Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.729
Filter
1.
Sci Rep ; 14(1): 17343, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069554

ABSTRACT

In recent years, academic and industrial research has focused on using agro-waste for energy and new material production to promote sustainable development and lessen environmental issues. In this study, new nanocomposites based on polyvinyl alcohol (PVA)-Starch using two affordable agricultural wastes, Citrus limon peels (LP) and Citrullus colocynthis (Cc) shells and seeds powders with different concentrations (2, 5, 10, and 15 wt%) as bio-fillers were prepared. The nanocomposites were characterized by Dielectric Spectroscopy, Fourier-Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and water swelling ratio. The antimicrobial properties of the nanocomposites against Escherichia coli, Staphylococcus aureus, and Candida albicans were examined to investigate the possibility of using such composites in biomedical applications. Additionally, the biocompatibility of the composites on human normal fibroblast cell lines (HFB4) was tested using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results demonstrate that the filler type and concentration strongly affect the film's properties. The permittivity ε', dielectric loss ε″ and conductivity σdc increased by increasing filler content but still in the insulators range that recommend such composites to be used in the insulation purposes. Both bio fillers control the water uptake, and the samples filled with LP were more water resistant. The polyvinyl alcohol/starch incorporated with 5 wt% LP and Cc have antimicrobial effects against all the tested microorganisms. Increasing the filler content has a negative impact on cell viability.


Subject(s)
Citrullus colocynthis , Citrus , Nanocomposites , Citrus/chemistry , Nanocomposites/chemistry , Humans , Citrullus colocynthis/chemistry , Candida albicans/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Polyvinyl Alcohol/chemistry , Escherichia coli/drug effects , Agriculture/methods , Cell Line , Starch/chemistry , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared
2.
J Nanobiotechnology ; 22(1): 444, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068417

ABSTRACT

The proficient handling of diabetic wounds, a rising issue coinciding with the global escalation of diabetes cases, poses significant clinical difficulties. A range of biofunctional dressings have been engineered and produced to expedite the healing process of diabetic wounds. This study proposes a multifunctional hydrogel dressing for diabetic wound healing, which is composed of Polyvinyl Alcohol (PVA) and N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-teramethylpropane-1, 3-diaminium (TSPBA), and a dual-drug loaded Gelatin methacryloyl (GM) microgel. The GM microgel is loaded with sodium fusidate (SF) and nanoliposomes (LP) that contain metformin hydrochloride (MH). Notably, adhesive and self-healing properties the hydrogel enhance their therapeutic potential and ease of application. In vitro assessments indicate that SF-infused hydrogel can eliminate more than 98% of bacteria within 24 h and maintain a sustained release over 15 days. Additionally, MH incorporated within the hydrogel has demonstrated effective glucose level regulation for a duration exceeding 15 days. The hydrogel demonstrates a sustained ability to neutralize ROS throughout the entire healing process, predominantly by electron donation and sequestration. This multifunctional hydrogel dressing, which integrated biological functions of efficient bactericidal activity against both MSSA and MRSA strains, blood glucose modulation, and control of active oxygen levels, has successfully promoted the healing of diabetic wounds in rats in 14 days. The hydrogel dressing exhibited significant effectiveness in facilitating the healing process of diabetic wounds, highlighting its considerable promise for clinical translation.


Subject(s)
Anti-Bacterial Agents , Bandages , Hydrogels , Polyvinyl Alcohol , Reactive Oxygen Species , Wound Healing , Animals , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Reactive Oxygen Species/metabolism , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Male , Hyperglycemia/drug therapy , Diabetes Mellitus, Experimental/complications , Rats, Sprague-Dawley , Gelatin/chemistry , Metformin/pharmacology , Metformin/chemistry , Liposomes/chemistry , Staphylococcus aureus/drug effects , Methacrylates/chemistry , Methacrylates/pharmacology , Adhesives/chemistry , Adhesives/pharmacology , Injections
3.
AAPS J ; 26(4): 83, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009955

ABSTRACT

Salts of weakly basic drugs can partially dissociate in formulations, to give basic drugs and counter acids. The aim of the present study was to clarify the effect of physicochemical properties on the basic drug-acid-polymer interactions and salt-polymer miscibility, and to explain the influence mechanism at the molecular level. Six maleate salts with different physicochemical properties were selected and PVA was used as the film forming material. The relationship between the physicochemical properties and the miscibility was presented with multiple linear regression analysis. The existence state of salts in formulations were determined by XRD and Raman imaging. The stability of salts was characterized by NMR and XPS. The intermolecular interactions were investigated by FTIR and NMR. The results showed that the salt-PVA miscibility was related to polar surface area of salts and Tg of free bases, which represented hydrogen bond interaction and solubility potential. The basic drug-acid-PVA intermolecular interactions determined the existence state and bonding pattern of the three molecules. Meanwhile, the decrease of the stability after formulation increased the number of free bases in orodispersible films, which in turn affected the miscibility with PVA. The study provided references for the rational design of PVA based orodispersible films.


