Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 14(6): e0217684, 2019.
Article in English | MEDLINE | ID: mdl-31170201

ABSTRACT

Clara cells are the main airway secretory cells able to regenerate epithelium in the distal airways through transdifferentiating into goblet cells, a process under negative regulation of the Notch pathway. Pneumocystis is a highly prevalent fungus in humans occurring between 2 and 5 months of age, a period when airways are still developing and respiratory morbidity typically increases. Pneumocystis induces mucus hyperproduction in immunocompetent host airways and whether it can stimulate Clara cells is unknown. Markers of Clara cell secretion and Notch1 activation were investigated in lungs of immunocompetent rats at 40, 60, and 80 days of age during Pneumocystis primary infection with and without Valproic acid (VPA), a Notch inducer. The proportion of rats expressing mucin increased in Pneumocystis-infected rats respect to controls at 60 and 80 days of age. Frequency of distal airways Clara cells was maintained while mRNA levels for the mucin-encoding genes Muc5B and Muc5ac in lung homogenates increased 1.9 and 3.9 times at 60 days of infection (P. = 0.1609 and P. = 0.0001, respectively) and protein levels of the Clara cell marker CC10 decreased in the Pneumocystis-infected rats at 60 and 80 days of age (P. = 0.0118 & P. = 0.0388). CC10 and Muc5b co-localized in distal airway epithelium of Pneumocystis-infected rats at day 60. Co-localization of Muc5b and Ki67 as marker of mitosis in distal airways was not observed suggesting that Muc5b production by Clara cells was independent of mitosis. Notch levels remained similar and no transnucleation of activated Notch associated to Pneumocystis infection was detected. Unexpectedly, mucus was greatly increased at day 80 in Pneumocystis-infected rats receiving VPA suggesting that a Notch-independent mechanism was triggered. Overall, data suggests a Clara to goblet cell transdifferentiation mechanism induced by Pneumocystis and independent of Notch.


Subject(s)
Lung/metabolism , Lung/microbiology , Mucin 5AC/biosynthesis , Mucin-5B/biosynthesis , Pneumocystis Infections/metabolism , Pneumocystis Infections/microbiology , Pneumocystis/pathogenicity , Receptors, Notch/metabolism , Animals , Cell Transdifferentiation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Ki-67 Antigen/metabolism , Mitosis/drug effects , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucin-5B/genetics , Mucin-5B/metabolism , Pneumocystis/drug effects , Pneumocystis Infections/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Signal Transduction , Uteroglobin/metabolism , Valproic Acid/pharmacology
2.
Antimicrob Agents Chemother ; 41(7): 1428-32, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9210660

ABSTRACT

Detailed analysis of the endogenous sterol content of purified Pneumocystis carinii preparations by gas-liquid chromatography coupled to mass spectrometry suggested that this parasite can both synthesize de novo steroid skeletons (to produce delta7 sterols) and take them from the infected host (leading to delta5 sterols). In both cases the final products are 24-alkyl sterols, resulting from the action of delta24(25) and delta24(24') sterol methyltransferases, enzymes not present in vertebrates. To investigate the physiological significance of these sterols, cultures of P. carinii in embryonic lung cells were exposed to 22,26-azasterol (20-piperidin-2-yl-5alpha-pregnan-3beta-20(R)-diol), a compound previously shown to inhibit both enzymes and to halt cell proliferation in fungi and protozoa. This compound produced a dose-dependent reduction in the parasite proliferation, with a 50% inhibitory concentration of 0.3 microM and 80% reduction of growth after 96 h at 10 microM. Correspondingly, parasites treated with the azasterol at 10 microM for 48 h accumulated 24-desalkyl sterols such as zymosterol (cholesta-8,24-dien-3beta-ol) and cholesta-8,14,24-trien-3beta-ol to ca. 40% of the total mass of endogenous sterols. This is the first report on the antiproliferative effects of a sterol biosynthesis inhibitor on P. carinii and indicate that sterol methyltransferase inhibitors could be the basis of a novel and specific chemotherapeutic approach to the treatment of P. carinii infections.


Subject(s)
Enzyme Inhibitors/pharmacology , Methyltransferases/antagonists & inhibitors , Pneumocystis/drug effects , Sterols/biosynthesis , Alkylation , Cell Division/drug effects , Cell Line , Cholestanol/analogs & derivatives , Cholestanol/pharmacology , Humans , Lung/cytology , Lung/drug effects , Lung/metabolism , Pneumocystis/metabolism
3.
Antimicrob Agents Chemother ; 41(1): 162-8, 1997 Jan.
Article in English | MEDLINE | ID: mdl-8980773

ABSTRACT

Several pathogenic fungi and protozoa are known to have sterols distinct from those of their mammalian hosts. Of particular interest as targets for drug development are the biosyntheses of the sterols of important parasites such as the kinetoplastid flagellates and the AIDS-associated opportunistic protist Pneumocystis carinii. These pathogens synthesize sterols with an alkyl group at C-24, and some have a double bond at C-22 of the side chain. Humans and other mammalian hosts are incapable of C-24 alkylation and C-22 desaturation. In the present study, three steroidal compounds with side chains substituted by phosphonyl-linked groups were synthesized and tested for their effects on Leishmania donovani and L. mexicana mexicana culture growth. The compounds inhibited organism proliferation at concentrations in micrograms per milliliter. The most potent inhibitors of this group of compounds were characterized by two ethyl groups at the phosphate function. Leishmania organisms treated with 17-[2-(diethylphosphonato) ethylidienyl]3-methoxy-19-norpregna-1,3,5-triene exhibited reduced growth after transfer into inhibitor-free medium. Because there are currently no axenic methods available for the continuous subcultivation of P. carinii, the effects of these drugs on this organism were evaluated by two alternative screening methods. The same two diethyl phosphonosteroid compounds that inhibited Leishmania proliferation were also the most active against P. carinii as determined by the potent effect they had on reducing cellular ATP content. Cystic as well as trophic forms responded to the drug treatments, as evaluated by a dual fluorescent staining live-dead assay. Other modifications of steroidal phosphonates may lead to the development of related drugs with increased activity and specificity for the pathogens.


Subject(s)
Leishmania donovani/drug effects , Leishmania mexicana/drug effects , Organophosphonates/pharmacology , Pneumocystis/drug effects , Steroids/pharmacology , Adenosine Triphosphate/analysis , Animals , Colony Count, Microbial , Esters/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL