Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.385
Filter
1.
Mol Cancer ; 23(1): 136, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965534

ABSTRACT

BACKGROUND: BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms. METHODS: CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts. RESULTS: We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings. CONCLUSIONS: Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.


Subject(s)
Drug Resistance, Neoplasm , Eukaryotic Translation Initiation Factor 5A , Melanoma , Mutation , Peptide Initiation Factors , Polyamines , Proto-Oncogene Proteins B-raf , RNA-Binding Proteins , Vemurafenib , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Animals , Polyamines/metabolism , Mice , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Cell Line, Tumor , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Vemurafenib/pharmacology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Xenograft Model Antitumor Assays , CRISPR-Cas Systems , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Lysine/analogs & derivatives
2.
Physiol Plant ; 176(4): e14411, 2024.
Article in English | MEDLINE | ID: mdl-38973028

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.


Subject(s)
Arabidopsis , Bacillus licheniformis , Ethylenes , Polyamines , Arabidopsis/genetics , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis/physiology , Ethylenes/metabolism , Polyamines/metabolism , Bacillus licheniformis/metabolism , Bacillus licheniformis/genetics , Gene Expression Regulation, Plant/drug effects , Signal Transduction/drug effects , Stress, Physiological , Seedlings/drug effects , Seedlings/genetics , Seedlings/physiology , Seedlings/metabolism , Alkalies/pharmacology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
3.
Toxins (Basel) ; 16(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38922129

ABSTRACT

Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs' levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It's crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components.


Subject(s)
Insecticides , Polyamines , Spider Venoms , Wasps , Animals , Polyamines/chemistry , Spider Venoms/chemistry , Spider Venoms/toxicity , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/toxicity , Humans , Spiders
4.
Biomolecules ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927024

ABSTRACT

Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers.


Subject(s)
Dendrimers , Hydrogels , Polyamines , Tissue Engineering , Hydrogels/chemistry , Hydrogels/chemical synthesis , Dendrimers/chemistry , Humans , Tissue Engineering/methods , Polyamines/chemistry , Drug Delivery Systems , Animals , Click Chemistry/methods , Biocompatible Materials/chemistry
5.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928047

ABSTRACT

Polyamines are ubiquitous in almost all biological entities and involved in various crucial physiological processes. They are also closely associated with the onset and progression of many diseases. Polyaminopathies are a group of rare genetic disorders caused by alterations in the function of proteins within the polyamine metabolism network. Although the identified polyaminopathies are all rare diseases at present, they are genetically heritable, rendering high risks not only to the carriers but also to their descendants. Meanwhile, more polyaminopathic patients might be discovered with the increasing accessibility of gene sequencing. This review aims to provide a comprehensive overview of the structural variations of mutated proteins in current polyaminopathies, in addition to their causative genes, types of mutations, clinical symptoms, and therapeutic approaches. We focus on analyzing how alterations in protein structure lead to protein dysfunction, thereby facilitating the onset of diseases. We hope this review will offer valuable insights and references for the future clinical diagnosis and precision treatment of polyaminopathies.


Subject(s)
Mutation , Polyamines , Humans , Polyamines/metabolism , Animals
6.
Cells ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38920664

ABSTRACT

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Subject(s)
Hepacivirus , Polyamines , Proline , Urea , Virus Replication , Proline/metabolism , Humans , Hepacivirus/physiology , Hepacivirus/drug effects , Polyamines/metabolism , Urea/metabolism , Urea/pharmacology , Virus Replication/drug effects , Arginase/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Hepatitis C/metabolism , Hepatitis C/virology , Cell Line, Tumor , Proline Oxidase/metabolism
7.
Elife ; 132024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916596

ABSTRACT

The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.


Subject(s)
Amino Acid Transport Systems , Mutation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Substrate Specificity , Evolution, Molecular , Polyamines/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Genetic Fitness , Amino Acids/metabolism , Amino Acids/genetics
8.
Nano Lett ; 24(26): 7833-7842, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38887996

ABSTRACT

Tobacco mild green mosaic virus (TMGMV)-like nanocarriers were designed for gene delivery to plant cells. High aspect ratio TMGMVs were coated with a polycationic biopolymer, poly(allylamine) hydrochloride (PAH), to generate highly charged nanomaterials (TMGMV-PAH; 56.20 ± 4.7 mV) that efficiently load (1:6 TMGMV:DNA mass ratio) and deliver single-stranded and plasmid DNA to plant cells. The TMGMV-PAH were taken up through energy-independent mechanisms in Arabidopsis protoplasts. TMGMV-PAH delivered a plasmid DNA encoding a green fluorescent protein (GFP) to the protoplast nucleus (70% viability), as evidenced by GFP expression using confocal microscopy and Western blot analysis. TMGMV-PAH were inactivated (iTMGMV-PAH) using UV cross-linking to prevent systemic infection in intact plants. Inactivated iTMGMV-PAH-mediated pDNA delivery and gene expression of GFP in vivo was determined using confocal microscopy and RT-qPCR. Virus-like nanocarrier-mediated gene delivery can act as a facile and biocompatible tool for advancing genetic engineering in plants.


Subject(s)
Arabidopsis , Green Fluorescent Proteins , Arabidopsis/virology , Arabidopsis/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Gene Transfer Techniques , Plasmids/genetics , Polyamines/chemistry , Protoplasts/metabolism , Nanostructures/chemistry , DNA/chemistry , DNA/administration & dosage
9.
Biomacromolecules ; 25(7): 4428-4439, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38917058

ABSTRACT

Carbonyl cross-linkers are used to modify textiles and form resins, and are produced annually in megatonne volumes. Due to their toxicity toward the environment and human health, however, less harmful biobased alternatives are needed. This study introduces carbonyl groups to lactose and galactose using galactose oxidase from Fusarium graminearum (FgrGalOx) and pyranose dehydrogenase from Agaricus bisporus (AbPDH1) to produce four cross-linkers. Differential scanning calorimetry was used to compare cross-linker reactivity, most notably resulting in a 34 °C decrease in reaction peak temperature (72 °C) for FgrGalOx-oxidized galactose compared to unmodified galactose. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and proton nuclear magnetic resonance (1H NMR) spectroscopy were used to verify imine formation and amine and aldehyde depletion. Cross-linkers were shown to form gels when mixed with polyallylamine, with FgrGalOx-oxidized lactose forming gels more effectively than all other cross-linkers, including glutaraldehyde. Further development of carbohydrate cross-linker technologies could lead to their adoption in various applications, including in adhesives, resins, and textiles.


Subject(s)
Cross-Linking Reagents , Oxidation-Reduction , Polyamines , Cross-Linking Reagents/chemistry , Polyamines/chemistry , Galactose Oxidase/chemistry , Galactose Oxidase/metabolism , Galactose/chemistry , Lactose/chemistry , Agaricus/chemistry , Carbohydrates/chemistry
10.
Int J Nanomedicine ; 19: 5837-5858, 2024.
Article in English | MEDLINE | ID: mdl-38887692

ABSTRACT

Purpose: Phototherapy, known for its high selectivity, few side effects, strong controllability, and synergistic enhancement of combined treatments, is widely used in treating diseases like cervical cancer. Methods: In this study, hollow mesoporous manganese dioxide was used as a carrier to construct positively charged, poly(allylamine hydrochloride)-modified nanoparticles (NPs). The NP was efficiently loaded with the photosensitizer indocyanine green (ICG) via the addition of hydrogen phosphate ions to produce a counterion aggregation effect. HeLa cell membrane encapsulation was performed to achieve the final M-HMnO2@ICG NP. In this structure, the HMnO2 carrier responsively degrades to release ICG in the tumor microenvironment, self-generates O2 for sensitization to ICG-mediated photodynamic therapy (PDT), and consumes GSH to expand the oxidative stress therapeutic effect [chemodynamic therapy (CDT) + PDT]. The ICG accumulated in tumor tissues exerts a synergistic PDT/photothermal therapy (PTT) effect through single laser irradiation, improving efficiency and reducing side effects. The cell membrane encapsulation increases nanomedicine accumulation in tumor tissues and confers an immune evasion ability. In addition, high local temperatures induced by PTT can enhance CDT. These properties of the NP enable full achievement of PTT/PDT/CDT and targeted effects. Results: Mn2+ can serve as a magnetic resonance imaging agent to guide therapy, and ICG can be used for photothermal and fluorescence imaging. After its intravenous injection, M-HMnO2@ICG accumulated effectively at mouse tumor sites; the optimal timing of in-vivo laser treatment could be verified by near-infrared fluorescence, magnetic resonance, and photothermal imaging. The M-HMnO2@ICG NPs had the best antitumor effects among treatment groups under near-infrared light conditions, and showed good biocompatibility. Conclusion: In this study, we designed a nano-biomimetic delivery system that improves hypoxia, responds to the tumor microenvironment, and efficiently loads ICG. It provides a new economical and convenient strategy for synergistic phototherapy and CDT for cervical cancer.


Subject(s)
Indocyanine Green , Manganese Compounds , Multimodal Imaging , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Tumor Microenvironment , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/drug therapy , Female , Tumor Microenvironment/drug effects , Humans , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Photochemotherapy/methods , Animals , HeLa Cells , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Nanoparticles/chemistry , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Mice , Multimodal Imaging/methods , Photothermal Therapy/methods , Oxides/chemistry , Oxides/pharmacology , Mice, Inbred BALB C , Polyamines/chemistry , Polyamines/pharmacology , Magnetic Resonance Imaging/methods
11.
Pediatr Allergy Immunol ; 35(6): e14167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860435

ABSTRACT

BACKGROUND: Some studies have reported that polyamine levels may influence immune system programming. The aim of this study was to evaluate the polyamine profile during gestation and its associations with maternal allergy and cytokine production in cord blood cells in response to different allergenic stimuli. METHODS: Polyamines were determined in plasma of pregnant women (24 weeks, N = 674) and in umbilical cord samples (N = 353 vein and N = 160 artery) from the Mediterranean NELA birth cohort. Immune cell populations were quantified, and the production of cytokines in response to different allergic and mitogenic stimuli was assessed in cord blood. RESULTS: Spermidine and spermine were the most prevalent polyamines in maternal, cord venous, and cord arterial plasma. Maternal allergies, especially allergic conjunctivitis, were associated with lower spermine in umbilical cord vein. Higher levels of polyamines were associated with higher lymphocyte number but lower Th2-related cells in cord venous blood. Those subjects with higher levels of circulating polyamines in cord showed lower production of inflammatory cytokines, especially IFN-α, and lower production of Th2-related cytokines, mainly IL-4 and IL-5. The effects of polyamines on Th1-related cytokines production were uncertain. CONCLUSIONS: Spermidine and spermine are the predominant polyamines in plasma of pregnant women at mid-pregnancy and also in umbilical cord. Maternal allergic diseases like allergic conjunctivitis are related to lower levels of polyamines in cord vein, which could influence the immune response of the newborn. Cord polyamine content is related to a decreased Th2 response and inflammatory cytokines production, which might be important to reduce an allergenic phenotype in the neonate.


Subject(s)
Cytokines , Fetal Blood , Hypersensitivity , Polyamines , Humans , Female , Pregnancy , Infant, Newborn , Fetal Blood/immunology , Cytokines/blood , Cytokines/metabolism , Hypersensitivity/immunology , Hypersensitivity/blood , Adult , Pregnancy Complications/immunology , Pregnancy Complications/blood , Th2 Cells/immunology , Spermidine/blood
12.
Amino Acids ; 56(1): 43, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935136

ABSTRACT

Exogenous polyamines, including putrescine (PUT), spermidine (SPD), and spermine (SPM), and the irreversible inhibitor of the rate-limiting enzyme ornithine decarboxylase (ODC) of polyamine biosynthesis, α-difluoromethylornithine (DFMO), are implicated as stimulants for bone formation. We demonstrate in this study the osteogenic potential of exogenous polyamines and DFMO in human osteoblasts (hOBs), murine monocyte cell line RAW 264.7, and an ovariectomized rat model. The effect of polyamines and DFMO on hOBs and RAW 264.7 cells was studied by analyzing gene expression, alkaline phosphatase (ALP) activity, tartrate-resistant acid phosphatase (TRAP) activity, and matrix mineralization. Ovariectomized rats were treated with polyamines and DFMO and analyzed by micro computed tomography (micro CT). The mRNA level of the early onset genes of osteogenic differentiation, Runt-related transcription factor 2 (Runx2) and ALP, was significantly elevated in hOBs under osteogenic conditions, while both ALP activity and matrix mineralization were enhanced by exogenous polyamines and DFMO. Under osteoclastogenic conditions, the gene expression of both receptor activator of nuclear factor-κB (RANK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) was reduced, and TRAP activity was suppressed by exogenous polyamines and DFMO in RAW 264.7 cells. In an osteoporotic animal model of ovariectomized rats, SPM and DFMO were found to improve bone volume in rat femurs, while trabecular thickness was increased in all treatment groups. Results from this study provide in vitro and in vivo evidence indicating that polyamines and DFMO act as stimulants for bone formation, and their osteogenic effect may be associated with the suppression of osteoclastogenesis.


Subject(s)
Cell Differentiation , Eflornithine , Osteoblasts , Osteoclasts , Osteogenesis , Polyamines , Animals , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Rats , Humans , Cell Differentiation/drug effects , Eflornithine/pharmacology , Female , Polyamines/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , RAW 264.7 Cells , Ovariectomy , Rats, Sprague-Dawley , Spermidine/pharmacology
13.
Biomed Mater ; 19(4)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38871001

ABSTRACT

Oral cancer accounts for 50%-70% of all cancer-related deaths in India and ranks sixth among the most frequent cancers globally. Roughly 90% of oral malignancies are histologically arise from squamous cells and are therefore called oral squamous cell carcinoma. Organic polycations known as biogenic polyamines, for example, putrescine (Put), spermidine (Spd), and spermine (Spm), are vital for cell proliferation, including gene expression control, regulation of endonuclease-mediated fragmentation of DNA, and DNA damage inhibition. Higher Spm and Spd levels have been identified as cancer biomarkers for detecting tumour development in various cancers. The current study utilises tannic acid, a polyphenolic compound, as a reducing and capping agent to fabricate AuNPs via a one-step microwave-assisted synthesis. The fabricated TA@AuNPs were utilised as a nanoprobe for colourimetric sensing of polyamines in PBS. When TA@AuNPs are added to the polyamine, the amine groups in polyamines interact with the phenolic groups of TA@AuNPs via hydrogen bonding or electrostatic interactions. These interactions cause the aggregation of TA@AuNPs, resulting in a red shift of the Surface Plasmon Resonance band of TA@AuNPs from 530 nm to 560 nm. The nanoprobe was found to be highly specific for Spm at low concentrations. TA@AuNPs were able to detect Spm successfully in artificial saliva samples. On recording the RGB values of the sensing process using a smartphone app, it was found that as the nanoparticles aggregated due to the presence of Spm, the intensity of theR-value decreased, indicating the aggregation of TA@AuNPs due to interaction with the polyamine.


Subject(s)
Gold , Metal Nanoparticles , Mouth Neoplasms , Polyamines , Smartphone , Spermine , Mouth Neoplasms/diagnosis , Mouth Neoplasms/metabolism , Humans , Metal Nanoparticles/chemistry , Polyamines/chemistry , Gold/chemistry , Spermine/chemistry , Putrescine/analysis , Spermidine/chemistry , Tannins/chemistry , Surface Plasmon Resonance , Colorimetry/methods , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism
14.
J Cell Mol Med ; 28(12): e18387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924680

ABSTRACT

We aimed to explore whether the genes associated with both platinum-based therapy and polyamine metabolism could predict the prognosis of LUAD. We searched for the differential expression genes (DEGs) associated with platinum-based therapy, then we interacted them with polyamine metabolism-related genes to obtain hub genes. Subsequently, we analysed the main immune cell populations in LUAD using the scRNA-seq data, and evaluated the activity of polyamine metabolism of different cell subpopulations. The DEGs between high and low activity groups were screened to identify key DEGs to establish prognostic risk score model. We further elucidated the landscape of immune cells, mutation and drug sensitivity analysis in different risk groups. Finally, we got 10 hub genes associated with both platinum-based chemotherapy and polyamine metabolism, and found that these hub genes mainly affected signalling transduction pathways. B cells and mast cells with highest polyamine metabolism activity, while NK cells were found with lowest polyamine metabolism activity based on scRNA-seq data. DEGs between high and low polyamine metabolism activity groups were identified, then 6 key genes were screened out to build risk score, which showed a good predictive power. The risk score showed a universal negative correlation with immunotherapy checkpoint genes and the cytotoxic T cells infiltration. The mutation rates of EGFR in low-risk group was significantly higher than that of high-risk group. In conclusion, we developed a risk score based on key genes associated with platinum-based therapy and polyamine metabolism, which provide a new perspective for prognosis prediction of LUAD.


Subject(s)
Adenocarcinoma of Lung , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Polyamines , Humans , Polyamines/metabolism , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Mutation , Gene Expression Profiling , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
15.
Biomacromolecules ; 25(7): 4118-4138, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38857534

ABSTRACT

Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.


Subject(s)
Alginates , Capsules , Polyamines , Polyelectrolytes , Alginates/chemistry , Polyelectrolytes/chemistry , Capsules/chemistry , Polyamines/chemistry , Animals , Mice , Humans , Microspheres
16.
J Colloid Interface Sci ; 669: 667-678, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38733878

ABSTRACT

HYPOTHESIS: Renal calculi (kidney stones) are mainly made by calcium oxalate and can cause different complications including malfunction of the kidney. The most important urinary stone inhibitors are citrate molecules. Unfortunately, the amount of citrate reaching the kidney after oral ingestion is low. We hypothesized that nanoparticles of polyallylamine hydrochloride (CIT-PAH) carrying citrate ions could simultaneously deliver citrates while PAH would complex oxalate triggering dissolution and removal of CaOx nanocrystals. EXPERIMENTS: We successfully prepared nanoparticles of citrate ions with polyallylamine hydrochloride (CIT-PAH), PAH with oxalate (OX-PAH) and characterize them by Small Angle X ray Scattering (SAXS), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and NMR. Dissolution of CaOx nanocrystals in presence of CIT-PAH have been followed with Wide Angle Xray Scattering (WAXS), DLS and Confocal Raman Microscopy. Raman spectroscopy was used to study the dissolution of crystals in synthetic urine samples. The release of citrate from CIT-PAH was followed by diffusion NMR. Molecular dynamics (MD) simulations were carried out to study the interaction of CIT and OX ions with PAH. FINDINGS: CIT-PAH nanoparticles dissolves CaOx nanocrystals as shown by NMR, DLS, TEM and WAXS in water and by Raman spectroscopy in artificial human urine. WAXS and Raman show that the crystal structure of CaOx disappears in the presence of CIT-PAH. DLS shows that the time required for CaOX dissolution will depend on the concentration of CIT-PAH NPs. NMR proves that citrate ions are released from the CIT PAH NPs during CaOX dissolution, MD simulations showed that oxalates exhibit a stronger interaction for PAH than citrate, explaining the removal of oxalate ions and replacement of the citrate in the polymer nanoparticles.


Subject(s)
Calcium Oxalate , Citric Acid , Nanoparticles , Polyamines , Nanoparticles/chemistry , Polyamines/chemistry , Calcium Oxalate/chemistry , Citric Acid/chemistry , Humans , Particle Size , Solubility , Molecular Dynamics Simulation , Drug Carriers/chemistry
17.
ACS Infect Dis ; 10(6): 2183-2195, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38695481

ABSTRACT

Chemicals bacteria encounter at the infection site could shape their stress and antibiotic responses; such effects are typically undetected under standard lab conditions. Polyamines are small molecules typically overproduced by the host during infection and have been shown to alter bacterial stress responses. We sought to determine the effect of polyamines on the antibiotic response of Klebsiella pneumoniae, a Gram-negative priority pathogen. Interestingly, putrescine and other natural polyamines sensitized K. pneumoniae to azithromycin, a macrolide protein translation inhibitor typically used for Gram-positive bacteria. This synergy was further potentiated in the physiological buffer, bicarbonate. Chemical genomic screens suggested a dual mechanism, whereby putrescine acts at the membrane and ribosome levels. Putrescine permeabilized the outer membrane of K. pneumoniae (NPN and ß-lactamase assays) and the inner membrane (Escherichia coli ß-galactosidase assays). Chemically and genetically perturbing membranes led to a loss of putrescine-azithromycin synergy. Putrescine also inhibited protein synthesis in an E. coli-derived cell-free protein expression assay simultaneously monitoring transcription and translation. Profiling the putrescine-azithromycin synergy against a combinatorial array of antibiotics targeting various ribosomal sites suggested that putrescine acts as tetracyclines targeting the 30S ribosomal acceptor site. Next, exploiting the natural polyamine-azithromycin synergy, we screened a polyamine analogue library for azithromycin adjuvants, discovering four azithromycin synergists with activity starting from the low micromolar range and mechanisms similar to putrescine. This work sheds light on the bacterial antibiotic responses under conditions more reflective of those at the infection site and provides a new strategy to extend the macrolide spectrum to drug-resistant K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Drug Synergism , Klebsiella pneumoniae , Macrolides , Microbial Sensitivity Tests , Polyamines , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Polyamines/pharmacology , Polyamines/metabolism , Macrolides/pharmacology , Putrescine/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Protein Biosynthesis/drug effects
18.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731451

ABSTRACT

A novel second-generation blue fluorescent polyamidoamine dendrimer peripherally modified with sixteen 4-N,N-dimethylaninoethyloxy-1,8-naphthalimide units was synthesized. Its basic photophysical characteristics were investigated in organic solvents of different polarity. It was found that in these solvents, the dendrimer is colorless and emitted blue fluorescence with different intensities depending on their polarity. The effect of the pH of the medium on the fluorescence intensity was investigated and it was found that in the acidic medium, the fluorescence is intense and is quenched in the alkaline medium. The ability of the dendrimer to detect metal ions (Pb2+, Zn2+, Mg2+, Sn2+, Ba2+, Ni2+, Sn2+, Mn2+, Co2+, Fe3+, and Al3+) was also investigated, and it was found that in the presence of Fe3+, the fluorescent intensity was amplified more than 66 times. The antimicrobial activity of the new compound has been tested in vitro against Gram-positive B. cereus and Gram-negative P. aeruginosa. The tests were performed in the dark and after irradiation with visible light. The antimicrobial activity of the compound enhanced after light irradiation and B. cereus was found slightly more sensitive than P. aeruginosa. The increase in antimicrobial activity after light irradiation is due to the generation of singlet oxygen particles, which attack bacterial cell membranes.


Subject(s)
Dendrimers , Microbial Sensitivity Tests , Naphthalimides , Polyamines , Naphthalimides/chemistry , Naphthalimides/pharmacology , Dendrimers/chemistry , Dendrimers/pharmacology , Polyamines/chemistry , Polyamines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fluorescence , Pseudomonas aeruginosa/drug effects , Hydrogen-Ion Concentration , Bacillus cereus/drug effects , Light , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence
19.
Front Immunol ; 15: 1373876, 2024.
Article in English | MEDLINE | ID: mdl-38715602

ABSTRACT

Objective: The objective of this study was to investigate the impact of electro-acupuncture (EA) on sepsis-related intestinal injury and its relationship with macrophage polarization. Methods: A sepsis model was established using cecal ligation and puncture (CLP) to assess the effectiveness of EA. The extent of pathological injury was evaluated using Chiu's score, the expression of ZO-1 and Ocludin, and the impact on macrophage polarization was examined through flow cytometry and immunofluorescence staining. The expression of spermidine, one type of polyamine, and ornithine decarboxylase (ODC) was measured using ELISA and PCR. Once the efficacy was determined, a polyamine depletion model was created, and the role of polyamines was reassessed by evaluating efficacy and observing macrophage polarization. Results: EA treatment reduced the Chiu's score and increased the expression of ZO-1 and Ocludin in the intestinal tissue of septic mice. It inhibited the secretion of IL-1ß and TNF-α, promoted the polarization of M2-type macrophages, increased the secretion of IL-10, and upregulated the expression of Arg-1, spermidine, and ODC. However, after depleting polyamines, the beneficial effects of EA on alleviating intestinal tissue damage and modulating macrophage polarization disappeared. Conclusion: The mechanism underlying the alleviation of intestinal injury associated with CLP-induced sepsis by EA involves with the promotion of M2-type macrophage polarization mediated by spermidine expression.


Subject(s)
Disease Models, Animal , Electroacupuncture , Macrophages , Polyamines , Sepsis , Animals , Sepsis/therapy , Sepsis/metabolism , Sepsis/immunology , Mice , Macrophages/immunology , Macrophages/metabolism , Electroacupuncture/methods , Polyamines/metabolism , Male , Macrophage Activation , Intestines/pathology , Intestines/immunology , Mice, Inbred C57BL , Cytokines/metabolism
20.
Int J Biol Macromol ; 269(Pt 2): 132157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723804

ABSTRACT

Hydrogel-based wound dressings are becoming increasingly important for wound healing. Bacterial cellulose (BC) has been commonly used as wound dressings due to its good in vitro and in vivo biocompatibility. However, pure BC does not possess antibacterial properties. In this regard, polycation gel was grafted onto the BC using a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP) with subsequent quaternization for antibacterial wound dressing. Dimethylethyl methacrylate (DMAEMA) was successfully polymerized on the BC surface which was confirmed by Fourier transform infrared spectroscopy and elemental analysis. The morphology structure, specific surface area, pore size, and mechanical properties were also characterized. The quaternized PDMAEMA grafted on the BC endowed it with excellent antibacterial activity against E. coli (Gram-negative) and S. aureus (Gram-positive) with a killing rate of 89.2 % and 93.4 %, respectively. The number of cells was significantly reduced on QPD/BC hydrogel, demonstrating its good anti-adhesion ability. In vitro cellular evaluation revealed that the antibacterial wound dressing exhibited good biocompatibility. Overall, this study provides a feasible method to develop antibacterial and anti-cell adhesive hydrogel, which has a promising potential for wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Cellulose , Escherichia coli , Polyelectrolytes , Staphylococcus aureus , Wound Healing , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Wound Healing/drug effects , Polyamines/chemistry , Polyamines/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Methacrylates/chemistry , Mice , Microbial Sensitivity Tests , Humans , Nylons
SELECTION OF CITATIONS
SEARCH DETAIL
...