Subject(s)
Polyvinyl Alcohol , Solubility , Polyvinyl Alcohol/chemistry , Administration, Oral , Drug Stability , Maleates/chemistry , Chemistry, Pharmaceutical/methods , Hydrogen Bonding , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
4.
ACS Appl Mater Interfaces ; 16(28): 37087-37099, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958653

ABSTRACT

Hydrogels, as flexible materials, have been widely used in the field of flexible sensors. Human sweat contains a variety of biomarkers that can reflect the physiological state of the human body. Therefore, it is of great practical significance and application value to realize the detection of sweat composition and combine it with human motion sensing through a hydrogel. Based on mussel-inspired chemistry, polydopamine (PDA) and gold nanoparticles (AuNPs) were coated on the surface of cellulose nanocrystals (CNCs) to obtain CNC-based nanocomposites (CNCs@PDA-Au), which could simultaneously enhance the mechanical, electrochemical, and self-healing properties of hydrogels. The CNCs@PDA-Au was composited with poly(vinyl alcohol) (PVA) hydrogel to obtain the nanocomposite hydrogel (PVA/CNCs@PDA-Au) by freeze-thaw cycles. The PVA/CNCs@PDA-Au has excellent mechanical strength (7.2 MPa) and self-healing properties (88.3%). The motion sensors designed with PVA/CNCs@PDA-Au exhibited a fast response time (122.9 ms), wide strain sensing range (0-600.0%), excellent stability, and fatigue resistance. With the unique electrochemical redox properties of uric acid, the designed hydrogel sensor successfully realized the detection of uric acid in sweat with a wide detection range (1.0-100.0 µmol/L) and low detection limit (0.42 µmol/L). In this study, the dual detection of human motion and uric acid in sweat was successfully realized by the designed PVA/CNCs@PDA-Au nanocomposite hydrogel.


Subject(s)
Cellulose , Gold , Hydrogels , Nanocomposites , Polymers , Sweat , Cellulose/chemistry , Nanocomposites/chemistry , Humans , Hydrogels/chemistry , Gold/chemistry , Sweat/chemistry , Polymers/chemistry , Metal Nanoparticles/chemistry , Polyvinyl Alcohol/chemistry , Nanoparticles/chemistry , Indoles/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , Motion
5.
Sci Rep ; 14(1): 16301, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009618

ABSTRACT

In vitro vascular models, primarily made of silicone, have been utilized for decades for studying hemodynamics and supporting the development of implants for catheter-based treatments of diseases such as stenoses and aneurysms. Hydrogels have emerged as prominent materials in tissue-engineering applications, offering distinct advantages over silicone models for fabricating vascular models owing to their viscoelasticity, low friction, and tunable mechanical properties. Our study evaluated the feasibility of fabricating thin-wall, anatomical vessel models made of polyvinyl alcohol hydrogel (PVA-H) based on a patient-specific carotid artery bifurcation using a combination of 3D printing and molding technologies. The model's geometry, elastic modulus, volumetric compliance, and diameter distensibility were characterized experimentally and numerically simulated. Moreover, a comparison with silicone models with the same anatomy was performed. A PVA-H vessel model was integrated into a mock circulatory loop for a preliminary ultrasound-based assessment of fluid dynamics. The vascular model's geometry was successfully replicated, and the elastic moduli amounted to 0.31 ± 0.007 MPa and 0.29 ± 0.007 MPa for PVA-H and silicone, respectively. Both materials exhibited nearly identical volumetric compliance (0.346 and 0.342% mmHg-1), which was higher compared to numerical simulation (0.248 and 0.290% mmHg-1). The diameter distensibility ranged from 0.09 to 0.20% mmHg-1 in the experiments and between 0.10 and 0.18% mmHg-1 in the numerical model at different positions along the vessel model, highlighting the influence of vessel geometry on local deformation. In conclusion, our study presents a method and provides insights into the manufacturing and mechanical characterization of hydrogel-based thin-wall vessel models, potentially allowing for a combination of fluid dynamics and tissue engineering studies in future cardio- and neurovascular research.


Subject(s)
Carotid Stenosis , Hydrogels , Models, Cardiovascular , Polyvinyl Alcohol , Humans , Carotid Stenosis/physiopathology , Polyvinyl Alcohol/chemistry , Hydrogels/chemistry , Printing, Three-Dimensional , Carotid Arteries/physiopathology , Carotid Arteries/diagnostic imaging , Elastic Modulus , Hemodynamics , Tissue Engineering/methods
6.
Radiat Prot Dosimetry ; 200(11-12): 1233-1236, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016503

ABSTRACT

The shielding of gamma radiation is of the utmost importance in industries, such as nuclear power plants, medical imaging, and space exploration. For the purpose of shielding objects in such an environment, it is essential to design materials with flexibility as well as high shielding capability. In order to enhance the radiation attenuation effectiveness of polymers, such as polyvinyl alcohol (PVA), glass has been blended with varying percentages. The fabricated composite has been subjected to gamma-ray interaction studies. The radiation shielding parameter, such as mass attenuation coefficient (µ/ρ), has been determined for various energies, such as 137Cs (661.6 keV) and 60Co (1173 and 1332 keV). It is observed that the PVA composite with glass exhibits improved gamma radiation shielding properties compared to PVA. Therefore, the present work paves the way for the utility of PVA polymer with glass, offering a cost-effective and sustainable approach to gamma radiation shielding in radiation environments.


Subject(s)
Gamma Rays , Glass , Polyvinyl Alcohol , Radiation Protection , Glass/chemistry , Radiation Protection/instrumentation , Radiation Protection/methods , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/radiation effects , Polymers/chemistry , Cesium Radioisotopes , Cobalt Radioisotopes , Radiation Dosage , Materials Testing
7.
Biomed Phys Eng Express ; 10(5)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38955138

ABSTRACT

This work aims to improve the post stabilty of reusable potassium iodide hydrogel dosimter. A reusable and low-cost radiochromic dosimeter containing a gel matrix of polyvinyl alcohol, potassium iodide dye, froctose as reducing agent and glutaraldehyde as cross-linking agent was developed for dose calibration in radiotherapy. The gel samples were exposed to different absorbed doses using a medical linear acceleration. UV-vis Spectrophotometry was utilized to investigate the changes in optical-properties of irradiated gels with regard to peak wavelength of 353 nm. The stability of the gel (one of the most limitation of using this dosimeter) was improved significantly by the addition of certain concentrations of dimethyl sulfoxide. The two-dimensional optical imaging system of charge-coupled-device (CCD) camera with a uniform RGB light-emitting-diode (LED) array source was used for diffusion coefficient purpose using two dimensional gel template. The value of diffusion coefficient reported is significant and highly reduced compared with other dosimeters reported in the literatures. Moreover, heating the improved gels to certain temperatures results in resetting their optical properties, which makes it possible to reuse for multiple times.


Subject(s)
Feasibility Studies , Polyvinyl Alcohol , Potassium Iodide , Radiation Dosimeters , Polyvinyl Alcohol/chemistry , Potassium Iodide/chemistry , Calibration , Gels/chemistry , Humans , Hydrogels/chemistry , Radiometry/methods , Radiometry/instrumentation , Dimethyl Sulfoxide/chemistry , Glutaral/chemistry , Diffusion , Temperature
8.
Anal Chem ; 96(28): 11595-11602, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38950152

ABSTRACT

Timely diagnosis, monitoring, and management of chronic wounds play crucial roles in improving patients' quality of life, but clinical evaluation of chronic wounds is still ambiguous and relies heavily on the experience of clinician, resulting in increased social and financial burden and delay of optimal treatment. During the different stages of the healing process, specific and dynamic changes of pH values in the wound exudate can be used as biomarkers to reflect the wound status. Herein, a pH-responsive agent with well-behaved photoacoustic (PA) properties, nitrazine yellow (NY), was incorporated in poly(vinyl alcohol)/sucrose (PVA/Suc) hydrogel to construct a wearable pH-sensing patch (PVA/Suc/NY hydrogel) for monitoring of pH values during chronic wound healing. According to Rosencwaig-Gersho theory and the combination of 3D printing technology, the PA chamber volume and chopping frequency were systematically optimized to improve the sensitivity of the PA analytical system. The prepared PVA/Suc/NY hydrogel patch had excellent mechanical properties and flexibility and could maintain conformal contact with skin. Moreover, combined with the miniaturized PA analytical device, it had the potential to detect pH values (5.0-9.0) free from the color interference of blood and therapeutic drugs, which provides a valuable strategy for wound pH value monitoring by PA quantitation. This strategy of combining the wearable hydrogel patch with portable PA analysis offers broad new prospects for the treatment and management of chronic wounds due to its features of simple operation, time savings, and anti-interference.


Subject(s)
Hydrogels , Photoacoustic Techniques , Wearable Electronic Devices , Hydrogen-Ion Concentration , Hydrogels/chemistry , Animals , Wound Healing/drug effects , Polyvinyl Alcohol/chemistry , Humans
9.
Carbohydr Polym ; 342: 122404, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048239

ABSTRACT

A new ultra-hydrophilic elastic sponge composite has been proposed. Medicinal herbs, commonly used in herbal medicine and subsequently discarded, are rich in natural polymer substances, making them promising candidates for various material industries. TEMPO-oxidized cellulose was extracted from medicinal herb residue, and the physicochemical properties of an ultra-hydrophilic elastic sponge, prepared through a PVA and CA impregnate cross-linking process, were investigated. The fabricated composite sponge exhibited an increase in compressive stress-strain proportional to the PVA cross-linking concentration, and its water retention capability was assessed through retention tests. Swelling tests for various solvents were conducted to evaluate the potential use of the sponge in diverse industries, revealing the highest swelling ratio in water. Pressure distribution measurements using prescale film indicated that the sponge's shock absorption capacity was enhanced by PVA cross-linking, leading to improved pressure dispersion.


Subject(s)
Cellulose , Hydrophobic and Hydrophilic Interactions , Plants, Medicinal , Polyvinyl Alcohol , Polyvinyl Alcohol/chemistry , Cellulose/chemistry , Plants, Medicinal/chemistry , Cross-Linking Reagents/chemistry , Elasticity , Water/chemistry , Cyclic N-Oxides/chemistry , Cellulose, Oxidized/chemistry
10.
ACS Appl Mater Interfaces ; 16(29): 37445-37455, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38980942

ABSTRACT

Intelligent colorimetric freshness indicator is a low-cost way to intuitively monitor the freshness of fresh food. A colorimetric strip sensor array was prepared by p-dimethylaminocinnamaldehyde (PDL)-doped poly(vinyl alcohol) (PVA) and chitosan (Chit) for the quantitative analysis of indole, which is an indicator of shrimp freshness. As a result of indole simulation, the array strip turned from faint yellow to pink or mulberry color with the increasing indole concentration, like a progress bar. The indicator film exhibited excellent permeability, mechanical and thermal stability, and color responsiveness to indole, which was attributed to the interactions between PDL and Chit/PVA. Furthermore, the colorimetric strip sensor array provided a good relationship between the indole concentration and the color intensity within a range of 50-350 ppb. The pathogens and spoilage bacteria of shrimp possessed the ability to produce indole, which caused the color changes of the strip sensor array. In the shrimp freshness monitoring experiment, the color-changing progress of the strip sensor array was in agreement with the simulation and could distinguish the shrimp freshness levels. The image classification system based on deep learning were developed, the accuracies of four DCNN algorithms are above 90%, with VGG16 achieving the highest accuracy at 97.89%. Consequently, a "progress bar" strip sensor array has the potential to realize nondestructive, more precise, and commercially available food freshness monitoring using simple visual inspection and intelligent equipment identification.


Subject(s)
Colorimetry , Deep Learning , Indoles , Penaeidae , Colorimetry/methods , Colorimetry/instrumentation , Animals , Indoles/chemistry , Penaeidae/chemistry , Chitosan/chemistry , Polyvinyl Alcohol/chemistry
11.
Sci Rep ; 14(1): 16696, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030350

ABSTRACT

Boron neutron capture therapy (BNCT) is a unique radiotherapy of selectively eradicating tumor cells using boron compounds (e.g., 4-borono-L-phenylalanine [BPA]) that are heterogeneously taken up at the cellular level. Such heterogenicity potentially reduces the curative efficiency. However, the effects of temporospatial heterogenicity on cell killing remain unclear. With the technical combination of radiation track detector and biophysical simulations, this study revealed the cell cycle-dependent heterogenicity of BPA uptake and subsequent biological effects of BNCT on HeLa cells expressing fluorescent ubiquitination-based cell cycle indicators, as well as the modification effects of polyvinyl alcohol (PVA). The results showed that the BPA concentration in the S/G2/M phase was higher than that in the G1/S phase and that PVA enhances the biological effects both by improving the uptake and by canceling the heterogenicity. These findings might contribute to a maximization of therapeutic efficacy when BNCT is combined with PVA and/or cell cycle-specific anticancer agents.


