Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61.173
Filter
1.
J Environ Sci (China) ; 147: 392-403, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003057

ABSTRACT

This study used steel slag, fly ash, and metakaolin as raw materials (SFM materials) to create silica-alumina-based geopolymers that can solidify Hg2+ when activated with sodium-based water glass. The experiments began with a triangular lattice point mixing design experiment, and the results were fitted, analyzed, and predicted. The optimum SFM material mass ratio was found to be 70% steel slag, 25% fly ash, and 5% metakaolin. The optimum modulus of the activator was identified by comparing the unconfined compressive strength and solidifying impact on Hg2+of geosynthetics with different modulus. The SFM geopolymer was then applied in the form of potting to cure the granulated mercury tailings. The inclusion of 50% SFM material generated a geosynthetic that reduced mercury transport to the surface soil by roughly 90%. The mercury concentration of herbaceous plant samples was also reduced by 78%. It indicates that the SFM material can effectively attenuate the migration transformation of mercury. Finally, characterization methods such as XPS and FTIR were used to investigate the mechanism of Hg2+ solidification by geopolymers generated by SFM materials. The possible solidification mechanisms were proposed as alkaline environment-induced mercury precipitation, chemical bonding s, surface adsorption of Hg2+ and its precipitates by the geopolymer, and physical encapsulation.


Subject(s)
Mercury , Mercury/chemistry , Mercury/analysis , Polymers/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Mining , Coal Ash/chemistry , Models, Chemical
2.
J Cell Mol Med ; 28(15): e18544, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39098996

ABSTRACT

Peripheral nerve defect are common clinical problem caused by trauma or other diseases, often leading to the loss of sensory and motor function in patients. Autologous nerve transplantation has been the gold standard for repairing peripheral nerve defects, but its clinical application is limited due to insufficient donor tissue. In recent years, the application of tissue engineering methods to synthesize nerve conduits for treating peripheral nerve defect has become a current research focus. This study introduces a novel approach for treating peripheral nerve defects using a tissue-engineered PLCL/SF/NGF@TA-PPy-RGD conduit. The conduit was fabricated by combining electrospun PLCL/SF with an NGF-loaded conductive TA-PPy-RGD gel. The gel, synthesized from RGD-modified tannic acid (TA) and polypyrrole (PPy), provides growth anchor points for nerve cells. In vitro results showed that this hybrid conduit could enhance PC12 cell proliferation, migration, and reduce apoptosis under oxidative stress. Furthermore, the conduit activated the PI3K/AKT signalling pathway in PC12 cells. In a rat model of sciatic nerve defect, the PLCL/SF/NGF@TA-PPy-RGD conduit significantly improved motor function, gastrocnemius muscle function, and myelin sheath axon thickness, comparable to autologous nerve transplantation. It also promoted angiogenesis around the nerve defect. This study suggests that PLCL/SF/NGF@TA-PPy-RGD conduits provide a conducive environment for nerve regeneration, offering a new strategy for peripheral nerve defect treatment, this study provided theoretical basis and new strategies for the research and treatment of peripheral nerve defect.


Subject(s)
Hydrogels , Nerve Growth Factor , Nerve Regeneration , Oligopeptides , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sciatic Nerve , Signal Transduction , Animals , Nerve Regeneration/drug effects , Rats , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , PC12 Cells , Sciatic Nerve/drug effects , Sciatic Nerve/injuries , Oligopeptides/pharmacology , Oligopeptides/chemistry , Hydrogels/chemistry , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Rats, Sprague-Dawley , Male , Cell Proliferation/drug effects , Apoptosis/drug effects , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Polymers/chemistry
3.
Biomed Mater ; 19(5)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39094612

ABSTRACT

The therapy of large defects in peripheral nerve injury (PNI) suffers from several drawbacks, especially the lack of autologous nerve donors. Nerve conduits are considered as a solution for nerve injury treatment, but biocompatibility improvements is still required for conduits prepared with synthetic materials. Cell-derived extracellular matrix (ECM) has drawn attention due to its lower risk of immunogenic response and independence from donor availability. The goal of this study is to coat bone mesenchymal stem cell-derived ECMs on poly(lactic-co-glycolic) acid (PLGA) conduits to enhance their ability to support neural growth and neurite extensions. The ECM-coated conduits have better hydrophilic properties than the pure PLGA conduits. A marked increase on PC12 and RSC96 cells' viability, proliferation and dorsal root ganglion neurite extension was observed. Quantitative PCR analysis exhibited a significant increase in markers for cell proliferation (GAP43), neurite extension (NF-H, MAP2, andßIII-tubulin) and neural function (TREK-1). These results show the potential of ECM-coated PLGA conduits in PNI therapy.


Subject(s)
Cell Proliferation , Cell Survival , Extracellular Matrix , Mesenchymal Stem Cells , Nerve Regeneration , Neurites , Polylactic Acid-Polyglycolic Acid Copolymer , Animals , Rats , Neurites/metabolism , PC12 Cells , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/cytology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nerve Regeneration/drug effects , Tissue Scaffolds/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Ganglia, Spinal , Peripheral Nerve Injuries/therapy , Tissue Engineering/methods , Polymers/chemistry , Materials Testing
4.
Environ Sci Technol ; 58(32): 14088-14097, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39096285

ABSTRACT

Urinary analysis of exogenous and endogenous molecules constitutes an efficient, noninvasive approach to evaluate human health status. However, the exposome characterization of urinary molecules remains extremely challenging with current techniques. Herein, we develop an ExpoNano strategy based on hyper-cross-linked polymers (HCPs) to achieve ultrahigh-throughput measurement of exo/endogenous molecules in urine. The strategy includes a simple trapping-detrapping procedure (15 min) with HCPs in enzymatically treated urine, followed by mass spectrometer determination. Molecules that can be determined by ExpoNano have a wide range of molecular weight (75-837 Da) and Log Kow (octanol-water partition coefficient; -9.86 to 10.56). The HCPs can be repeatedly used five times without decreasing the trapping efficiency. Application of ExpoNano in a biomonitoring study revealed a total of 63 environmental chemicals detected in >50% of the urine pools collected from Chinese adults living in 13 cities, with a median concentration of 0.026-47 ng/mL, while nontargeted analysis detected an additional 243 exogenous molecules. Targeted and nontargeted analysis also detected 926 endogenous molecules in pooled urine. Collectively, the ExpoNano strategy demonstrates unique advantages over traditional urine analysis approaches, including a wide range of analytes, satisfactory trapping efficiency, high simplicity and reusability, and extremely reduced time demand and financial cost.


Subject(s)
Biological Monitoring , Polymers , Humans , Polymers/chemistry , Biological Monitoring/methods , Exposome , Environmental Monitoring/methods , Adult
5.
Molecules ; 29(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124924

ABSTRACT

Active ingredients from Traditional Chinese Medicines (TCMs) have been a cornerstone of healthcare for millennia, offering a rich source of bioactive compounds with therapeutic potential. However, the clinical application of TCMs is often limited by challenges such as poor solubility, low bioavailability, and variable pharmacokinetics. To address these issues, the development of advanced polymer nanocarriers has emerged as a promising strategy for the delivery of TCMs. This review focuses on the introduction of common active ingredients from TCMs and the recent advancements in the design and application of polymer nanocarriers for enhancing the efficacy and safety of TCMs. We begin by discussing the unique properties of TCMs and the inherent challenges associated with their delivery. We then delve into the types of polymeric nanocarriers, including polymer micelles, polymer vesicles, polymer hydrogels, and polymer drug conjugates, highlighting their application in the delivery of active ingredients from TCMs. The main body of the review presents a comprehensive analysis of the state-of-the-art nanocarrier systems and introduces the impact of these nanocarriers on the solubility, stability, and bioavailability of TCM components. On the basis of this, we provide an outlook on the future directions of polymer nanocarriers in TCM delivery. This review underscores the transformative potential of polymer nanocarriers in revolutionizing TCM delivery, offering a pathway to harness the full therapeutic potential of TCMs while ensuring safety and efficacy in a modern medical context.


