Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.286
Filter
1.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38836325

ABSTRACT

Natural and synthetic polymeric materials, particularly soft and hard tissue replacements, are paramount in medicine. We prepared calcium-incorporated sulfonated polyether-ether ketone (SPEEK) polymer membranes for bone applications. The bioactivity was higher after 21 days of immersion in simulated body fluid (SBF) due to calcium concentration in the membrane. We present a new biomaterial healing system composed of calcium and sulfonated polyether ether ketone (Ca-SPEEK) that can function as a successful biomaterial without causing inflammation when tested on bone marrow cells. The Ca-SPEEK exhibited 13 ± 0.5% clot with low fibrin mesh formation compared to 21 ± 0.5% in SPEEK. In addition, the Ca-SPEEK showed higher protein adsorption than SPEEK membranes. As an inflammatory response, IL-1 and TNF-α in the case of Ca-SPEEK were lower than those for SPEEK. We found an early regulation of IL-10 in the case of Ca-SPEEK at 6 h, which may be attributed to the down-regulation of the inflammatory markers IL-1 and TNF-α. These results evidence the innovative bioactivity of Ca-SPEEK with low inflammatory response, opening venues for bone applications.


Subject(s)
Biocompatible Materials , Bone Marrow Cells , Calcium , Polymers , Tumor Necrosis Factor-alpha , Animals , Mice , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Polymers/chemistry , Polymers/pharmacology , Calcium/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Benzophenones/chemistry , Benzophenones/pharmacology , Inflammation/drug therapy , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Ketones/chemistry , Ketones/pharmacology , Materials Testing , Interleukin-1/metabolism , Interleukin-10/metabolism
2.
J Am Chem Soc ; 146(25): 17240-17249, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865148

ABSTRACT

Antibiotic-resistant pathogens have been declared by the WHO as one of the major public health threats facing humanity. For that reason, there is an urgent need for materials with inherent antibacterial activity able to replace the use of antibiotics, and in this context, hydrogels have emerged as a promising strategy. Herein, we introduce the next generation of cationic hydrogels with antibacterial activity and high versatility that can be cured on demand in less than 20 s using thiol-ene click chemistry (TEC) in aqueous conditions. The approach capitalizes on a two-component system: (i) telechelic polyester-based dendritic-linear-dendritic (DLDs) block copolymers of different generations heterofunctionalized with allyl and ammonium groups, as well as (ii) polyethylene glycol (PEG) cross-linkers functionalized with thiol groups. These hydrogels resulted in highly tunable materials where the antibacterial performance can be adjusted by modifying the cross-linking density. Off-stoichiometric hydrogels showed narrow antibacterial activity directed toward Gram-negative bacteria. The presence of pending allyls opens up many possibilities for functionalization with biologically interesting molecules. As a proof-of-concept, hydrophilic cysteamine hydrochloride as well as N-hexyl-4-mercaptobutanamide, as an example of a thiol with a hydrophobic alkyl chain, generated three-component networks. In the case of cysteamine derivatives, a broader antibacterial activity was noted than the two-component networks, inhibiting the growth of Gram-positive bacteria. Additionally, these systems presented high versatility, with storage modulus values ranging from 270 to 7024 Pa and different stability profiles ranging from 1 to 56 days in swelling experiments. Good biocompatibility toward skin cells as well as strong adhesion to multiple surfaces place these hydrogels as interesting alternatives to conventional antibiotics.


Subject(s)
Anti-Bacterial Agents , Hydrogels , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Dendrimers/chemistry , Dendrimers/pharmacology , Microbial Sensitivity Tests , Adhesives/chemistry , Adhesives/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polymers/chemistry , Polymers/pharmacology , Humans , Molecular Structure , Click Chemistry
3.
J Mater Chem B ; 12(25): 6221-6241, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38835196

ABSTRACT

Traumatic injuries, neurodegenerative diseases and oxidative stress serve as the early biomarkers for neuronal damage and impede angiogenesis and subsequently neuronal growth. Considering this, the present work aimed to develop a poly(N-acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) hydrogel [p(NAG-Ac-NAE)] with angiogenesis/neurogenesis properties. As constituents of this polymer modulate their vital role in biological functions, inhibitory neurotransmitter glycine regulates neuronal homeostasis, and glutamatergic signalling regulates angiogenesis. The p(NAG-Ac-NAE) hydrogel is a highly branched, biodegradable and pH-responsive polymer with a very high swelling behavior of 6188%. The mechanical stability (G', 2.3-2.7 kPa) of this polymeric hydrogel is commendable in the differentiation of mature neurons. This hydrogel is biocompatible (as tested in HUVEC cells) and helps to proliferate PC12 cells (152.7 ± 13.7%), whereas it is cytotoxic towards aggressive cancers such as glioblastoma (LN229 cells) and triple negative breast cancer (TNBC; MDA-MB-231 cells) and helps to maintain the healthy cytoskeleton framework structure of primary cortical neurons by facilitating the elongation of the axonal pathway. Furthermore, FACS results revealed that the synthesized hydrogel potentiates neurogenesis by inducing the cell cycle (G0/G1) and arresting the sub-G1 phase by limiting apoptosis. Additionally, RT-PCR results revealed that this hydrogel induced an increased level of HIF-1α expression, providing preconditioning effects towards neuronal cells under oxidative stress by scavenging ROS and initiating neurogenic and angiogenic signalling. This hydrogel further exhibits more pro-angiogenic activities by increasing the expression of VEGF isoforms compared to previously reported hydrogels. In conclusion, the newly synthesized p(NAG-Ac-NAE) hydrogel can be one of the potential neuroregenerative materials for vasculogenesis-assisted neurogenic applications and paramount for the management of neurodegenerative diseases.


Subject(s)
Hydrogels , Oxidative Stress , Oxidative Stress/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Humans , Animals , Rats , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Neurogenesis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , PC12 Cells , Neovascularization, Physiologic/drug effects , Cell Proliferation/drug effects , Polymers/chemistry , Polymers/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
4.
ACS Appl Mater Interfaces ; 16(25): 32649-32661, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865694

ABSTRACT

Ultraviolet (UV) filters are the core ingredients in sunscreens and protect against UV-induced skin damage. Nevertheless, their safety and effectiveness have been questioned in terms of their poor photostability, skin penetration, and UV-induced generation of deleterious reactive oxygen species (ROS). Herein, an organic UV filter self-framed microparticle sunblock was exploited, in which quercetin (QC) and hexachlorocyclotriphosphazene (HCCP) were self-constructed into microparticles (HCCP-QC MPs) by facile precipitation polymerization without any carriers. HCCP-QC MPs could not only significantly extend the UV shielding range to the whole UV region but also remarkably reduce UV-induced ROS while avoiding direct skin contact and the resulting epidermal penetration of small-molecule QC. Meanwhile, HCCP-QC MPs possess a high QC-loading ability (697 mg g-1) by QC itself as the microparticles' building blocks. In addition, there is no leakage issue with small molecules due to its covalently cross-linked structure. In vitro and vivo experiments also demonstrated that the HCCP-QC MPs have excellent UV protection properties and effective ROS scavenging ability without toxicity. In summary, effective UV-shielding and ROS scavenging ability coupled with excellent biocompatibility and nonpenetration of small molecules make it a broad prospect in skin protection.


Subject(s)
Free Radical Scavengers , Organophosphorus Compounds , Polymers , Reactive Oxygen Species , Skin , Sunscreening Agents , Ultraviolet Rays , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Polymers/chemistry , Polymers/pharmacology , Skin/drug effects , Skin/radiation effects , Skin/metabolism , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Reactive Oxygen Species/metabolism , Animals , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Humans , Mice , Quercetin/chemistry , Quercetin/pharmacology
5.
ACS Appl Mater Interfaces ; 16(26): 34141-34155, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912611