Subject(s)
Boron Compounds , Boron Neutron Capture Therapy , Cell Cycle , Polyvinyl Alcohol , Humans , Boron Neutron Capture Therapy/methods , HeLa Cells , Polyvinyl Alcohol/chemistry , Cell Cycle/radiation effects , Cell Cycle/drug effects , Boron Compounds/pharmacology , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology
12.
J Mech Behav Biomed Mater ; 157: 106630, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896922

ABSTRACT

Currently, the use of autografts is the gold standard for the replacement of many damaged biological tissues. However, this practice presents disadvantages that can be mitigated through tissue-engineered implants. The aim of this study is to explore how machine learning can mechanically evaluate 2D and 3D polyvinyl alcohol (PVA) electrospun scaffolds (one twisted filament, 3 twisted filament and 3 twisted/braided filament scaffolds) for their use in different tissue engineering applications. Crosslinked and non-crosslinked scaffolds were fabricated and mechanically characterised, in dry/wet conditions and under longitudinal/transverse loading, using tensile testing. 28 machine learning models (ML) were used to predict the mechanical properties of the scaffolds. 4 exogenous variables (structure, environmental condition, crosslinking and direction of the load) were used to predict 2 endogenous variables (Young's modulus and ultimate tensile strength). ML models were able to identify 6 structures and testing conditions with comparable Young's modulus and ultimate tensile strength to ligamentous tissue, skin tissue, oral and nasal tissue, and renal tissue. This novel study proved that Classification and Regression Trees (CART) models were an innovative and easy to interpret tool to identify biomimetic electrospun structures; however, Cubist and Support Vector Machine (SVM) models were the most accurate, with R2 of 0.93 and 0.8, to predict the ultimate tensile strength and Young's modulus, respectively. This approach can be implemented to optimise the manufacturing process in different applications.


Subject(s)
Biomimetic Materials , Machine Learning , Materials Testing , Mechanical Phenomena , Polyvinyl Alcohol , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Polyvinyl Alcohol/chemistry , Biomimetic Materials/chemistry , Tensile Strength
13.
ACS Appl Mater Interfaces ; 16(26): 34042-34056, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38887945

ABSTRACT

Flexible capacitive pressure sensors based on ionic hydrogels (IHs) have garnered significant attention in the field of wearable technology. However, the vulnerability of traditional single-network hydrogels to mechanical damage and the complexity associated with preparing double-network hydrogels present challenges in developing a highly sensitive, easily prepared, and durable IH-based flexible capacitive pressure sensor. This study introduces a novel multicross-linked dual-network IH achieved through the physical and chemical cross-linking of polymers polyvinyl alcohol (PVA) and chitosan (CS), ionic solution H3PO4, and cross-linking agent gum arabic. Flexible capacitive pressure sensors, characterized by high sensitivity and a broad pressure range, are fabricated by employing mesh as templates to design cut-corner cube microstructures with high uniformity and controllability on the IHs. The sensor exhibits high sensitivity across a wide pressure range (0-290 kPa) and with excellent features such as high resolution (∼1.3 Pa), fast response-recovery time (∼11 ms), and repeatable compression stability at 25 kPa (>2000 cycles). The IHs as a dielectric layer demonstrate long-term water retention properties, enabling exposure to air for up to 100 days. Additionally, the developed sensor shows the ability to accurately measure the pulse wave within the small pressure range. By combining the pulse wave acquired by the sensor with a trained neural network model, we achieve successful blood pressure (BP) prediction, meeting the standards set by the Association for the Advancement of Medical Instrumentation and the British Hypertension Society. Ultimately, the sensor proposed in this study holds promising prospects for broad applications in high-precision wearable medical electronic devices.


Subject(s)
Hydrogels , Wearable Electronic Devices , Hydrogels/chemistry , Humans , Polyvinyl Alcohol/chemistry , Chitosan/chemistry , Electric Capacitance , Blood Pressure Determination/instrumentation , Blood Pressure , Pressure
14.
ACS Appl Mater Interfaces ; 16(26): 34141-34155, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912611

ABSTRACT

Supramolecular biomaterials can recapitulate the structural and functional facets of the native extracellular matrix and react to biochemical cues, leveraging the unique attributes of noncovalent interactions, including reversibility and tunability. However, the low mechanical properties of supramolecular biomaterials can restrict their utilization in specific applications. Combining the advantages of supramolecular polymers with covalent polymers can lead to the fabrication of tailor-made biomaterials with enhanced mechanical properties/degradability. Herein, we demonstrate a synergistic coassembled self-healing gel as a multifunctional supramolecular material. As the supramolecular polymer component, we chose folic acid (vitamin B9), an important biomolecule that forms a gel comprising one-dimensional (1D) supramolecular polymers. Integrating polyvinyl alcohol (PVA) into this supramolecular gel alters its ultrastructure and augments its mechanical properties. A drastic improvement of complex modulus (G*) (∼3674 times) was observed in the folic acid-PVA gel with 15% w/v PVA (33215 Pa) compared with the folic acid gel (9.04 Pa). The coassembled hydrogels possessed self-healing and injectable/thixotropic attributes and could be printed into specific three-dimensional (3D) shapes. Synergistically, the supramolecular polymers of folic acid also improve the toughness, durability, and ductility of the PVA films. A nanocomposite of the gels with silver nanoparticles exhibited excellent catalytic efficiency and antibacterial activity. The folic acid-PVA coassembled gels and films also possessed high cytocompatibility, substantiated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and live-dead assays. Taken together, the antibacterial and cell-adhesive attributes suggest potential applications of these coassembled biomaterials for tissue engineering and wound healing.


Subject(s)
Anti-Bacterial Agents , Folic Acid , Polyvinyl Alcohol , Folic Acid/chemistry , Folic Acid/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Polyvinyl Alcohol/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Escherichia coli/drug effects , Mice , Staphylococcus aureus/drug effects , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Polymers/chemistry , Polymers/pharmacology , Microbial Sensitivity Tests , Humans
15.
Biomed Mater ; 19(5)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38917835

ABSTRACT

Mucilage is a natural source of polysaccharides that has recently attracted attention for use in biomaterial production. It attracts attention with its easy and fast extraction, biocompatibility, high water retention capacity, and biodegradability. Although there are studies on the characterization of mucilage obtained from different plant sources, the interaction of this polymer with other polymers and its potential to form new biomaterials have not yet been sufficiently investigated. Based on this, in this study, the potential of mucilage extracted from flaxseed for the production of cryogels for tissue engineering applications was demonstrated. Firstly, yield, basic physicochemical properties, morphology, and surface charge-dependent isoelectric point determination studies were carried out for the characterization of the extracted mucilage. The successful preparation of mucilage was evaluated for the construction of cryo-scaffolds and 3D, spongy, and porous structures were obtained in the presence of chitosan and polyvinyl alcohol polymers. A heterogeneous morphology with interconnected macro and micro porosity in the range of approximately 85-115 m pore diameter was exhibited. Due to the high hydrophilic structure of the mucilage, which is attached to the structure with weak hydrogen bonds, the contact angle values of the scaffolds were obtained below 80° and they showed the ability to absorb 1000 times their dry weight in approximately 30 min. As a preliminary optimization study for the evaluation of mucilage in cryogel formation, this work introduced a new construct to be developed as wound dressing scaffold for deep and chronic wounds.


Subject(s)
Biocompatible Materials , Flax , Plant Mucilage , Seeds , Tissue Engineering , Tissue Scaffolds , Flax/chemistry , Tissue Scaffolds/chemistry , Porosity , Seeds/chemistry , Tissue Engineering/methods , Biocompatible Materials/chemistry , Plant Mucilage/chemistry , Cryogels/chemistry , Chitosan/chemistry , Materials Testing , Polysaccharides/chemistry , Polyvinyl Alcohol/chemistry , Polymers/chemistry
16.
Biomed Mater ; 19(5)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38917838

ABSTRACT

Sutures are commonly used in surgical procedures and have immense potential for direct drug delivery into the wound site. However, incorporating active pharmaceutical ingredients into the sutures has always been challenging as their mechanical strength deteriorates. This study proposes a new method to produce microspheres-embedded surgical sutures that offer adequate mechanical properties for effective wound healing applications. The study used curcumin, a bioactive compound found in turmeric, as a model drug due to its anti-inflammatory, antioxidant, and anti-bacterial properties, which make it an ideal candidate for a surgical suture drug delivery system. Curcumin-loaded microspheres were produced using the emulsion solvent evaporation method with polyvinyl alcohol (PVA) as the aqueous phase. The microspheres' particle sizes, drug loading (DL) capacity, and encapsulation efficiency (EE) were investigated. Microspheres were melt-extruded with polycaprolactone and polyethylene glycol via a 3D bioplotter, followed by a drawing process to optimise the mechanical strength. The sutures' thermal, physiochemical, and mechanical properties were investigated, and the drug delivery and biocompatibility were evaluated. The results showed that increasing the aqueous phase concentration resulted in smaller particle sizes and improved DL capacity and EE. However, if PVA was used at 3% w/v or below, it prevented aggregate formation after lyophilisation, and the average particle size was found to be 34.32 ± 12.82 µm. The sutures produced with the addition of microspheres had a diameter of 0.38 ± 0.02 mm, a smooth surface, minimal tissue drag, and proper tensile strength. Furthermore, due to the encapsulated drug-polymer structure, the sutures exhibited a prolonged and sustained drug release of up to 14 d. Microsphere-loaded sutures demonstrated non-toxicity and accelerated wound healing in thein vitrostudies. We anticipate that the microsphere-loaded sutures will serve as an excellent biomedical device for facilitating wound healing.


Subject(s)
Biocompatible Materials , Curcumin , Materials Testing , Microspheres , Particle Size , Polyvinyl Alcohol , Sutures , Wound Healing , Wound Healing/drug effects , Curcumin/chemistry , Curcumin/pharmacology , Biocompatible Materials/chemistry , Polyvinyl Alcohol/chemistry , Animals , Tensile Strength , Drug Delivery Systems , Polyethylene Glycols/chemistry , Humans , Polyesters/chemistry
17.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892341

ABSTRACT

Anthocyanins are amazing plant-derived colorants with highly valuable properties; however, their chemical and color instability issues limit their wide application in different food industry-related products such as active and intelligent packaging. In a previous study, it was demonstrated that anthocyanins could be stabilized into green plasticizers namely deep eutectic solvents (DESs). In this work, the fabrication of edible films by integrating anthocyanins along with DESs into biocompatible chitosan (CHT)-based formulations enriched with polyvinyl alcohol (PVA) and PVA nanoparticles was investigated. CHT/PVA-DES films' physical properties were characterized by scanning electron microscopy, water vapor permeability, swelling index, moisture sorption isotherm, and thermogravimetry analysis. Innovative red-to-blue formulation films were achieved for CHT/PVA nanoparticles (for 5 min of sonication) at a molar ratio 1:1, and with 10% of ternary DES (TDES)-containing malvidin-3-glucoside (0.1%) where the physical properties of films were enhanced. After immersion in solutions at different pH values, films submitted to pHs 5-8 were revealed to be more color stable and resistant with time than at acidic pH values.


Subject(s)
Anthocyanins , Chitosan , Polyvinyl Alcohol , Solvents , Polyvinyl Alcohol/chemistry , Anthocyanins/chemistry , Chitosan/chemistry , Solvents/chemistry , Biofilms/drug effects , Nanoparticles/chemistry , Food Packaging/methods , Hydrogen-Ion Concentration , Color , Permeability
18.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892468

ABSTRACT

The biological activities and related mechanisms of curcumin, a major polyphenolic compound in turmeric, the rhizome of Curcuma longa, have been extensively investigated. Due to its poor solubility in water, the analysis of curcumin's biological activities is limited in most aqueous experimental systems. In the present study, the effects of polyvinyl alcohol (PVA), a dietary-compatible vehicle, on the solubility, stability, cellular uptake, and bioactivities of curcumin were investigated. Curcumin solubility was improved significantly by PVA; the color intensity of curcumin aqueous solution in the presence of PVA increased concentration-dependently with its peak shift to a shorter wavelength. Improved suspension stability and photostability of curcumin in an aqueous solution were also observed in the presence of PVA, even at 62.5 µg/mL. The scavenging activities of curcumin against DPPH, ABTS, AAPH radicals, and nitric oxide were enhanced significantly in the presence of PVA. PVA at 250 µg/mL also significantly enhanced the cytotoxic activity of curcumin against both HCT 116 colon cancer and INT 407 (HeLa-derived) embryonic intestinal cells by reducing the IC50 from 16 to 11 µM and 25 to 15 µM, respectively. PVA improved the cellular uptake of curcumin in a concentration-dependent manner in INT 407 cells; it increased the cellular levels more effectively at lower curcumin treatment concentrations. The present results indicate that PVA improves the solubility and stability of curcumin, and changes in these chemical behaviors of curcumin in aqueous systems by PVA could enhance the bioavailability and pharmacological efficacy of curcumin.


Subject(s)
Curcumin , Polyvinyl Alcohol , Solubility , Curcumin/pharmacology , Curcumin/chemistry , Polyvinyl Alcohol/chemistry , Humans , Drug Stability , HCT116 Cells , HeLa Cells , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Cell Survival/drug effects
19.
Int J Biol Macromol ; 272(Pt 2): 132844, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834119

ABSTRACT

Nanofibers have been investigated in regenerative medicine. Dragon's blood (DB)- and poly helixan PF (PHPF) are natural materials used in cosmetics. Herein, we generated DB- and PHPF-loaded polyvinyl alcohol/chitosan (PVA/CS/DB and PVA/CS/PHPF, respectively) nanofibers. PVA/CS/DB and PVA/CS/PHPF nanofibers had an average diameter of 547.5 ± 17.13 and 521 ± 24.67 nm, respectively as assessed by SEM, and a degradation rate of 43.1 and 47.6 % after 14 days, respectively. PVA/CS/DB and PVA/CS/PHPF nanofibers had a hemolysis rate of 0.10 and 0.39 %, respectively, and a water vapor transmission rate of ∼2200 g.m-2.day-1. These nanofibers exhibited favorable antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis in vitro. PVA/CS/DB and PVA/CS/PHPF nanofibers demonstrated a sustained release of 77.91 and 76.55 % over 72 h. PVA/CS/DB and PVA/CS/PHPF nanofibers had a high rate of cytocompatibility and significantly improved the viability of NIH/3T3 cells as compared with free drugs or unloaded nanofibers. Histological inspection via H&E and Verhoeff's staining demonstrated PVA/CS/DB and PVA/CS/PHPF nanofibers enhanced the wound healing and damaged tissue recovery of unsplinted wound models by promoting epithelial layer formation, collagen deposition, and enhancing the presence of fibroblasts. Conclusively, PVA/CS/DB and PVA/CS/PHPF can be introduced as potential wound dressing candidates with favorable properties.


Subject(s)
Bandages , Chitosan , Nanofibers , Polyvinyl Alcohol , Nanofibers/chemistry , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Animals , Mice , NIH 3T3 Cells , Wound Healing/drug effects , Hemolysis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Plant Extracts
20.
Int J Biol Macromol ; 272(Pt 2): 132919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843673

ABSTRACT

Poly (vinyl alcohol) (PVA) hydrogel showed potential applications in bioengineering and wearable sensors fields. It is still a huge challenge to prepare highly adhesive yet strong poly (vinyl alcohol) hydrogel with good biocompatibility. Herein, we prepared a highly self-adhesive and strong poly (vinyl alcohol)/tannic acid@cellulose nanocrystals (PVA/TA@CNCs) composite hydrogel using TA@CNCs as functional nanofiller via facile freezing-thawing method. Multiple networks consisting of hydrogen bonding and coordination interactions endowed the hydrogel with high mechanical strength, excellent flexibility and fracture toughness with adequate energy dissipation mechanism and relatively dense network structure. The tensile strength of PVA/TA@CNCs hydrogel reached the maximum of 463 kPa, increasing by 367 % in comparison with pure PVA hydrogel (99 kPa), demonstrating the synergistic reinforcing and toughening effect of TA@CNCs. The hydrogel exhibited extremely high adhesion not only for various dry and wet substrates such as plastic, metal, Teflon, rubber, glass, leaf, but also sweaty human skin, showing good adhesion durability. The highest adhesion strength to silicone rubber, steel plate and pigskin could reach 197 kPa, 100 kPa and 46.9 kPa, respectively. Meanwhile the hydrogel had negligible cytotoxicity to cells and showed good biocompatibility.


Subject(s)
Cellulose , Hydrogels , Nanoparticles , Polyvinyl Alcohol , Polyvinyl Alcohol/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Humans , Hydrogels/chemistry , Tensile Strength , Biocompatible Materials/chemistry , Adhesives/chemistry , Animals
SELECTION OF CITATIONS
SEARCH DETAIL