Subject(s)
Drug Carriers , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Nanoparticles , Polymers , Polymers/chemistry , Drug Carriers/chemistry , Humans , Nanoparticles/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Drug Delivery Systems , Animals , Biological Availability , Micelles
6.
Molecules ; 29(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39124961

ABSTRACT

Molecular imprinting has emerged as an important and practical technology to create economical and stable synthetic mimics of antibodies and enzymes. It has already found a variety of important applications, such as affinity separation, chemical/biological sensing, disease diagnostics, proteomics, bioimaging, controlled drug release, and catalysis. In the past decade, significant breakthroughs have been made in non-covalently imprinted polymers, from their synthesis through to their applications. In terms of synthesis, quite a few versatile and facile imprinting approaches for preparing MIPs have been invented, which have effectively solved some key issues in molecular imprinting. Additionally, important applications in several areas, such as sensors, proteomics and bioimaging, have been well demonstrated. In this review, we critically and comprehensively survey key recent advances made in the preparation of non-covalently imprinted polymers and their important applications. We focus on the state-of-art of this technology from three different perspectives: fundamentals, synthetic strategies, and applications. We first provide a fundamental basis for molecular imprinting technologies that have been developed, which is extremely helpful for establishing a sound understanding of the challenges in molecular imprinting. Then, we discuss in particular the major breakthroughs within the last ten years (2014-2024), with emphasis on new imprinting approaches, what strengths the breakthroughs can provide, and which new applications the properties of the prepared non-covalently imprinted polymers are fit for.


Subject(s)
Molecular Imprinting , Molecularly Imprinted Polymers , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry , Humans , Biosensing Techniques/methods
7.
Biointerphases ; 19(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39136648

ABSTRACT

Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 µm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%-80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.


Subject(s)
Bacterial Adhesion , Enterococcus faecalis , Bacterial Adhesion/drug effects , Enterococcus faecalis/physiology , Enterococcus faecalis/drug effects , Polymers/chemistry , Silicones/chemistry , Surface Properties , Fibrinogen/chemistry , Fibrinogen/metabolism , Humans
8.
Int J Nanomedicine ; 19: 7831-7850, 2024.
Article in English | MEDLINE | ID: mdl-39105099

ABSTRACT

Purpose: Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods: Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results: Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion: This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.


Subject(s)
Bufanolides , Colorectal Neoplasms , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Photothermal Therapy , Animals , Bufanolides/pharmacology , Bufanolides/chemistry , Bufanolides/pharmacokinetics , Humans , Glycolysis/drug effects , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Photothermal Therapy/methods , Mice , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Indoles/chemistry , Indoles/pharmacology , Polyethylene Glycols/chemistry , Polymers/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Mice, Nude , HCT116 Cells , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Xenograft Model Antitumor Assays
9.
Mikrochim Acta ; 191(9): 512, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39105857

ABSTRACT

Diphenylalanine(FF)-Zn self-assembly (FS) confined in covalent organic polymers (FS@COPs) with efficient fluorescence was synthesized for fluorescence sensing of biogenic amines, which was one of the most important indicators for monitoring food freshness. FS@COPs combined excellent biodegradability of self-assembled dipeptide with chemical stability, porosity and targeted site recognition of COPs. With an optimal excitation wavelength of 360 nm and an optimal emission wavelength of 450 nm, FS@COPs could be used as fluorescence probes to rapidly visualize and highly sensitive determination of tryptamine (Try) within 15 min, and the linear range was from 40 to 900 µg L-1 with a detection limit of 63.08 µg kg-1. Importantly, the FS@COPs showed a high fluorescence quantum yield of 11.28%, and good stability, solubility, and selectivity, which could successfully achieve the rapid, accurate and highly sensitive identification of Try. Furthermore, we revealed the mechanism of FS@COPs for fluorescence sensing of targets. The FS@COPs system was applied to the fluorescence sensing of Try in real samples and showed satisfactory accuracy of 93.02%-105.25%.


Subject(s)
Dipeptides , Fluorescent Dyes , Limit of Detection , Spectrometry, Fluorescence , Tryptamines , Tryptamines/analysis , Tryptamines/chemistry , Dipeptides/chemistry , Dipeptides/analysis , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Meat Products/analysis , Polymers/chemistry
10.
Article in English | MEDLINE | ID: mdl-39109479

ABSTRACT

Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Subject(s)
Drug Carriers , Drug Delivery Systems , Polymers , Proteins , Humans , Polymers/chemistry , Proteins/chemistry , Animals , Drug Carriers/chemistry , Drug Design , Nanoparticles/chemistry , Nanomedicine
11.
Chromosome Res ; 32(3): 11, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126507

ABSTRACT

Interphase chromosomes reside within distinct nuclear regions known as chromosome territories (CTs). Recent observations from Hi-C analyses, a method mapping chromosomal interactions, have revealed varied decay in contact probabilities among different chromosomes. Our study explores the relationship between this contact decay and the particular shapes of the chromosome territories they occupy. For this, we employed molecular dynamics (MD) simulations to examine how confined polymers, resembling chromosomes, behave within different confinement geometries similar to chromosome territory boundaries. Our simulations unveil so far unreported relationships between contact probabilities and end-to-end distances varying based on different confinement geometries. These findings highlight the crucial impact of chromosome territories on shaping the larger-scale properties of 3D genome organization. They emphasize the intrinsic connection between the shapes of these territories and the contact behaviors exhibited by chromosomes. Understanding these correlations is key to accurately interpret Hi-C and microscopy data, and offers vital insights into the foundational principles governing genomic organization.


Subject(s)
Chromosomes , Molecular Dynamics Simulation , Polymers/chemistry , Humans , Chromatin/genetics , Interphase
12.
Sci Rep ; 14(1): 18567, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127742

ABSTRACT

Encapsulation of essential oils (EOs) is an important strategy that can be applied to intensify the stability and efficiency of these compounds in integrated pest management. The present study aimed to investigate the sub-lethal activity of polymer-based EOs nanoparticles against red flour beetle, Tribolium castaneum adults as an important critical pest of stored products. Chitosan nanoparticles (CSNPs) containing garlic and cinnamon essential oils (GEO and CEO) prepared using the ionic cross-link technique. Stability of nano-formulations evaluated over temperature and storage time. The fumigant effect (LC10, LC20, LC30) and contact toxicity (LC10, LC15, LC25) determined. In addition, the contact toxicities of EOs and their nanoparticles on nutritional indices evaluated. An olfactometer used to assess the repellent activity of EOs and EOs loaded in CSNPs (EOs@CSNPs) in sub-lethal fumigant concentrations. Characterization results showed GEO loaded in CSNPs has particle size of 231.14 ± 7.55 nm, polydispersity index (PDI) value of 0.15 ± 0.02, encapsulation efficiency (EE) percentage of 76.77 ± 0.20 and zeta potential of - 18.82 ± 0.90 mV, in which these values for the CEO loaded in CSNPs (CEO@CSNPs) changed to 303.46 ± 0.00 nm, 0.20 ± 0.05, 86.81 ± 0.00% and - 20.16 ± 0.35 mV, respectively. A lower PDI value for both CSNPs showed an appropriate NPs size distribution. Furthermore, NPs size and encapsulation efficiency did not change in various temperatures and during four months which confirm good stability of the EOs@CSNPs. In LC30 of GEO@CSNPs, the maximum repellency was determined as 66.66 ± 3.33. Among nutritional indices, in LC25 of GEO@CSNPs, the relative growth rate (RGR) (0.011 ± 0.003 mg.mg-1.day-1), relative consumption rate (RCR) (0.075 ± 0.004 mg.mg-1.day-1) and feeding deterrence index (FDI) (54.662 ± 1.616%) were more affected, so GEO@CSNPs was more effective than CEO@CSNPs. The results of repellent and anti-dietary activities of EOs and EOs@CSNPs confirmed the higher repellency and adverse effectivity on nutritional indices of Tribolium castaneum pest treated with EOs@CSNPs compared to free EOs. In conclusion, the NPs form of GEO and CEO can be a novel and efficient carrier for improving the repellent and anti-nutritional activities of EOs.


