counts are a causal risk factor for ischemic heart disease and myocardial infarction . Clopidogrel decreases leukocyte count and inflammatory markers in patients with acute coronary syndromes; this off-target effect, which is independent of the antiplatelet action, may help explaining secondary prevention data showing a superiority of clopidogrel over aspirin in reducing new cardiovascular events.


Subject(s)
Acute Coronary Syndrome , Clopidogrel , Neutrophils , Platelet Aggregation Inhibitors , Clopidogrel/therapeutic use , Humans , Neutrophils/drug effects , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Leukocyte Count , Acute Coronary Syndrome/drug therapy , Aspirin/therapeutic use , Ticlopidine/analogs & derivatives , Ticlopidine/therapeutic use , Mendelian Randomization Analysis , Myocardial Infarction
18.
Redox Biol ; 72: 103142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581860

ABSTRACT

Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.


Subject(s)
Blood Platelets , Hydroquinones , Membrane Potential, Mitochondrial , Mitochondria , Organophosphorus Compounds , Platelet Aggregation Inhibitors , Reactive Oxygen Species , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Hydroquinones/pharmacology , Hydroquinones/chemistry , Blood Platelets/metabolism , Blood Platelets/drug effects , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/chemistry , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Platelet Aggregation/drug effects , Platelet Activation/drug effects , Oxidative Phosphorylation/drug effects
19.
Int J Cardiol ; 406: 132073, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38643804

ABSTRACT

BACKGROUND: Platelet P2Y12 antagonist ticagrelor reduces cardiovascular mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets release proatherogenic and proinflammatory microRNAs, including miR-125a, miR-125b and miR-223, we hypothesized that the expression of these miRNAs is lower on ticagrelor, compared to clopidogrel. OBJECTIVES: We compared miR-125a, miR-125b and miR-223 expression in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS: After percutaneous coronary intervention on acetylsalicylic acid and clopidogrel, 60 patients with first AMI were randomized to switch to ticagrelor or to continue with clopidogrel. Plasma expression of miR-223, miR-125a-5p, miR-125b was measured using quantitative polymerase chain reaction at baseline and after 72 h and 6 months of treatment with ticagrelor or clopidogrel in patients and one in 30 healthy volunteers. Multiple electrode aggregometry using ADP test was used to determine platelet reactivity in response to P2Y12 inhibitors. RESULTS: Expression of miR-125b was higher in patients with AMI 72 h and 6 months, compared to healthy volunteers (p = 0.001), whereas expression of miR-125a-5p and miR-223 were comparable. In patients randomized to ticagrelor, expression of miR-125b decreased at 72 h (p = 0.007) and increased back to baseline at 6 months (p = 0.005). Expression of miR-125a-5p and miR-223 was not affected by the switch from clopidogrel to ticagrelor. CONCLUSIONS: Ticagrelor treatment leads to lower plasma expression of miR-125b after AMI, compared to clopidogrel. Higher expression of miR-125b might explain recurrent thrombotic events and worse clinical outcomes in patients treated with clopidogrel, compared to ticagrelor.


Subject(s)
Clopidogrel , Down-Regulation , MicroRNAs , Ticagrelor , Humans , Clopidogrel/pharmacology , Clopidogrel/therapeutic use , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , MicroRNAs/blood , MicroRNAs/biosynthesis , MicroRNAs/genetics , Male , Female , Middle Aged , Aged , Down-Regulation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/blood , Myocardial Infarction/genetics , Percutaneous Coronary Intervention , Adenosine/analogs & derivatives , Adenosine/therapeutic use , Ticlopidine/analogs & derivatives , Ticlopidine/pharmacology , Ticlopidine/therapeutic use
20.
Arterioscler Thromb Vasc Biol ; 44(6): 1283-1301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572646

ABSTRACT

BACKGROUND: Glycoursodeoxycholic acid (GUDCA) has been acknowledged for its ability to regulate lipid homeostasis and provide benefits for various metabolic disorders. However, the impact of GUDCA on arterial thrombotic events remains unexplored. The objective of this study is to examine the effects of GUDCA on thrombogenesis and elucidate its underlying mechanisms. METHODS: Plasma samples from patients with arterial thrombotic events and diet-induced obese mice were collected to determine the GUDCA concentrations using mass spectrometry. Multiple in vivo murine thrombosis models and in vitro platelet functional assays were conducted to comprehensively evaluate the antithrombotic effects of GUDCA. Moreover, lipidomic analysis was performed to identify the alterations of intraplatelet lipid components following GUDCA treatment. RESULTS: Plasma GUDCA level was significantly decreased in patients with arterial thrombotic events and negatively correlated with thrombotic propensity in diet-induced obese mice. GUDCA exhibited prominent suppressing effects on platelet reactivity as evidenced by the attenuation of platelet activation, secretion, aggregation, spreading, and retraction (P<0.05). In vivo, GUDCA administration robustly alleviated thrombogenesis (P<0.05) without affecting hemostasis. Mechanistically, GUDCA inhibited DGK (diacylglycerol kinase) activity, leading to the downregulation of the phosphatidic acid-mediated signaling pathway. Conversely, phosphatidic acid supplementation was sufficient to abolish the antithrombotic effects of GUDCA. More importantly, long-term oral administration of GUDCA normalized the enhanced DGK activity, thereby remarkably alleviating the platelet hyperreactivity as well as the heightened thrombotic tendency in diet-induced obese mice (P<0.05). CONCLUSIONS: Our study implicated that GUDCA reduces platelet hyperreactivity and improves thrombotic propensity by inhibiting DGKs activity, which is a potentially effective prophylactic approach and promising therapeutic agent for arterial thrombotic events.


Subject(s)
Blood Platelets , Diacylglycerol Kinase , Disease Models, Animal , Mice, Inbred C57BL , Thrombosis , Animals , Blood Platelets/drug effects , Blood Platelets/enzymology , Blood Platelets/metabolism , Thrombosis/prevention & control , Thrombosis/blood , Thrombosis/enzymology , Thrombosis/drug therapy , Humans , Male , Diacylglycerol Kinase/antagonists & inhibitors , Diacylglycerol Kinase/metabolism , Mice , Platelet Activation/drug effects , Female , Platelet Aggregation/drug effects , Signal Transduction/drug effects , Middle Aged , Fibrinolytic Agents/pharmacology , Case-Control Studies , Mice, Obese , Obesity/drug therapy , Obesity/enzymology , Obesity/blood , Platelet Aggregation Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...