ABSTRACT

Supramolecular biomaterials can recapitulate the structural and functional facets of the native extracellular matrix and react to biochemical cues, leveraging the unique attributes of noncovalent interactions, including reversibility and tunability. However, the low mechanical properties of supramolecular biomaterials can restrict their utilization in specific applications. Combining the advantages of supramolecular polymers with covalent polymers can lead to the fabrication of tailor-made biomaterials with enhanced mechanical properties/degradability. Herein, we demonstrate a synergistic coassembled self-healing gel as a multifunctional supramolecular material. As the supramolecular polymer component, we chose folic acid (vitamin B9), an important biomolecule that forms a gel comprising one-dimensional (1D) supramolecular polymers. Integrating polyvinyl alcohol (PVA) into this supramolecular gel alters its ultrastructure and augments its mechanical properties. A drastic improvement of complex modulus (G*) (∼3674 times) was observed in the folic acid-PVA gel with 15% w/v PVA (33215 Pa) compared with the folic acid gel (9.04 Pa). The coassembled hydrogels possessed self-healing and injectable/thixotropic attributes and could be printed into specific three-dimensional (3D) shapes. Synergistically, the supramolecular polymers of folic acid also improve the toughness, durability, and ductility of the PVA films. A nanocomposite of the gels with silver nanoparticles exhibited excellent catalytic efficiency and antibacterial activity. The folic acid-PVA coassembled gels and films also possessed high cytocompatibility, substantiated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and live-dead assays. Taken together, the antibacterial and cell-adhesive attributes suggest potential applications of these coassembled biomaterials for tissue engineering and wound healing.


Subject(s)
Anti-Bacterial Agents , Folic Acid , Polyvinyl Alcohol , Folic Acid/chemistry , Folic Acid/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Polyvinyl Alcohol/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Escherichia coli/drug effects , Mice , Staphylococcus aureus/drug effects , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Polymers/chemistry , Polymers/pharmacology , Microbial Sensitivity Tests , Humans
6.
J Colloid Interface Sci ; 672: 161-169, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838625

ABSTRACT

Intelligent shape memory polymer can be potentially used in manufacturing implantable devices that enables a benign variation of implant dimensions with the external stimuli, thus effectively lowering insertion forces and evading associated risks. However, in surgical implantation, biomaterials-associated infection has imposed a huge burden to healthcare system that urgently requires an efficacious replacement of antibiotic usages. Preventing the initial attachment and harvesting a biocidal function upon native surfaces may be deemed as a preferable strategy to tackle the issues of bacterial infection. Herein, a functionalized polylactic acid (PLA) composite membrane assembled with graphene (GE, a widely used photothermal agent) was fabricated through a blending process and then polydimethylsiloxane utilized as binders to pack hydrophobic SiO2 tightly onto polymer surface (denoted as PLA-GE/SiO2). Such an active platform exhibited a moderate shape-memory performance upon near-infrared (NIR) light stimulation, which was feasible for programmed deformation and shape recovery. Particularly stirring was that PLA-GE/SiO2 exerted a pronounced bacteria-killing effect under NIR illumination, 99.9 % of E. coli and 99.8 % of S. aureus were effectively eradicated in a lean period of 5 min. Furthermore, the obtained composite membrane manifested excellent antiadhesive properties, resulting in a bacteria-repelling efficacy of up to 99 % for both E. coli and S. aureus species. These findings demonstrated the potential value of PLA-GE/SiO2 as a shape-restorable platform in "kill&repel" integration strategy, further expanding its applications for clinical anti-infective treatment.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Graphite , Microbial Sensitivity Tests , Polyesters , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyesters/chemistry , Polyesters/pharmacology , Graphite/chemistry , Graphite/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Surface Properties , Membranes, Artificial , Particle Size , Bacterial Adhesion/drug effects , Polymers/chemistry , Polymers/pharmacology , Infrared Rays , Dimethylpolysiloxanes/chemistry , Dimethylpolysiloxanes/pharmacology
7.
Plant Physiol Biochem ; 213: 108815, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861820

ABSTRACT

Plant Growth Regulators (PGRs) are functional compounds known for enhancing plant growth and development. However, their environmental impact is a concern due to poor water solubility and the need for substantial organic solvents. Recently, nano-delivery systems have emerged as a solution, offering a broad range of applications for small molecule compounds. This study introduces a nano-delivery system for Triacontanol (TA), utilizing a star polymer (SPc), aimed at promoting maize growth and improving physiological indicators. The system forms nearly spherical nanoparticles through TA's hydroxyl group and SPc's tertiary amine group. The TA/SPc nano-complex notably outperforms separate TA or SPc treatments in maize, increasing biomass, chlorophyll content, and nutrient absorption. It elevates chlorophyll content by 16.4%, 10.0%, and 6.2% over water, TA, and SPc treatments, respectively, and boosts potassium and nitrate ion uptake by up to 2 and 1.6 times compared to TA alone, leading to enhanced plant height and leaf growth. qRT-PCR analysis further demonstrated that the nano-complex enhanced cellular uptake through the endocytosis pathway by up-regulating endocytosis-related gene expression. The employment of TEM to observe vesicle formation during the internalization of maize leaves furnishes corroborative evidence for the participation of the endocytosis pathway in this process. This research confirms that SPc is an effective carrier for TA, significantly enhancing biological activity and reducing TA dosage requirements.


Subject(s)
Fatty Alcohols , Zea mays , Zea mays/growth & development , Zea mays/drug effects , Zea mays/metabolism , Fatty Alcohols/pharmacology , Nanoparticles/chemistry , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Polymers/chemistry , Polymers/pharmacology , Chlorophyll/metabolism
8.
Biomacromolecules ; 25(7): 4192-4202, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38917475

ABSTRACT

The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.


Subject(s)
Doxorubicin , Doxorubicin/pharmacology , Doxorubicin/chemistry , Humans , Animals , Mice , Cell Membrane Permeability/drug effects , Polymers/chemistry , Polymers/pharmacology , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Drug Carriers/chemistry , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Acrylamides/chemistry , Acrylamides/pharmacology , Hydrogen-Ion Concentration
9.
ACS Appl Mater Interfaces ; 16(24): 30874-30889, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38856922

ABSTRACT

A new composite sponge assisted by magnetic field-mediated guidance was developed for effective hemostasis. It was based on polydopamine capillary-channel agarose (PDA-CAGA) sponge as matrix; meanwhile, the combination of deep eutectic solvent (DES, choline chloride:glycerol = 1:1, M/M)-dispersed Fe3O4 nanoparticles after fabrication by tannic acid (DES-Fe3O4@TA) was applied as hemostatic magnetic fluid. This sponge had oriented and aligned capillary channels realized by a 3D printed pattern, which endowed them with obvious shape memory and liquid absorption performance. Computational simulation was performed to describe the fluid status in channels; DES-Fe3O4@TA exhibited good magnetic properties, fluidity, and stability. In addition, the sponge driven to react rapidly with the bleeding site under the effect of a magnetic field presented a shorter hemostasis time (reduced by 85.02% in the tail and 81.07% in the liver of rats) and less blood loss (reduced by 97.08% in the tail and 91.50% in the liver) than those of medical gelatin sponge (GS). Meanwhile, the multifunctional material also exhibited better biocompatibility, procoagulant performance, and significant inhibition on S. aureus and E. coli than GS. As a whole, this work proposed a new strategy for rapid hemostasis by designing a magnetic field assisted composite bacteriostatic material, which also expanded the applications of green solvents in the clinical management field.


Subject(s)
Escherichia coli , Sepharose , Staphylococcus aureus , Animals , Rats , Sepharose/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Solvents/chemistry , Hemostasis/drug effects , Polymers/chemistry , Polymers/pharmacology , Indoles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Magnetic Fields , Male , Rats, Sprague-Dawley
10.
ACS Appl Mater Interfaces ; 16(23): 29844-29855, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38829261

ABSTRACT

Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.


Subject(s)
Copper , Indoles , Nanoparticles , Polymers , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Copper/chemistry , Copper/pharmacology , Polymers/chemistry , Polymers/pharmacology , Indoles/chemistry , Indoles/pharmacology , Humans , Animals , Mice , Nanoparticles/chemistry , Female , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Oxidation-Reduction , Nanomedicine , Cell Proliferation/drug effects , Homeostasis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Superoxide Dismutase-1/metabolism
11.
J Nanobiotechnology ; 22(1): 320, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849820

ABSTRACT

Simultaneously modulating the inflammatory microenvironment and promoting local bone regeneration is one of the main challenges in treating bone defects. In recent years, osteoimmunology has revealed that the immune system plays an essential regulatory role in bone regeneration and that macrophages are critical components. In this work, a mussel-inspired immunomodulatory and osteoinductive dual-functional hydroxyapatite nano platform (Gold/hydroxyapatite nanocomposites functionalized with polydopamine - PDA@Au-HA) is developed to accelerate bone tissues regeneration by regulating the immune microenvironment. PDA coating endows nanomaterials with the ability to scavenge reactive oxygen species (ROS) and anti-inflammatory properties, and it also exhibits an immunomodulatory ability to inhibit M1 macrophage polarization and activate M2 macrophage secretion of osteogenesis-related cytokines. Most importantly, this nano platform promotes the polarization of M2 macrophages and regulates the crosstalk between macrophages and pre-osteoblast cells to achieve bone regeneration. Au-HA can synergistically promote vascularized bone regeneration through sustained release of Ca and P particles and gold nanoparticles (NPs). This nano platform has a synergistic effect of good compatibility, scavenging of ROS, and anti-inflammatory and immunomodulatory capability to accelerate the bone repair process. Thus, our research offers a possible therapeutic approach by exploring PDA@Au-HA nanocomposites as a bifunctional platform for tissue regeneration.


Subject(s)
Bivalvia , Bone Regeneration , Durapatite , Gold , Indoles , Macrophages , Osteogenesis , Bone Regeneration/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Animals , Mice , Gold/chemistry , Gold/pharmacology , Bivalvia/chemistry , RAW 264.7 Cells , Macrophages/drug effects , Indoles/chemistry , Indoles/pharmacology , Osteogenesis/drug effects , Reactive Oxygen Species/metabolism , Polymers/chemistry , Polymers/pharmacology , Nanocomposites/chemistry , Metal Nanoparticles/chemistry , Osteoblasts/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Cytokines/metabolism
12.
J Nanobiotechnology ; 22(1): 321, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849841

ABSTRACT

Acute lung injury (ALI) is a life threatening disease in critically ill patients, and characterized by excessive reactive oxygen species (ROS) and inflammatory factors levels in the lung. Multiple evidences suggest that nanozyme with diversified catalytic capabilities plays a vital role in this fatal lung injury. At present, we developed a novel class of polydopamine (PDA) coated cerium dioxide (CeO2) nanozyme (Ce@P) that acts as the potent ROS scavenger for scavenging intracellular ROS and suppressing inflammatory responses against ALI. Herein, we aimed to identify that Ce@P combining with NIR irradiation could further strengthen its ROS scavenging capacity. Specifically, NIR triggered Ce@P exhibited the most potent antioxidant and anti-inflammatory behaviors in lipopolysaccharide (LPS) induced macrophages through decreasing the intracellular ROS levels, down-regulating the levels of TNF-α, IL-1ß and IL-6, up-regulating the level of antioxidant cytokine (SOD-2), inducing M2 directional polarization (CD206 up-regulation), and increasing the expression level of HSP70. Besides, we performed intravenous (IV) injection of Ce@P in LPS induced ALI rat model, and found that it significantly accumulated in the lung tissue for 6 h after injection. It was also observed that Ce@P + NIR presented the superior behaviors of decreasing lung inflammation, alleviating diffuse alveolar damage, as well as promoting lung tissue repair. All in all, it has developed the strategy of using Ce@P combining with NIR irradiation for the synergistic enhanced treatment of ALI, which can serve as a promising therapeutic strategy for the clinical treatment of ROS derived diseases as well.


Subject(s)
Acute Lung Injury , Cerium , Indoles , Polymers , Reactive Oxygen Species , Cerium/chemistry , Cerium/pharmacology , Animals , Acute Lung Injury/drug therapy , Polymers/chemistry , Polymers/pharmacology , Indoles/chemistry , Indoles/pharmacology , Reactive Oxygen Species/metabolism , Rats , Mice , Male , RAW 264.7 Cells , Lung/drug effects , Lung/pathology , Antioxidants/pharmacology , Antioxidants/chemistry , Rats, Sprague-Dawley , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Infrared Rays , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/therapeutic use , Nanoparticles/chemistry , Macrophages/drug effects , Macrophages/metabolism , Cytokines/metabolism
13.
Int J Biol Macromol ; 272(Pt 1): 132893, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838883

ABSTRACT

Foodborne pathogens result in a great harm to human, which is an urgent problem to be addressed. Herein, a novel cellulose-based packaging films with excellent anti-bacterial properties under visible light were prepared. A porphyrin-based covalent organic polymer (Por-COPs) was constructed, then covalently grafted onto dialdehyde cellulose (DAC). The addition of Por-COPs enhanced the mechanical, hydrophobicity, and water resistance of the DAC-based composite films. DAC/Por-COP-2.5 film exhibited outstanding properties for the photodynamic inactivation of bacteria under visible light irradiation, delivering inactivation efficiencies of 99.90 % and 99.45 % towards Staphylococcus aureus and Escherichia coli within 20 min. The DAC/Por-COPs films efficiently generated •O2- and 1O2 under visible light, thereby causing oxidative stress to cell membranes for bacterial inactivation. The prepared composite film forms a protective barrier against bacterial contamination. Results guide the development of high performance and more sustainable packaging films for the food sector.


Subject(s)
Cellulose , Escherichia coli , Porphyrins , Staphylococcus aureus , Cellulose/chemistry , Cellulose/analogs & derivatives , Cellulose/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Light , Food Packaging/methods , Polymers/chemistry , Polymers/pharmacology , Sterilization/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
14.
J Med Chem ; 67(11): 9214-9226, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38829964

ABSTRACT

Pulmonary hypertension is a cardiovascular disease with a low survival rate. The protein galectin-3 (Gal-3) binding ß-galactosides of cellular glycoproteins plays an important role in the onset and development of this disease. Carbohydrate-based drugs that target Gal-3 represent a new therapeutic strategy in the treatment of pulmonary hypertension. Here, we present the synthesis of novel hydrophilic glycopolymer inhibitors of Gal-3 based on a polyoxazoline chain decorated with carbohydrate ligands. Biolayer interferometry revealed a high binding affinity of these glycopolymers to Gal-3 in the subnanomolar range. In the cell cultures of cardiac fibroblasts and pulmonary artery smooth muscle cells, the most potent glycopolymer 18 (Lac-high) caused a decrease in the expression of markers of tissue remodeling in pulmonary hypertension. The glycopolymers were shown to penetrate into the cells. In a biodistribution and pharmacokinetics study in rats, the glycopolymers accumulated in heart and lung tissues, which are most affected by pulmonary hypertension.


Subject(s)
Galectin 3 , Hypertension, Pulmonary , Animals , Galectin 3/antagonists & inhibitors , Galectin 3/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Rats , Humans , Tissue Distribution , Male , Biomarkers , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Polymers/chemistry , Polymers/pharmacology , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism
15.
Nanotechnology ; 35(36)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38834038

ABSTRACT

Give the emergence of drug resistance in bacteria resulting from antibiotic misuse, there is an urgent need for research and application of novel antibacterial approaches. In recent years, nanoparticles (NPs) have garnered significant attention due to their potential to disrupt bacteria cellular structure through loading drugs and special mechanisms, thus rendering them inactive. In this study, the surface of hollow polydopamine (HPDA) NPs was utilized for the growth of Prussian blue (PB), resulting in the formation of HPDA-PB NPs. Incorporation of Co element during the preparation process led to partial doping of PB with Co2+ions. The performance test results demonstrated that the HPDA-PB NPs exhibited superior photothermal conversion efficiency and peroxidase-like activity compared to PB NPs. HPDA-PB NPs have the ability to catalyze the formation of hydroxyl radicals from H2O2in a weakly acidic environment. Due to the tiny PB particles on the surface and the presence of Co2+doping, they have strong broad-spectrum antibacterial properties. Bothin vitroandin vivoevaluations confirm their efficacy against various bacterial strains, particularlyStaphylococcus aureus, and their potential to promote wound healing, making them a promising candidate for advanced wound care and antimicrobial applications.


Subject(s)
Anti-Bacterial Agents , Cobalt , Ferrocyanides , Indoles , Polymers , Staphylococcus aureus , Indoles/chemistry , Indoles/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/chemistry , Polymers/pharmacology , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Cobalt/chemistry , Cobalt/pharmacology , Staphylococcus aureus/drug effects , Animals , Nanoparticles/chemistry , Microbial Sensitivity Tests , Mice , Wound Healing/drug effects
16.
ACS Nano ; 18(24): 16011-16026, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38841994

ABSTRACT

Infection and aseptic loosening caused by bacteria and poor osseointegration remain serious challenges for orthopedic implants. The advanced surface modification of implants is an effective strategy for addressing these challenges. This study presents a "pneumatic nanocannon" coating for titanium orthopedic implants to achieve on-demand release of antibacterial and sustained release of osteogenic agents. SrTiO3 nanotubes (SrNT) were constructed on the surface of Ti implants as "cannon barrel," the "cannonball" (antibiotic) and "propellant" (NH4HCO3) were codeposited into SrNT with assistance of mussel-inspired copolymerization of dopamine and subsequently sealed by a layer of polydopamine. The encapsulated NH4HCO3 within the nanotubes could be thermally decomposed into gases under near-infrared irradiation, propelling the on-demand delivery of antibiotics. This coating demonstrated significant efficacy in eliminating typical pathogenic bacteria both in planktonic and biofilm forms. Additionally, this coating exhibited a continuous release of strontium ions, which significantly enhanced the osteogenic differentiation of preosteoblasts. In an implant-associated infection rat model, this coating demonstrated substantial antibacterial efficiency (>99%) and significant promotion of osseointegration, along with alleviated postoperative inflammation. This pneumatic nanocannon coating presents a promising approach to achieving on-demand infection inhibition and sustained osseointegration enhancement for titanium orthopedic implants.


Subject(s)
Anti-Bacterial Agents , Nanotubes , Oxides , Strontium , Titanium , Strontium/chemistry , Strontium/pharmacology , Animals , Titanium/chemistry , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rats , Oxides/chemistry , Oxides/pharmacology , Nanotubes/chemistry , Prostheses and Implants , Osseointegration/drug effects , Mice , Rats, Sprague-Dawley , Indoles/chemistry , Indoles/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Osteogenesis/drug effects , Surface Properties , Polymers/chemistry , Polymers/pharmacology , Biofilms/drug effects , Microbial Sensitivity Tests
17.
Int J Mol Med ; 54(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38940336

ABSTRACT

Osteosarcoma (OS) is a highly malignant primary bone neoplasm that is the leading cause of cancer­associated death in young people. GNE­477 belongs to the second generation of mTOR inhibitors and possesses promising potential in the treatment of OS but dose tolerance and drug toxicity limit its development and utilization. The present study aimed to prepare a novel H2O2 stimulus­responsive dodecanoic acid (DA)­phenylborate ester­dextran (DA­B­DEX) polymeric micelle delivery system for GNE­477 and evaluate its efficacy. The polymer micelles were characterized by morphology, size and critical micelle concentration. The GNE­477 loaded DA­B­DEX (GNE­477@DBD) tumor­targeting drug delivery system was established and the release of GNE­477 was measured. The cellular uptake of GNE­477@DBD by three OS cell lines (MG­63, U2OS and 143B cells) was analyzed utilizing a fluorescent tracer technique. The hydroxylated DA­B was successfully grafted onto dextran at a grafting rate of 3%, suitable for forming amphiphilic micelles. Following exposure to H2O2, the DA­B­DEX micelles ruptured and released the drug rapidly, leading to increased uptake of GNE­477@DBD by cells with sustained release of GNE­477. The in vitro experiments, including MTT assay, flow cytometry, western blotting and RT­qPCR, demonstrated that GNE­477@DBD inhibited tumor cell viability, arrested cell cycle in G1 phase, induced apoptosis and blocked the PI3K/Akt/mTOR cascade response. In vivo, through the observation of mice tumor growth and the results of H&E staining, the GNE­477@DBD group exhibited more positive therapeutic outcomes than the free drug group with almost no adverse effects on other organs. In conclusion, H2O2­responsive DA­B­DEX presents a promising delivery system for hydrophobic anti­tumor drugs for OS therapy.


Subject(s)
Dextrans , Hydrogen Peroxide , Lauric Acids , Micelles , Osteosarcoma , Animals , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Cell Line, Tumor , Dextrans/chemistry , Mice , Lauric Acids/chemistry , Lauric Acids/pharmacology , Apoptosis/drug effects , Polymers/chemistry , Polymers/pharmacology , Xenograft Model Antitumor Assays , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Male , TOR Serine-Threonine Kinases/metabolism
18.
Angew Chem Int Ed Engl ; 63(29): e202405030, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38695837

ABSTRACT

Polymeric materials with antibacterial properties hold great promise for combating multidrug-resistant bacteria, which pose a significant threat to public health. However, the synthesis of most antibacterial polymers typically involves complicated and time-consuming procedures. In this study, we demonstrate a simple and efficient strategy for synthesizing functional poly(vinylpyridinium salt)s via pyridinium-yne click polymerization. This click polymerization could proceed with high atom economy under mild conditions without any external catalyst, yielding soluble and thermally stable poly(vinylpyridinium salt)s with satisfactory molecular weights and well-defined structures in excellent yields. Additionally, the incorporation of luminescent units such as fluorene, tetraphenylethylene, and triphenylamine into the polymer backbone confers excellent aggregation-enhanced emission properties upon the resulting polymers, rendering them suitable for bacterial staining. Moreover, the existence of pyridinium salt imparts intrinsic antibacterial activity against multidrug-resistant bacteria to the polymers, enabling them to effectively inhibit wound bacterial infection and significantly expedite the healing process. This work not only provides an efficient method to prepare antibacterial polymers, but also opens up the possibility of various applications of polymers in healthcare and other antibacterial fields.


Subject(s)
Anti-Bacterial Agents , Click Chemistry , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Polymerization , Pyridinium Compounds , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Pyridinium Compounds/chemistry , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemical synthesis , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Molecular Structure , Staphylococcus aureus/drug effects , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis
19.
Biomacromolecules ; 25(6): 3345-3359, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38700942

ABSTRACT

The management of diabetic ulcers poses a significant challenge worldwide, and persistent hyperglycemia makes patients susceptible to bacterial infections. Unfortunately, the overuse of antibiotics may lead to drug resistance and prolonged infections, contributing to chronic inflammation and hindering the healing process. To address these issues, a photothermal therapy technique was incorporated in the preparation of wound dressings. This innovative solution involved the formulation of a self-healing and injectable hydrogel matrix based on the Schiff base structure formed between the oxidized Bletilla striata polysaccharide (BSP) and hydroxypropyltrimethylammonium chloride chitosan. Furthermore, the introduction of CuO nanoparticles encapsulated in polydopamine imparted excellent photothermal properties to the hydrogel, which promoted the release of berberine (BER) loaded on the nanoparticles and boosted the antibacterial performance. In addition to providing a reliable physical protection to the wound, the developed hydrogel, which integrated the herbal components of BSP and BER, effectively accelerated wound closure via microenvironment regulation, including alleviated inflammatory reaction, stimulated re-epithelialization, and reduced oxidative stress based on the promising results from cell and animal experiments. These impressive outcomes highlighted their clinical potential in safeguarding the wound against bacterial intrusion and managing diabetic ulcers.


Subject(s)
Chitosan , Hydrogels , Polysaccharides , Wound Healing , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Photothermal Therapy/methods , Mice , Humans , Berberine/pharmacology , Berberine/chemistry , Rats , Diabetes Mellitus, Experimental/drug therapy , Copper/chemistry , Copper/pharmacology , Male , Polymers/chemistry , Polymers/pharmacology , Indoles/chemistry , Indoles/pharmacology , Wound Infection/drug therapy , Wound Infection/microbiology , Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Metal Nanoparticles/chemistry
20.
Colloids Surf B Biointerfaces ; 239: 113939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744077

ABSTRACT

Chronic infections caused by the pathogenic biofilms on implantable medical devices pose an increasing challenge. To combat long-term biofilm-associated infections, we developed a novel dual-functional polymer coating with antibacterial and antifouling properties. The coating consists of N-vinylpyrrolidone (NVP) and 3-(acrylamido)phenylboronic acid (APBA) copolymer brushes, which bind to curcumin (Cur) as antibacterial molecules through acid-responsive boronate ester bonds. In this surface design, the hydrophilic poly (N-vinylpyrrolidone) (PVP) component improved antifouling performance and effectively prevented bacterial adhesion and aggregation during the initial phases. The poly (3-(acrylamido) phenylboronic acid) (PAPBA, abbreviated PB) component provided binding sites for Cur by forming acid-responsive boronate ester bonds. When fewer bacteria overcame the anti-adhesion barrier and colonized, the surface responded to the decreased microenvironmental pH by breaking the boronate ester bonds and releasing curcumin. This responsive mechanism enabled Cur to interfere with biofilm formation and provide a multilayer anti-biofilm protection system. The coating showed excellent antibacterial properties against Escherichia coli and Staphylococcus aureus, preventing biofilm formation for up to 7 days. The coating also inhibited protein adsorption and platelet adhesion significantly. This coating also exhibited high biocompatibility with animal erythrocytes and pre-osteoblasts. This research offers a promising approach for developing novel smart anti-biofilm coating materials.


Subject(s)
Anti-Bacterial Agents , Biofilms , Curcumin , Escherichia coli , Polymers , Staphylococcus aureus , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polymers/chemistry , Polymers/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Bacterial Adhesion/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Animals , Microbial Sensitivity Tests , Boronic Acids/chemistry , Boronic Acids/pharmacology , Surface Properties , Humans , Biofouling/prevention & control , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...