Subject(s)
Insect Repellents , Nanoparticles , Oils, Volatile , Tribolium , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Nanoparticles/chemistry , Tribolium/drug effects , Insect Repellents/pharmacology , Insect Repellents/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Cinnamomum zeylanicum/chemistry , Polymers/chemistry , Particle Size , Garlic/chemistry , Insecticides/pharmacology , Insecticides/chemistry
13.
Luminescence ; 39(8): e4846, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090987

ABSTRACT

Antibiotic residues persist in the environment and represent serious health hazards; thus, it is important to develop sensitive and effective detection techniques. This paper presents a bio-inspired way to make water-soluble fluorescent polymer carbon dots (PCDs@PVA) by heating biomass precursors and polyvinyl alcohol (PVA) together. For example, the synthesized PCDs@PVA are very stable with enhanced emission intensity. This property was observed in a wide range of environmental conditions, including those with changing temperatures, pH levels, UV light, and ionic strength. PCDs@PVA detected the antibiotic chlortetracycline (CTCs) with great selectivity against structurally related compounds and a low detection limit of 20 nM, demonstrating outstanding sensitivity and specificity. We confirmed the sensor's practical application through real sample analysis, yielding recovery rates of 98%-99% in samples of milk, honey, and river water. The synthesized PCDs@PVA fluorescence sensor was successfully used for CTCs detection in real samples.


Subject(s)
Carbon , Chlortetracycline , Fluorescent Dyes , Polyvinyl Alcohol , Quantum Dots , Chlortetracycline/analysis , Polyvinyl Alcohol/chemistry , Carbon/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Quantum Dots/chemistry , Animals , Milk/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Limit of Detection , Honey/analysis , Polymers/chemistry , Polymers/chemical synthesis , Water Pollutants, Chemical/analysis , Rivers/chemistry , Spectrometry, Fluorescence , Hydrogen-Ion Concentration
14.
J Agric Food Chem ; 72(32): 18121-18131, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39093022

ABSTRACT

The adsorbents used to remove taint compounds from wine can also remove constituents that impart desirable color, aroma, and flavor attributes, whereas molecularly imprinted polymers (MIPs) are tailor-made to selectively bind one or more target compounds. This study evaluated the potential for MIPs to ameliorate smoke taint in wine via removal of volatile phenols during or after fermentation. The addition of MIPs to smoke-tainted Pinot Noir wine (for 24 h with stirring) achieved 35-57% removal of guaiacol, 4-methylguaiacol, cresols, and phenol, but <10% of volatile phenol glycoconjugates were removed and some wine color loss occurred. Of the MIP treatments that were subsequently applied to Semillon and Merlot fermentations or wine, MIP addition post-inoculation of yeast yielded the best outcomes, both in terms of volatile phenol removal and wine sensory profiles. Despite some impact on other aroma volatiles and red wine color, the findings demonstrate that MIPs can ameliorate smoke-tainted wine.


Subject(s)
Fermentation , Molecularly Imprinted Polymers , Odorants , Smoke , Taste , Wine , Wine/analysis , Odorants/analysis , Molecularly Imprinted Polymers/chemistry , Humans , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Phenols/chemistry , Phenols/metabolism , Male , Female , Adult , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Polymers/chemistry , Polymers/metabolism , Adsorption
15.
J Environ Manage ; 367: 122015, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39102783

ABSTRACT

In response to global challenges in resource supply, many industries are adopting the principles of the Circular Economy (CE) to improve their resource acquisition strategies. This paper introduces an innovative approach to address the environmental impact of waste Glass Fiber Reinforced-Polymer (GFRP) pipes and panels by repurposing them to manufacture structural components for new bicycle and pedestrian bridges. The study covers the entire process, including conceptualization, analysis, design, and testing of a deck system, with a focus on the manufacturing process for a 7-m-long prototype bridge. The study shows promising results in the concept of a sandwich structure utilizing discarded GFRP pipes and panels, which has the flexibility to account for variabilities in dimensions of incoming products while still meeting mechanical requirements. The LCA analysis shows that the transportation of materials is the governing contributing factor. It was concluded that further development of this concept should be accompanied by a business model that considers the importance of the contributions from the whole value chain.


Subject(s)
Polymers , Polymers/chemistry , Recycling , Pedestrians , Transportation , Glass/chemistry
16.
Biomed Mater ; 19(5)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39105493

ABSTRACT

Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.


Subject(s)
Biocompatible Materials , Bone and Bones , Carbohydrates , Ceramics , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Ceramics/chemistry , Humans , Bone and Bones/metabolism , Tissue Scaffolds/chemistry , Animals , Carbohydrates/chemistry , Biocompatible Materials/chemistry , Bone Regeneration , Bone Substitutes/chemistry , Polymers/chemistry
17.
Sci Rep ; 14(1): 18622, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128928

ABSTRACT

Tryptophan (an essential amino acid) and its clinically important metabolite-kynurenine contribute to several fundamental biological processes and methods that allow their determination in biological samples are in demand. The novelty of the work was a demonstration of the utility of two polymers: 4-vinylpyridine crosslinked with trimethylolpropane trimethacrylate (poly(4VP-co-TRIM)) or 1,4-dimethacryloyloxybenzene (poly(4VP-co-14DMB))-in terms of human serum clean-up for simultaneous LC-MS determination of tryptophan and kynurenine. The goal was to achieve a reduction of the matrix effect, which is responsible for signal suppression, with minimal capture of analytes. The adsorption properties of the polymeric beads were studied by evaluating the adsorption kinetics and isotherms in model matrices. Therefore, the adsorption capacities of both molecules were not efficient, the tested 4-vinylpyridine-based copolymers have shown great promise (especially poly(4VP-co-TRIM)) as sorbents for serum clean-up. In the model human serum matrix, poly(4VP-co-TRIM) provided good recoveries of tryptophan and kynurenine (76% and 87%, respectively) and allowed for the reduction of the matrix effect. Performances of both copolymers were compared to those of commercially available sorbents (octadecylsilane, activated charcoal, and primary secondary amine).


Subject(s)
Kynurenine , Liquid Chromatography-Mass Spectrometry , Polymers , Pyridines , Tryptophan , Humans , Adsorption , Kynurenine/blood , Kynurenine/analogs & derivatives , Kynurenine/chemistry , Liquid Chromatography-Mass Spectrometry/methods , Polymers/chemistry , Pyridines/chemistry , Pyridines/blood , Tryptophan/blood , Tryptophan/chemistry
18.
Biomed Phys Eng Express ; 10(5)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39094587

ABSTRACT

Resorbable inferior vena cava (IVC) filters require embedded contrast for image-guided placement and integrity monitoring. We calculated correction factors to account for partial volume averaging of thin nanoparticle (NP)-embedded materials, accounting for object and slice thicknesses, background signal, and nanoparticle concentration. We used phantoms containing polycaprolactone disks embedded with bismuth (Bi) or ytterbium (Yb): 0.4- to 1.2-mm-thick disks of 20 mg ml-1NPs (thickness phantom), 0.4-mm-thick disks of 0-20 mg ml-1NPs in 2 mg ml-1iodine (concentration phantom), and 20 mg ml-1NPs in 0.4-mm-thick disks in 0-10 mg ml-1iodine (background phantom). Phantoms were scanned on a dual-source CT with 80, 90, 100, and 150 kVp with tin filtration and reconstructed at 1.0- to 1.5-mm slice thickness with a 0.1-mm interval. Following scanning, disks were processed for inductively coupled plasma optical emission spectrometry (ICP-OES) to determine NP concentration. Mean and maximum CT numbers (HU) of all disks were measured over a 0.5-cm2area for each kVp. HU was converted to concentration using previously measured calibrations. Concentration measurements were corrected for partial volume averaging by subtracting residual slice background and extrapolating disk thickness to both nominal and measured slice sensitivity profiles (SSP, mm). Slice thickness to agreement (STTA, mm) was calculated by replacing the CT-derived concentrations with ICP-OES measurements and solving for thickness. Slice thickness correction factors improved agreement with ICP-OES for all measured data. Yb corrections resulted in lower STTA than Bi corrections in the concentration phantom (1.01 versus 1.31 STTA/SSP, where 1.0 is perfect agreement), phantoms with varying thickness (1.30 versus 1.87 STTA/SSP), and similar ratio in phantoms with varying background iodine concentration (1.34 versus 1.35 STTA/SSP). All measured concentrations correlated strongly with ICP-OES and all corrections for partial volume averaging increased agreement with ICP-OES concentration, demonstrating potential for monitoring the integrity of thin IVC resorbable filters with CT.


Subject(s)
Phantoms, Imaging , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Polyesters/chemistry , Polymers/chemistry , Contrast Media/chemistry , Ytterbium/chemistry , Bismuth/chemistry , Humans , Nanostructures/chemistry , Nanoparticles/chemistry , Image Processing, Computer-Assisted/methods
19.
Nat Commun ; 15(1): 6818, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122699

ABSTRACT

More than two million people worldwide are affected by life-threatening, invasive fungal infections annually. Candida species are the most common cause of nosocomial, invasive fungal infections and are associated with mortality rates above 40%. Despite the increasing incidence of drug-resistance, the development of novel antifungal formulations has been limited. Here we investigate the antifungal mode of action and therapeutic potential of positively charged, synthetic peptide mimics to combat Candida albicans infections. Our data indicates that these synthetic polymers cause endoplasmic reticulum stress and affect protein glycosylation, a mode of action distinct from currently approved antifungal drugs. The most promising polymer composition damaged the mannan layer of the cell wall, with additional membrane-disrupting activity. The synergistic combination of the polymer with caspofungin prevented infection of human epithelial cells in vitro, improved fungal clearance by human macrophages, and significantly increased host survival in a Galleria mellonella model of systemic candidiasis. Additionally, prolonged exposure of C. albicans to the synergistic combination of polymer and caspofungin did not lead to the evolution of tolerant strains in vitro. Together, this work highlights the enormous potential of these synthetic peptide mimics to be used as novel antifungal formulations as well as adjunctive antifungal therapy.


Subject(s)
Antifungal Agents , Candida albicans , Candidiasis , Caspofungin , Drug Synergism , Peptides , Candida albicans/drug effects , Antifungal Agents/pharmacology , Humans , Caspofungin/pharmacology , Animals , Candidiasis/drug therapy , Candidiasis/microbiology , Peptides/pharmacology , Peptides/chemistry , Macrophages/drug effects , Macrophages/microbiology , Endoplasmic Reticulum Stress/drug effects , Cell Wall/drug effects , Microbial Sensitivity Tests , Mannans/pharmacology , Mannans/chemistry , Moths/microbiology , Moths/drug effects , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Polymers/pharmacology , Polymers/chemistry
20.
Molecules ; 29(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124888

ABSTRACT

Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.


Subject(s)
Nanoparticles , Nanoparticles/chemistry , Humans , Animals , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL