Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.656
Filter
1.
J Med Case Rep ; 18(1): 320, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003491

ABSTRACT

BACKGROUND: Metastatic brain abscesses caused by Klebsiella pneumoniae are extremely rare but life-threatening conditions. To depict a unique case of the middle-aged hypertensive man with an unusual presentation of metastatic brain abscesses originating from a pleural abscess caused by Klebsiella pneumoniae and subsequently leading to loss of consciousness (LOC). CASE REPORT: A 52-year-old Iranian man with a history of hypertension presented to the emergency department with a five-day history of worsening cough, high-grade fever, shortness of breath, chest pain, fatigue, and a productive cough. Laboratory tests revealed leukocytosis, elevated C-reactive protein, and respiratory alkalosis. A chest computed tomography scan confirmed pneumonia, and a brain scan revealed multiple hypodense lesions. Despite antibiotic therapy, the patient's condition worsened, leading to confusion, disorientation, and loss of consciousness. Magnetic resonance imaging revealed multiple ring-enhancing lesions, suggesting an abscess formation. Bronchial washings and BAL samples confirmed a lower respiratory tract infection. Cultures from the bronchial washings grew Klebsiella pneumoniae. CONCLUSIONS: Metastatic brain abscesses caused by Klebsiella pneumoniae are exceedingly rare but life-threatening conditions. Timely diagnosis and effective antimicrobial treatment are critical for patient outcomes. This case underscores the significance of recognizing atypical presentations of bacterial infections, as early detection and appropriate management can significantly impact patient outcomes.


Subject(s)
Anti-Bacterial Agents , Brain Abscess , Klebsiella Infections , Klebsiella pneumoniae , Humans , Male , Middle Aged , Klebsiella pneumoniae/isolation & purification , Klebsiella Infections/diagnosis , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Brain Abscess/microbiology , Brain Abscess/drug therapy , Brain Abscess/diagnostic imaging , Anti-Bacterial Agents/therapeutic use , Tomography, X-Ray Computed , Magnetic Resonance Imaging , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/complications , Unconsciousness/etiology
2.
PLoS One ; 19(7): e0307079, 2024.
Article in English | MEDLINE | ID: mdl-39012882

ABSTRACT

BACKGROUND: Most of the current bacteriophages (phages) are mostly isolated from environments. However, phages isolated from feces might be more specific to the bacteria that are harmful to the host. Meanwhile, some phages from the environment might affect non-pathogenic bacteria for the host. METHODS: Here, bacteriophages isolated from mouse feces were intratracheally (IT) or intravenously (IV) administered in pneumonia mice caused by Pseudomonas aeruginosa at 2 hours post-intratracheal bacterial administration. As such, the mice with phage treatment, using either IT or IV administration, demonstrated less severe pneumonia as indicated by mortality, serum cytokines, bacteremia, bacterial abundance in bronchoalveolar lavage fluid (BALF), and neutrophil extracellular traps (NETs) in lung tissue (immunofluorescence of neutrophil elastase and myeloperoxidase). RESULTS: Interestingly, the abundance of phages in BALF from the IT and IV injections was similar, supporting a flexible route of phage administration. With the incubation of bacteria with neutrophils, the presence of bacteriophages significantly improved bactericidal activity, but not NETs formation, with the elevated supernatant IL-6 and TNF-α, but not IL-1ß. In conclusion, our findings suggest that bacteriophages against Pseudomonas aeruginosa can be discovered from feces of the host. CONCLUSIONS: The phages attenuate pneumonia partly through an enhanced neutrophil bactericidal activity, but not via inducing NETs formation. The isolation of phages from the infected hosts themselves might be practically useful for future treatment. More studies are warranted.


Subject(s)
Feces , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/virology , Feces/microbiology , Feces/virology , Mice , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , Neutrophils/immunology , Bacteriophages/isolation & purification , Bacteriophages/physiology , Extracellular Traps , Pneumonia/microbiology , Pneumonia/therapy , Pneumonia/virology , Cytokines/metabolism , Cytokines/blood , Phage Therapy/methods , Female , Lung/microbiology , Lung/virology , Pneumonia, Bacterial/therapy , Pneumonia, Bacterial/microbiology
3.
BMC Pulm Med ; 24(1): 279, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867173

ABSTRACT

BACKGROUND: Legionella pneumonia is one of the most severe types of atypical pneumonia, impairing multiple organ systems, posing a threat to life. Diagnosing Legionella pneumonia is challenging due to difficulties in culturing the bacteria and limitations in immunoassay sensitivity and specificity. CASE PRESENTATION: This paper reports a rare case of sepsis caused by combined infection with Legionella pneumophila and Fusobacterium necrophorum, leading to respiratory failure, acute kidney injury, acute liver injury, myocardial damage, and electrolyte disorders. In addition, we systematically reviewed literature on patients with combined Legionella infections, analyzing their clinical features, laboratory results and diagnosis. CONCLUSIONS: For pathogens that require prolonged incubation periods and are less sensitive to conventional culturing methods, metagenomic next-generation sequencing (mNGS) can be a powerful supplement to pathogen screening and plays a significant role in the auxiliary diagnosis of complex infectious diseases.


Subject(s)
Coinfection , Fusobacterium Infections , Fusobacterium necrophorum , High-Throughput Nucleotide Sequencing , Legionella pneumophila , Legionnaires' Disease , Humans , Legionella pneumophila/genetics , Legionella pneumophila/isolation & purification , Legionnaires' Disease/diagnosis , Legionnaires' Disease/microbiology , Fusobacterium Infections/diagnosis , Fusobacterium Infections/microbiology , Fusobacterium Infections/complications , Fusobacterium necrophorum/isolation & purification , Fusobacterium necrophorum/genetics , Coinfection/diagnosis , Coinfection/microbiology , Metagenomics/methods , Male , Middle Aged , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis
4.
J Infect Dev Ctries ; 18(5): 834-838, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38865398

ABSTRACT

INTRODUCTION: Q fever, a zoonotic disease caused by Coxiella burnetii (C. burnetii), presents diagnostic challenges due to its clinical and radiological nonspecificity, which often mimics community-acquired pneumonia, coupled with the limitations of traditional diagnostic methods. Metagenomic next-generation sequencing (mNGS) has become an indispensable tool in clinical diagnostics for its high-throughput pathogen identification capabilities. Herein, we detail a case of acute Q fever pneumonia diagnosed with mNGS. CASE PRESENTATION: The patient exhibited symptoms of fever, cough, expectoration, and diarrhea for three days, with the pathogen undetected in initial laboratory assessments. Bronchoscopy and bronchoalveolar lavage (BAL) were conducted, leading to the identification of C. burnetii in the lavage fluid via mNGS. Consequently, the patient was promptly initiated on a treatment regimen of 100 mg doxycycline, administered orally every 12 hours. RESULTS: Post-treatment, the patient's temperature normalized, and a full recovery was observed. The follow-up chest CT scan revealed complete resolution of the right lower lobe consolidation. CONCLUSIONS: The clinical presentation of Q fever pneumonia lacks specificity, making diagnosis based solely on symptoms and imaging challenging. mNGS offers a superior alternative for identifying elusive or rarely cultured pathogens.


Subject(s)
Coxiella burnetii , High-Throughput Nucleotide Sequencing , Metagenomics , Q Fever , Humans , Q Fever/diagnosis , Q Fever/drug therapy , Q Fever/microbiology , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Metagenomics/methods , Male , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/drug therapy , Anti-Bacterial Agents/therapeutic use , Doxycycline/therapeutic use , Bronchoalveolar Lavage Fluid/microbiology , Middle Aged , Tomography, X-Ray Computed
5.
Am J Trop Med Hyg ; 111(1): 136-140, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38834085

ABSTRACT

Acinetobacter baumannii (Ab) is a well-known nosocomial pathogen that has emerged as a cause of community-acquired pneumonia (CAP) in tropical regions. Few global epidemiological studies of CAP-Ab have been published to date, and no data are available on this disease in France. We conducted a retrospective chart review of severe cases of CAP-Ab admitted to intensive care units in Réunion University Hospital between October 2014 and October 2022. Eight severe CAP-Ab cases were reviewed. Median patient age was 56.5 years. Sex ratio (male-to-female) was 3:1. Six cases (75.0%) occurred during the rainy season. Chronic alcohol use and smoking were found in 75.0% and 87.5% of cases, respectively. All patients presented in septic shock and with severe acute respiratory distress syndrome. Seven patients (87.5%) presented in cardiogenic shock, and renal replacement therapy was required for six patients (75.0%). Five cases (62.5%) presented with bacteremic pneumonia. The mortality rate was 62.5%. The median time from hospital admission to death was 3 days. All patients received inappropriate initial antibiotic therapy. Acinetobacter baumannii isolates were all susceptible to ceftazidime, cefepime, piperacillin-tazobactam, ciprofloxacin, gentamicin, and imipenem. Six isolates (75%) were also susceptible to ticarcillin, piperacillin, and cotrimoxazole. Severe CAP-Ab has a fulminant course and high mortality. A typical case is a middle-aged man with smoking and chronic alcohol use living in a tropical region and developing severe CAP during the rainy season. This clinical presentation should prompt administration of antibiotic therapy targeting Ab.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Community-Acquired Infections , Humans , Male , Middle Aged , Female , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Community-Acquired Infections/drug therapy , Reunion/epidemiology , Acinetobacter Infections/epidemiology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Aged , Retrospective Studies , Adult , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/drug therapy , Shock, Septic/microbiology , Shock, Septic/epidemiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/microbiology
6.
Front Cell Infect Microbiol ; 14: 1382755, 2024.
Article in English | MEDLINE | ID: mdl-38836058

ABSTRACT

Introduction: Pneumonia is a common infection in the intensive care unit (ICU), and gram-negative bacilli are the most common bacterial cause. The purpose of the study was to investigate the risk factors for 30-day mortality in patients with gram-negative bacillary pneumonia in the ICU, construct a predictive model, and stratify patients based on risk to assess their short-term survival. Methods: Patients admitted to the ICU with gram-negative bacillary pneumonia at Fujian Medical University Affiliated First Hospital between January 2018 and September 2020 were selected. Patients were divided into deceased and survivor groups based on whether death occurred within 30 days. Multifactorial logistic regression analysis was used to identify independent risk factors for 30-day mortality in these patients, and a predictive nomogram model was constructed based on these factors. Patients were categorized into low-, medium-, and high-risk groups according to the model's predicted probability, and Kaplan-Meier survival curves were plotted to assess short-term survival. Results: The study included 305 patients. Lactic acid (odds ratio [OR], 1.524, 95% CI: 1.057-2.197), tracheal intubation (OR: 4.202, 95% CI: 1.092-16.169), and acute kidney injury (OR:4.776, 95% CI: 1.632-13.978) were identified as independent risk factors for 30-day mortality. A nomogram prediction model was established based on these three factors. Internal validation of the model showed a Hosmer-Lemeshow test result of X2=5.770, P=0.834, and an area under the ROC curve of 0.791 (95% CI: 0.688-0.893). Bootstrap resampling of the original data 1000 times yielded a C-index of 0.791, and a decision curve analysis indicated a high net benefit when the threshold probability was between 15%-90%. The survival time for low-, medium-, and high-risk patients was 30 (30, 30), 30 (16.5, 30), and 17 (11, 27) days, respectively, which were significantly different. Conclusion: Lactic acid, tracheal intubation, and acute kidney injury were independent risk factors for 30-day mortality in patients in the ICU with gram-negative bacillary pneumonia. The predictive model constructed based on these factors showed good predictive performance and helped assess short-term survival, facilitating early intervention and treatment.


Subject(s)
Intensive Care Units , Pneumonia, Bacterial , Humans , Male , Female , Middle Aged , Risk Factors , Aged , Pneumonia, Bacterial/mortality , Pneumonia, Bacterial/microbiology , Risk Assessment , Gram-Negative Bacterial Infections/mortality , Gram-Negative Bacterial Infections/microbiology , Nomograms , Retrospective Studies , Kaplan-Meier Estimate , ROC Curve , Prognosis , Adult
7.
BMC Infect Dis ; 24(1): 622, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910264

ABSTRACT

BACKGROUND: Respiratory infections have long been recognized as a primary cause of acute exacerbation of chronic obstructive pulmonary disease (AE-COPD). Additionally, the emergence of antimicrobial resistance has led to an urgent and critical situation in developing countries, including Vietnam. This study aimed to investigate the distribution and antimicrobial resistance of bacteria in patients with AE-COPD using both conventional culture and multiplex real-time PCR. Additionally, associations between clinical characteristics and indicators of pneumonia in these patients were examined. METHODS: This cross-sectional prospective study included 92 AE-COPD patients with pneumonia and 46 without pneumonia. Sputum specimens were cultured and examined for bacterial identification, and antimicrobial susceptibility was determined for each isolate. Multiplex real-time PCR was also performed to detect ten bacteria and seven viruses. RESULTS: The detection rates of pathogens in AE-COPD patients with pneumonia were 92.39%, compared to 86.96% in those without pneumonia. A total of 26 pathogenic species were identified, showing no significant difference in distribution between the two groups. The predominant bacteria included Klebsiella pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae, followed by Acinetobacter baumannii and Streptococcus mitis. There was a slight difference in antibiotic resistance between bacteria isolated from two groups. The frequency of H. influenzae was notably greater in AE-COPD patients who experienced respiratory failure (21.92%) than in those who did not (9.23%). S. pneumoniae was more common in patients with stage I (44.44%) or IV (36.36%) COPD than in patients with stage II (17.39%) or III (9.72%) disease. ROC curve analysis revealed that C-reactive protein (CRP) levels could distinguish patients with AE-COPD with and without pneumonia (AUC = 0.78). CONCLUSION: Gram-negative bacteria still play a key role in the etiology of AE-COPD patients, regardless of the presence of pneumonia. This study provides updated evidence for the epidemiology of AE-COPD pathogens and the appropriate selection of antimicrobial agents in Vietnam.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Bacterial , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Cross-Sectional Studies , Vietnam/epidemiology , Prospective Studies , Male , Female , Aged , Middle Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/epidemiology , Microbial Sensitivity Tests , Sputum/microbiology , Aged, 80 and over , Pneumonia/microbiology , Pneumonia/drug therapy , Pneumonia/epidemiology
8.
J Infect Public Health ; 17(7): 102456, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820896

ABSTRACT

BACKGROUND: A. baumannii is an important and common clinical pathogen, especially in the intensive care unit (ICU). This study aimed to characterize one hypervirulent A. baumannii strain in a patient with community-acquired pneumonia and herpes simplex type 1 virus infection. METHODS: Minimum inhibitory concentrations (MICs) were determined using the Kirby-Bauer (K-B) and broth microdilution methods. Galleria mellonella infection model experiment was conducted. Whole-genome sequencing (WGS) was performed using the Illumina and Nanopore platforms. The resistance and virulence determinants were identified using the ABRicate program with ResFinder and the VFDB database. The capsular polysaccharide locus (K locus) and lipooligosaccharide outer core locus (OC locus) were identified using Kleborate with Kaptive. Phylogenetic analyses were conducted using the BacWGSTdb server. RESULTS: A. baumannii XH2146 strain belongs to ST10Pas and ST447Oxf. The strain was resistant to cefazolin, ciprofloxacin, and trimethoprim/sulfamethoxazole (TMP-SMX). Bautype and Kaptive analyses showed that XH2146 contains OCL2 and KL49. WGS analysis revealed that the strain harbored blaADC-76, blaOXA-68, ant(3'')-IIa, tet(B), and sul2. Notably, tet(B) and sul2, both were located within a 114,700-bp plasmid (designated pXH2146-1). Virulence assay revealed A. baumannii XH2146 possessed higher virulence than A. baumannii AB5075 at 12 h. Comparative genomic analysis showed that A. baumannii ST447 strains were mainly isolated from the USA and exhibited a relatively close genetic relationship. Importantly, 11 strains were observed to carry blaOXA-58; blaOXA-23 was identified in 11 isolates and three ST447 A. baumannii strains harbored blaNDM-1. CONCLUSIONS: Early detection of community-acquired hypervirulent Acinetobacter baumannii strains is recommended to prevent their extensive spread in hospitals.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Community-Acquired Infections , Herpesvirus 1, Human , Microbial Sensitivity Tests , Phylogeny , Whole Genome Sequencing , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Humans , Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , China/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Animals , Virulence/genetics , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/isolation & purification , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Herpes Simplex/virology , Pneumonia, Bacterial/microbiology , Male , Genome, Bacterial , Moths/microbiology , Moths/virology
9.
J Bras Pneumol ; 50(2): e20230329, 2024.
Article in English | MEDLINE | ID: mdl-38808825

ABSTRACT

OBJECTIVE: To assess differences in the sputum microbiota of community-acquired pneumonia (CAP) patients with either COPD or asthma, specifically focusing on a patient population in Turkey. METHODS: This retrospective study included hospitalized patients > 18 years of age with a diagnosis of pneumonia between January of 2021 and January of 2023. Participants were recruited from two hospitals, and three patient groups were considered: CAP patients with asthma, CAP patients with COPD, and CAP patients without COPD or asthma. RESULTS: A total of 246 patients with CAP were included in the study, 184 (74.8%) and 62 (25.2%) being males and females, with a mean age of 66 ± 14 years. Among the participants, 52.9% had COPD, 14.2% had asthma, and 32.9% had CAP but no COPD or asthma. Upon analysis of sputum cultures, positive sputum culture growth was observed in 52.9% of patients. The most commonly isolated microorganisms were Pseudomonas aeruginosa (n = 40), Acinetobacter baumannii (n = 20), Klebsiella pneumoniae (n = 16), and Moraxella catarrhalis (n = 8). CAP patients with COPD were more likely to have a positive sputum culture (p = 0.038), a history of antibiotic use within the past three months (p = 0.03), utilization of long-term home oxygen therapy (p < 0.001), and use of noninvasive ventilation (p = 0.001) when compared with the other patient groups. Additionally, CAP patients with COPD had a higher CURB-65 score when compared with CAP patients with asthma (p = 0.004). CONCLUSIONS: This study demonstrates that CAP patients with COPD tend to have more severe presentations, while CAP patients with asthma show varied microbial profiles, underscoring the need for patient-specific management strategies in CAP.


Subject(s)
Asthma , Community-Acquired Infections , Microbiota , Pulmonary Disease, Chronic Obstructive , Sputum , Humans , Female , Male , Sputum/microbiology , Asthma/microbiology , Pulmonary Disease, Chronic Obstructive/microbiology , Retrospective Studies , Community-Acquired Infections/microbiology , Aged , Middle Aged , Hospitalization , Turkey , Aged, 80 and over , Pneumonia/microbiology , Pneumonia, Bacterial/microbiology
10.
Expert Rev Anti Infect Ther ; 22(6): 423-433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38743435

ABSTRACT

INTRODUCTION: Hospital-acquired pneumonia (HAP) represents a significant cause of mortality among critically ill patients admitted to Intensive Care Units (ICUs). Timely and precise diagnosis is imperative to enhance therapeutic efficacy and patient outcomes. However, the diagnostic process is challenged by test limitations and a wide-ranging list of differential diagnoses, particularly in patients exhibiting escalating oxygen requirements, leukocytosis, and increased secretions. AREAS COVERED: This narrative review aims to update diagnostic modalities, facilitating the prompt identification of nosocomial pneumonia while guiding, developing, and assessing therapeutic interventions. A comprehensive literature review was conducted utilizing the MEDLINE/PubMed database from 2013 to April 2024. EXPERT OPINION: An integrated approach that integrates clinical, microbiological, and imaging tools is paramount. Progress in diagnostic techniques, including novel molecular methods, the expanding utilization and accuracy of bedside ultrasound, and the emergence of Artificial Intelligence, coupled with an improved comprehension of lung microbiota and host-pathogen interactions, continues to enhance our capability to accurately and swiftly identify HAP and its causative agents. This advancement enables the refinement of treatment strategies and facilitates the implementation of precision medicine approaches.


Subject(s)
Critical Illness , Healthcare-Associated Pneumonia , Intensive Care Units , Pneumonia, Bacterial , Humans , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/drug therapy , Healthcare-Associated Pneumonia/diagnosis , Healthcare-Associated Pneumonia/microbiology , Healthcare-Associated Pneumonia/therapy , Diagnosis, Differential , Host-Pathogen Interactions , Precision Medicine , Cross Infection/microbiology , Cross Infection/diagnosis , Cross Infection/drug therapy , Artificial Intelligence
11.
J Equine Vet Sci ; 138: 105103, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797250

ABSTRACT

Rhodococcus equi (R. equi), a gram-positive facultative intracellular pathogen, is a common cause of pneumonia in foals and represents a major cause of disease and death. The aim of the present study was to investigate the time-depended changes in White Blood Cells (WBC), basophils (Baso), neutrophils (Neu), lymphocytes (Lymf), monocytes (Mon), eosinophils (Eos), platelet (PLT) counts, fibrinogen (Fbg) concentration, interferon (IFN-α, IFN-γ) and interleukins (IL-2 and IL-10) in foals with clinical R. equi pneumonia. The main treatment was with azithromycin-rifampicin for 14 days. Blood was sampled prior to, 7 and 14 days after starting therapy. Treatment was associated with significantly decreased counts of WBC, (25.6 ± 6.7 and 14.2 ± 2,7 × 103/ml), Neu (18.6 ±6.2 and 10.7 ± 3.1 × 103/ml), Mon (1.5 ± 0.5 and 0.9 ± 0.2 × 103/ml) and Fbg (539 ± 124 and 287 ± 26 g/dl) between day 0 and day 14. IL-2 and IL-10 concentrations were significantly increased (P = 0.028, P = 0.013, respectively) after treatment, whereas IFN-α and IFN-γ concentrations were not. The diagnostic potentials of INF-α, INF-γ, IL-2 and IL-10 per se seems not very high, however, the study suggests that the activity change of selected interleukins in the course of the disease may be associated with amelioration. We concluded that patterns of serum concentration changes of INF-α, INF-γ, IL-2 and IL-10 may help in the study of the innate immune response in foals during infection and treatment of R. equi pneumonia.


Subject(s)
Actinomycetales Infections , Anti-Bacterial Agents , Biomarkers , Horse Diseases , Rhodococcus equi , Animals , Horses/blood , Horse Diseases/blood , Horse Diseases/drug therapy , Horse Diseases/microbiology , Horse Diseases/immunology , Actinomycetales Infections/veterinary , Actinomycetales Infections/drug therapy , Actinomycetales Infections/blood , Actinomycetales Infections/immunology , Actinomycetales Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Biomarkers/blood , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/veterinary , Pneumonia, Bacterial/blood , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/microbiology , Azithromycin/therapeutic use , Female , Male
12.
Emerg Infect Dis ; 30(6): 1249-1252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782141

ABSTRACT

Burkholderia semiarida was previously identified solely as a plant pathogen within the Burkholderia cepacia complex. We present a case in China involving recurrent pneumonia attributed to B. semiarida infection. Of note, the infection manifested in an immunocompetent patient with no associated primary diseases and endured for >3 years.


Subject(s)
Burkholderia Infections , Burkholderia , Recurrence , Humans , Burkholderia Infections/diagnosis , Burkholderia Infections/microbiology , Burkholderia Infections/drug therapy , China , Burkholderia/isolation & purification , Burkholderia/genetics , Male , Immunocompetence , Anti-Bacterial Agents/therapeutic use , Middle Aged , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/drug therapy
13.
Infect Immun ; 92(6): e0001624, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38771050

ABSTRACT

Polymyxin resistance in carbapenem-resistant Klebsiella pneumoniae bacteria is associated with high morbidity and mortality in vulnerable populations throughout the world. Ineffective antimicrobial activity by these last resort therapeutics can occur by transfer of mcr-1, a plasmid-mediated resistance gene, causing modification of the lipid A portion of lipopolysaccharide (LPS) and disruption of the interactions between polymyxins and lipid A. Whether this modification alters the innate host immune response or carries a high fitness cost in the bacteria is not well established. To investigate this, we studied infection with K. pneumoniae (KP) ATCC 13883 harboring either the mcr-1 plasmid (pmcr-1) or the vector control (pBCSK) ATCC 13883. Bacterial fitness characteristics of mcr-1 acquisition were evaluated. Differentiated human monocytes (THP-1s) were stimulated with KP bacterial strains or purified LPS from both parent isolates and isolates harboring mcr-1. Cell culture supernatants were analyzed for cytokine production. A bacterial pneumonia model in WT C57/BL6J mice was used to monitor immune cell recruitment, cytokine induction, and bacterial clearance in the bronchoalveolar lavage fluid (BALF). Isolates harboring mcr-1 had increased colistin MIC compared to the parent isolates but did not alter bacterial fitness. Few differences in cytokines were observed with purified LPS from mcr-1 expressing bacteria in vitro. However, in a mouse pneumonia model, no bacterial clearance defect was observed between pmcr-1-harboring KP and parent isolates. Consistently, no differences in cytokine production or immune cell recruitment in the BALF were observed, suggesting that other mechanisms outweigh the effect of these lipid A mutations in LPS.


Subject(s)
Anti-Bacterial Agents , Colistin , Disease Models, Animal , Immunity, Innate , Klebsiella Infections , Klebsiella pneumoniae , Lipid A , Animals , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/drug effects , Colistin/pharmacology , Lipid A/immunology , Mice , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/microbiology , Mice, Inbred C57BL , Cytokines/metabolism , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/microbiology , Female
14.
New Microbiol ; 47(1): 33-37, 2024 May.
Article in English | MEDLINE | ID: mdl-38700881

ABSTRACT

Lower respiratory tract infections (LRTI) are still burdened by considerable morbidity and mortality. Rapid and appropriate treatment imply knowledge of the underlying causative pathogen; while it is tempting to offer broad spectrum antibiotics, Antimicrobial Stewardship Practices invite a judicious use of the latter, especially when bacteria are not the cause. However, the epidemiology shifts to multidrug resistant (MDR) pathogens that require optimization of molecules in order to provide optimal treatment. Novel methods requiring direct sample result testing such as the Biofire Pneumonia (PN) panel have recently been made available on the market. Syndromic testing may hence provide support in the diagnosis of LRTI. There is paucity of data concerning experiences in high MDR settings, and even less concerning the performance of these panels in pediatric settings with moderate MDR prevalence. Our study highlights the optimal sensitivity and importance of support from such methods in settings burdened by MDR presence and where fast and appropriate therapy is mandatory.


Subject(s)
Anti-Bacterial Agents , Humans , Italy/epidemiology , Child , Child, Preschool , Infant , Male , Female , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Pneumonia/microbiology , Pneumonia/drug therapy , Bacteria/isolation & purification , Bacteria/drug effects , Adolescent , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/diagnosis
15.
Clin Transl Sci ; 17(6): e13850, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807464

ABSTRACT

Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern that plays a critical role in triggering inflammatory responses. It remains unknown whether CIRP is strongly associated with bacterial load, inflammatory response, and mortality in sepsis model. Pneumonia was induced in specific pathogen-free 8-9-week old male rats by injecting bacteria via puncture of the tracheal cartilage. The expressions of CIRP and proinflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1ß] in lung tissues, alveolar macrophages (AMs), plasma, and bronchoalveolar lavage fluid (BALF) were determined by reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The numbers of bacteria recovered from the lungs were correlated with the bacterial loads injected and mortality. The expressions of CIRP increased sharply as the bacterial loads increased in the lung tissues and AMs. The amounts of TNF-α, IL-6 and IL-1ß proteins synthesized were dependent on the bacterial load in the lung tissues. Releases of CIRP, TNF-α, IL-6, and IL-1ß increased with the bacterial load in the blood plasma. The proteins confirmed similar patterns in the BALF. CIRP was strongly associated with the releases of TNF-α, IL-6, and IL-1ß in the lung tissues, blood plasma, and BALF, and showed a close correlation with mortality. CIRP demonstrated a strong association with bacterial load, which is new evidence, and close correlations with proinflammatory cytokines and mortality of pneumonia in rats, suggesting that it might be an interesting pneumonic biomarker for monitoring host response and predicting mortality, and a promising target for immunotherapy.


Subject(s)
Bacterial Load , Cytokines , RNA-Binding Proteins , Animals , Male , RNA-Binding Proteins/metabolism , Cytokines/metabolism , Cytokines/blood , Rats , Lung/microbiology , Lung/immunology , Lung/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/microbiology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Pneumonia/microbiology , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/mortality , Rats, Sprague-Dawley , Interleukin-1beta/metabolism , Interleukin-1beta/blood , Disease Models, Animal , Inflammation Mediators/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/mortality
16.
Respir Res ; 25(1): 223, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811936

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is a common and serious condition that can be caused by a variety of pathogens. However, much remains unknown about how these pathogens interact with the lower respiratory commensals, and whether any correlation exists between the dysbiosis of the lower respiratory microbiota and disease severity and prognosis. METHODS: We conducted a retrospective cohort study to investigate the composition and dynamics of sputum microbiota in patients diagnosed with CAP. In total, 917 sputum specimens were collected consecutively from 350 CAP inpatients enrolled in six hospitals following admission. The V3-V4 region of the 16 S rRNA gene was then sequenced. RESULTS: The sputum microbiota in 71% of the samples were predominately composed of respiratory commensals. Conversely, 15% of the samples demonstrated dominance by five opportunistic pathogens. Additionally, 5% of the samples exhibited sterility, resembling the composition of negative controls. Compared to non-severe CAP patients, severe cases exhibited a more disrupted sputum microbiota, characterized by the highly dominant presence of potential pathogens, greater deviation from a healthy state, more significant alterations during hospitalization, and sparser bacterial interactions. The sputum microbiota on admission demonstrated a moderate prediction of disease severity (AUC = 0.74). Furthermore, different pathogenic infections were associated with specific microbiota alterations. Acinetobacter and Pseudomonas were more abundant in influenza A infections, with Acinetobacter was also enriched in Klebsiella pneumoniae infections. CONCLUSION: Collectively, our study demonstrated that pneumonia may not consistently correlate with severe dysbiosis of the respiratory microbiota. Instead, the degree of microbiota dysbiosis was correlated with disease severity in CAP patients.


Subject(s)
Community-Acquired Infections , Microbiota , Severity of Illness Index , Sputum , Humans , Community-Acquired Infections/microbiology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Male , Female , Sputum/microbiology , Middle Aged , Aged , Retrospective Studies , Longitudinal Studies , Cohort Studies , Dysbiosis/microbiology , Dysbiosis/diagnosis , Pneumonia/microbiology , Pneumonia/diagnosis , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Aged, 80 and over , Adult
17.
Article in English | MEDLINE | ID: mdl-38686909

ABSTRACT

OBJECTIVE: To study the etiological characteristics of community-acquired pneumonia (CAP) combined with type 2 diabetes (T2D), providing a reference for early clinical diagnosis and treatment of the disease. METHODS: We selected a total of 93 patients with CAP and analyzed their metagenomics nextgeneration sequencing (mNGS) data. The case group comprised 46 patients with combined CAP/T2D, and the control group comprised 47 patients without diabetes. We analyzed the pathogenic findings of the two groups. RESULTS: There were statistically significant differences in age between the two groups (P = 0.001). Leukocytes (P = 0.012), blood platelets (P = 0.034), fibrinogen (P = 0.037), D-dimer (P = 0.000), calcitonin ogen (P = 0.015), ultrasensitive C-reactive protein or C-reactive protein (CRP) (P = 0.000), serum amyloid A (P = 0.000), and erythrocyte sedimentation rate (P = 0.003) were higher in the case group than in the control group. Albumin was lower in the case group than in the control group. All differences were statistically significant. The infection rates of Klebsiella pneumoniae (P = 0.030), Pseudomonas aeruginosa (P = 0.043), and Candida albicans (P = 0.032) were significantly different between the two groups. CONCLUSION: Compared with those without diabetes, the infection rates of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans were higher in patients with combined CAP/T2D.


Subject(s)
Community-Acquired Infections , Diabetes Mellitus, Type 2 , Early Diagnosis , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/epidemiology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/microbiology , Community-Acquired Infections/blood , Community-Acquired Infections/epidemiology , Female , Male , Middle Aged , Aged , Pneumonia/diagnosis , Pneumonia/blood , Pneumonia/microbiology , Case-Control Studies , Metagenomics/methods , Adult , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/blood , Pneumonia, Bacterial/epidemiology
18.
J Clin Invest ; 134(11)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573824

ABSTRACT

Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP affects risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2-knockout (Tet2-/-) and floxed control mice (Tet2fl/fl) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2-/- mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2-/- mice. We delineated the transcriptional landscape of Tet2-/- neutrophils and found that, while inflammation-related pathways were upregulated in Tet2-/- neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake, and neutrophil extracellular trap (NET) formation by Tet2-/- neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.


Subject(s)
DNA-Binding Proteins , Dioxygenases , Immunity, Innate , Neutrophils , Streptococcus pneumoniae , Animals , Female , Humans , Male , Mice , Dioxygenases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Mice, Knockout , Neutrophils/immunology , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/pathology , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/microbiology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins/metabolism , Streptococcus pneumoniae/immunology
20.
Diagn Microbiol Infect Dis ; 109(3): 116296, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640607

ABSTRACT

Pulmonary infection due to Mycobacterium abscessus complex (MABC) usually occurs in children with underlying risk factors including cystic fibrosis (CF), chronic lung disease, and immunocompromised status, but rarely in immunocompetent children without underlying lung disease, especially in infants. We present a case of MABC pulmonary disease (MABC-PD) in an otherwise healthy 53-day-old male infant with one week of cough and respiratory distress. Computed tomography showed multiple masses across both lungs. Isolated mycobacteria from his bronchoalveolar lavage fluid were identified as MABC. We describe our complete evaluation, including immunodeficiency evaluation incorporating whole exome sequencing and our therapeutic process given complicated susceptibility pattern of the M. abscessus isolate, and review literature for MABC-PD in immunocompetent children. The infant was successfully treated through prolonged treatment with parenteral Amikacin, Cefoxitin, Linezolid, and Clarithromycin, combined with inhaled Amikacin.


Subject(s)
Anti-Bacterial Agents , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Male , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/isolation & purification , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/diagnosis , Anti-Bacterial Agents/therapeutic use , Infant , Bronchoalveolar Lavage Fluid/microbiology , Amikacin/therapeutic use , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Treatment Outcome , Tomography, X-Ray Computed , Clarithromycin/therapeutic use , Linezolid/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL