Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.087
Filter
1.
Res Vet Sci ; 175: 105315, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838511

ABSTRACT

Systemic amyloid light-chain (AL) amyloidosis is an infrequent disease in which amyloid fibrils derived from the immunoglobulin light chain are deposited in systemic organs, resulting in functional impairment. This disease has been notably uncommon in animals, and nonhuman primates have not been reported to develop it. In this study, we identified the systemic AL kappa chain amyloidosis in a captive Bornean orangutan (Pongo pygmaeus) and analyzed its pathogenesis. Amyloid deposits were found severely in the submucosa of the large intestine, lung, mandibular lymph nodes, and mediastinal lymph nodes, with milder lesions in the liver and kidney. Mass spectrometry-based proteomic analysis revealed an abundant constant domain of the immunoglobulin kappa chain in the amyloid deposits. Immunohistochemistry further confirmed that the amyloid deposits were positive for immunoglobulin kappa chains. In this animal, AL amyloidosis resulted in severe involvement of the gastrointestinal submucosa and lymph nodes, which is consistent with the characteristics of AL amyloidosis in humans, suggesting that AL amyloid may have a similar deposition mechanism across species. This report enhances the pathological understanding of systemic AL amyloidosis in animals by providing a detailed characterization of this disease based on proteomic analysis.


Subject(s)
Amyloidosis , Ape Diseases , Pongo pygmaeus , Animals , Ape Diseases/pathology , Amyloidosis/veterinary , Amyloidosis/pathology , Immunoglobulin kappa-Chains , Immunoglobulin Light-chain Amyloidosis/veterinary , Immunoglobulin Light-chain Amyloidosis/pathology , Lymph Nodes/pathology , Male , Proteomics , Female
2.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38869374

ABSTRACT

The central sulcus divides the primary motor and somatosensory cortices in many anthropoid primate brains. Differences exist in the surface area and depth of the central sulcus along the dorso-ventral plane in great apes and humans compared to other primate species. Within hominid species, there are variations in the depth and aspect of their hand motor area, or knob, within the precentral gyrus. In this study, we used post-image analyses on magnetic resonance images to characterize the central sulcus shape of humans, chimpanzees (Pan troglodytes), gorillas (Gorilla gorilla), and orangutans (Pongo pygmaeus and Pongo abelii). Using these data, we examined the morphological variability of central sulcus in hominids, focusing on the hand region, a significant change in human evolution. We show that the central sulcus shape differs between great ape species, but all show similar variations in the location of their hand knob. However, the prevalence of the knob location along the dorso-ventral plane and lateralization differs between species and the presence of a second ventral motor knob seems to be unique to humans. Humans and orangutans exhibit the most similar and complex central sulcus shapes. However, their similarities may reflect divergent evolutionary processes related to selection for different positional and habitual locomotor functions.


Subject(s)
Biological Evolution , Gorilla gorilla , Hominidae , Magnetic Resonance Imaging , Motor Cortex , Pan troglodytes , Phylogeny , Animals , Humans , Male , Pan troglodytes/anatomy & histology , Pan troglodytes/physiology , Gorilla gorilla/anatomy & histology , Gorilla gorilla/physiology , Female , Motor Cortex/anatomy & histology , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Hominidae/anatomy & histology , Hominidae/physiology , Adult , Hand/physiology , Hand/anatomy & histology , Young Adult , Pongo pygmaeus/anatomy & histology , Pongo pygmaeus/physiology , Species Specificity , Pongo abelii/anatomy & histology , Pongo abelii/physiology
3.
Nature ; 630(8016): 401-411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811727

ABSTRACT

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Subject(s)
Hominidae , X Chromosome , Y Chromosome , Animals , Female , Male , Gorilla gorilla/genetics , Hominidae/genetics , Hominidae/classification , Hylobatidae/genetics , Pan paniscus/genetics , Pan troglodytes/genetics , Phylogeny , Pongo abelii/genetics , Pongo pygmaeus/genetics , Telomere/genetics , X Chromosome/genetics , Y Chromosome/genetics , Evolution, Molecular , DNA Copy Number Variations/genetics , Humans , Endangered Species , Reference Standards
4.
Sci Rep ; 14(1): 12095, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802458

ABSTRACT

Primate faces provide information about a range of variant and invariant traits, including some that are relevant for mate choice. For example, faces of males may convey information about their health or genetic quality through symmetry or facial masculinity. Because perceiving and processing such information may have bearing on the reproductive success of an individual, cognitive systems are expected to be sensitive to facial cues of mate quality. However, few studies have investigated this topic in non-human primate species. Orang-utans are an interesting species to test mate-relevant cognitive biases, because they are characterised by male bimaturism: some adult males are fully developed and bear conspicuous flanges on the side of their face, while other males look relatively similar to females. Here, we describe two non-invasive computerised experiments with Bornean orang-utans (Pongo pygmaeus), testing (i) immediate attention towards large flanges and symmetrical faces using a dot-probe task (N = 3 individuals; 2F) and (ii) choice bias for pictures of flanged males over unflanged males using a preference test (N = 6 individuals; 4F). In contrast with our expectations, we found no immediate attentional bias towards either large flanges or symmetrical faces. In addition, individuals did not show a choice bias for stimuli of flanged males. We did find exploratory evidence for a colour bias and energy efficiency trade-offs in the preference task. We discuss our null results and exploratory results in the context of the evolutionary history of Bornean orang-utans, and provide suggestions for a more biocentric approach to the study of orang-utan cognition.


Subject(s)
Pongo pygmaeus , Animals , Male , Pongo pygmaeus/physiology , Pongo pygmaeus/psychology , Female , Attentional Bias/physiology , Sex Characteristics , Choice Behavior/physiology , Sexual Behavior, Animal/physiology , Mating Preference, Animal/physiology
5.
PeerJ ; 12: e17320, 2024.
Article in English | MEDLINE | ID: mdl-38766489

ABSTRACT

Vocal complexity is central to many evolutionary hypotheses about animal communication. Yet, quantifying and comparing complexity remains a challenge, particularly when vocal types are highly graded. Male Bornean orangutans (Pongo pygmaeus wurmbii) produce complex and variable "long call" vocalizations comprising multiple sound types that vary within and among individuals. Previous studies described six distinct call (or pulse) types within these complex vocalizations, but none quantified their discreteness or the ability of human observers to reliably classify them. We studied the long calls of 13 individuals to: (1) evaluate and quantify the reliability of audio-visual classification by three well-trained observers, (2) distinguish among call types using supervised classification and unsupervised clustering, and (3) compare the performance of different feature sets. Using 46 acoustic features, we used machine learning (i.e., support vector machines, affinity propagation, and fuzzy c-means) to identify call types and assess their discreteness. We additionally used Uniform Manifold Approximation and Projection (UMAP) to visualize the separation of pulses using both extracted features and spectrogram representations. Supervised approaches showed low inter-observer reliability and poor classification accuracy, indicating that pulse types were not discrete. We propose an updated pulse classification approach that is highly reproducible across observers and exhibits strong classification accuracy using support vector machines. Although the low number of call types suggests long calls are fairly simple, the continuous gradation of sounds seems to greatly boost the complexity of this system. This work responds to calls for more quantitative research to define call types and quantify gradedness in animal vocal systems and highlights the need for a more comprehensive framework for studying vocal complexity vis-à-vis graded repertoires.


Subject(s)
Vocalization, Animal , Animals , Vocalization, Animal/physiology , Male , Pongo pygmaeus/physiology , Reproducibility of Results , Machine Learning , Acoustics , Sound Spectrography , Borneo
6.
Elife ; 122024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457350

ABSTRACT

Studies of climate variation commonly rely on chemical and isotopic changes recorded in sequentially produced growth layers, such as in corals, shells, and tree rings, as well as in accretionary deposits-ice and sediment cores, and speleothems. Oxygen isotopic compositions (δ18O) of tooth enamel are a direct method of reconstructing environmental variation experienced by an individual animal. Here, we utilize long-forming orangutan dentitions (Pongo spp.) to probe recent and ancient rainfall trends on a weekly basis over ~3-11 years per individual. We first demonstrate the lack of any consistent isotopic enrichment effect during exclusive nursing, supporting the use of primate first molar teeth as environmental proxies. Comparisons of δ18O values (n=2016) in twelve molars from six modern Bornean and Sumatran orangutans reveal a high degree of overlap, with more consistent annual and bimodal rainfall patterns in the Sumatran individuals. Comparisons with fossil orangutan δ18O values (n=955 measurements from six molars) reveal similarities between modern and late Pleistocene fossil Sumatran individuals, but differences between modern and late Pleistocene/early Holocene Bornean orangutans. These suggest drier and more open environments with reduced monsoon intensity during this earlier period in northern Borneo, consistent with other Niah Caves studies and long-term speleothem δ18O records in the broader region. This approach can be extended to test hypotheses about the paleoenvironments that early humans encountered in southeast Asia.


When an animal drinks water, two naturally occurring variants of oxygen ­ known as oxygen-18 and oxygen-16 ­ are incorporated into its growing teeth. The ratio of these variants in water changes with temperature, rainfall and other environmental conditions and therefore can provide a record of the climate during an animal's life. Teeth tend to be well preserved as fossils, which makes it possible to gain insights into this climate record even millions of years after an animal's death. Orangutans are highly endangered great apes that today live in rainforests on the islands of Borneo and Sumatra. During a period of time known as the Pleistocene (around 2.6 million years to 12,000 years ago), these apes were more widely spread across Southeast Asia. Climate records from this area in the time before human-induced climate change are somewhat limited. Therefore, fossilized orangutan teeth offer a possible way to investigate past seasonal rainfall patterns and gain insight into the kind of environments early humans would have encountered. To address this question, Smith et al. measured oxygen-18 and oxygen-16 variants in thin slices of modern-day orangutan teeth using a specialized analytical system. This established that the teeth showed seasonal patterns consistent with recent rainfall trends, and that the ratio of these oxygen variants did not appear to be impacted by milk intake in young orangutans. These findings indicated that the oxygen variants could be a useful proxy for predicting prehistoric weather patterns from orangutan teeth. Further measurements of teeth from fossilized Sumatran orangutans showed broadly similar rainfall patterns to those of teeth from modern-day orangutans. On the other hand, fossilized teeth from Borneo suggested that the environment used to be drier, with less intense wet seasons. The approach developed by Smith et al. provides an opportunity for scientists to leverage new fossil discoveries as well as existing collections to investigate past environments. This could allow future research into how climate variation may have influenced the spread of early humans through the region, as well as the evolution of orangutans and other endangered animals.


Subject(s)
Hominidae , Pongo abelii , Tooth , Animals , Humans , Pongo pygmaeus , Asia, Southeastern
7.
PLoS One ; 19(2): e0296688, 2024.
Article in English | MEDLINE | ID: mdl-38335166

ABSTRACT

Male orangutans (Pongo spp.) exhibit bimaturism, an alternative reproductive tactic, with flanged and unflanged males displaying two distinct morphological and behavioral phenotypes. Flanged males are larger than unflanged males and display secondary sexual characteristics which unflanged males lack. The evolutionary explanation for alternative reproductive tactics in orangutans remains unclear because orangutan paternity studies to date have been from sites with ex-captive orangutans, provisioning via feeding stations and veterinary care, or that lack data on the identity of mothers. Here we demonstrate, using the first long-term paternity data from a site free of these limitations, that alternative reproductive tactics in orangutans are condition-dependent, not frequency-dependent. We found higher reproductive success by flanged males than by unflanged males, a pattern consistent with other Bornean orangutan (Pongo pygmaeus) paternity studies. Previous paternity studies disagree on the degree of male reproductive skew, but we found low reproductive skew among flanged males. We compare our findings and previous paternity studies from both Bornean and Sumatran orangutans (Pongo abelii) to understand why these differences exist, examining the possible roles of species differences, ecology, and human intervention. Additionally, we use long-term behavioral data to demonstrate that while flanged males can displace unflanged males in association with females, flanged males are unable to keep other males from associating with a female, and thus they are unable to completely mate guard females. Our results demonstrate that alternative reproductive tactics in Bornean orangutans are condition-dependent, supporting the understanding that the flanged male morph is indicative of good condition. Despite intense male-male competition and direct sexual coercion by males, female mate choice is effective in determining reproductive outcomes in this population of wild orangutans.


Subject(s)
Pongo abelii , Pongo pygmaeus , Humans , Female , Male , Animals , Biological Evolution , Reproduction , Ecology
8.
Am J Primatol ; 86(5): e23608, 2024 May.
Article in English | MEDLINE | ID: mdl-38353023

ABSTRACT

Molar and incisor microwear reflect aspects of food choice and ingestive behaviors in living primates and have both been used to infer the same for fossil samples. Canine microwear, however, has received less attention, perhaps because of the prominent role canines play in social display and because they are used as weapons-while outside of a few specialized cases, their involvement in diet related behaviors has not been obvious. Here, we posit that microwear can also provide glimpses into canine tooth use in ingestion. Canines of Sumatran long-tailed macaques (Macaca fascicularis), agile gibbons (Hylobates agilis), lar gibbons (Hylobates lar), Thomas' leaf monkeys (Presbytis thomasi), and orangutans (Pongo abelii), and two African great apes, bonobos (Pan paniscus) and common chimpanzees (Pan troglodytes schweinfurthii), were considered. The labial tips of maxillary canine replicas were scanned using a white-light confocal profiler, and both feature and texture analyses were used to characterize microwear surface patterning. The taxa exhibited significant differences in canine microwear. In some cases, these were consistent with variation in reported anterior tooth use such that, for example, the orangutans, known to use their front teeth extensively in ingestion, had the highest median number of microwear features on their canines, whereas the gibbons, reported to use their front teeth infrequently in food acquisition, had the lowest.


Subject(s)
Hominidae , Hylobates , Animals , Primates , Pan paniscus , Macaca fascicularis , Pongo pygmaeus , Diet/veterinary
9.
Am J Biol Anthropol ; 184(1): e24902, 2024 May.
Article in English | MEDLINE | ID: mdl-38400773

ABSTRACT

OBJECTIVES: Reconstruction of fossil hominin manual behaviors often relies on comparative analyses of extant hominid hands to understand the relationship between hand use and skeletal morphology. In this context, the intermediate phalanges remain understudied. Thus, here we investigate cortical bone morphology of the intermediate phalanges of extant hominids and compare it to the cortical structure of the proximal phalanges, to investigate the relationship between cortical bone structure and inferred loading during manual behaviors. MATERIALS AND METHODS: Using micro-CT data, we analyze cortical bone structure of the intermediate phalangeal shaft of digits 2-5 in Pongo pygmaeus (n = 6 individuals), Gorilla gorilla (n = 22), Pan spp. (n = 23), and Homo sapiens (n = 23). The R package morphomap is used to study cortical bone distribution, cortical thickness and cross-sectional properties within and across taxa. RESULTS: Non-human great apes generally have thick cortical bone on the palmar shaft, with Pongo only having thick cortex on the peaks of the flexor sheath ridges, while African apes have thick cortex along the entire flexor sheath ridge and proximal to the trochlea. Humans are distinct in having thicker dorsal shaft cortex as well as thick cortex at the disto-palmar region of the shaft. DISCUSSION: Variation in cortical bone distribution and properties of the intermediate phalanges is consistent with differences in locomotor and manipulative behaviors in extant great apes. Comparisons between the intermediate and proximal phalanges reveals similar patterns of cortical bone distribution within each taxon but with potentially greater load experienced by the proximal phalanges, even in knuckle-walking African apes. This study provides a comparative context for the reconstruction of habitual hand use in fossil hominins and hominids.


Subject(s)
Hominidae , Animals , Humans , Hominidae/anatomy & histology , Gorilla gorilla/anatomy & histology , Locomotion , Pongo , Pongo pygmaeus/anatomy & histology , Cortical Bone
10.
Parasitology ; 151(4): 380-389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361461

ABSTRACT

Naturally acquired immunity to the different types of malaria in humans occurs in areas of endemic transmission and results in asymptomatic infection of peripheral blood. The current study examined the possibility of naturally acquired immunity in Bornean orangutans, Pongo pygmaeus, exposed to endemic Plasmodium pitheci malaria. A total of 2140 peripheral blood samples were collected between January 2017 and December 2022 from a cohort of 135 orangutans housed at a natural forested Rescue and Rehabilitation Centre in West Kalimantan, Indonesia. Each individual was observed for an average of 4.3 years during the study period. Blood samples were examined by microscopy and polymerase chain reaction for the presence of plasmodial parasites. Infection rates and parasitaemia levels were measured among age groups and all 20 documented clinical malaria cases were reviewed to estimate the incidence of illness and risk ratios among age groups. A case group of all 17 individuals that had experienced clinical malaria and a control group of 34 individuals having an event of >2000 parasites µL−1 blood but with no outward or clinical sign of illness were studied. Immature orangutans had higher-grade and more frequent parasitaemia events, but mature individuals were more likely to suffer from clinical malaria than juveniles. The case orangutans having patent clinical malaria were 256 times more likely to have had no parasitaemia event in the prior year relative to asymptomatic control orangutans. The findings are consistent with rapidly acquired immunity to P. pitheci illness among orangutans that wanes without re-exposure to the pathogen.


Subject(s)
Ape Diseases , Malaria , Plasmodium , Pongo pygmaeus , Animals , Malaria/epidemiology , Malaria/immunology , Malaria/parasitology , Plasmodium/immunology , Indonesia/epidemiology , Pongo pygmaeus/parasitology , Male , Female , Ape Diseases/parasitology , Ape Diseases/epidemiology , Parasitemia/veterinary , Parasitemia/epidemiology , Parasitemia/parasitology , Incidence
11.
Behav Processes ; 216: 105011, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38417563

ABSTRACT

Humans and several other species of animals have demonstrated the ability to use familiarity to recognize that they have seen images before. In prior experiments, orangutans failed to show use of familiarity in memory tasks, even when other solutions were not available. We tested for evidence of habituation, a decreased response to repeated stimuli, as a behavioral indicator that repeated images were familiar to subjects. Monkeys and orangutans selected the smallest target out of four while computerized images were presented as distractors. Latency to complete the target-finding task was compared between conditions in which the distractor image was a familiar, repeating image, a novel, never-before-seen image, or no distractor was present. Rhesus macaques showed significant habituation, and significantly more habituation than orangutans, in each of four experiments. Orangutans showed statistically reliable habituation in only one of the four experiments. These results are consistent with previous research in which orangutans failed to demonstrate familiarity. Because we expect that familiarity and habituation are evolutionarily ancient memory processes, we struggle to explain these surprising, but consistent findings. Future research is needed to determine why orangutans respond to computerized images in this peculiar way.


Subject(s)
Habituation, Psychophysiologic , Pongo , Animals , Humans , Macaca mulatta , Memory , Recognition, Psychology , Pongo pygmaeus
12.
J Hum Evol ; 188: 103496, 2024 03.
Article in English | MEDLINE | ID: mdl-38412694

ABSTRACT

Among extant great apes, orangutans climb most frequently. However, Bornean orangutans (Pongo pygmaeus) exhibit higher frequencies of terrestrial locomotion than do Sumatran orangutans (Pongo abelii). Variation in long bone cross-sectional geometry is known to reflect differential loading of the limbs. Thus, Bornean orangutans should show greater relative leg-to-arm strength than their Sumatran counterparts. Using skeletal specimens from museum collections, we measured two cross-sectional geometric measures of bone strength: the polar section modulus (Zpol) and the ratio of maximum to minimum area moments of inertia (Imax/Imin), at the midshaft of long bones in Bornean (n = 19) and Sumatran adult orangutans (n = 12) using medical CT and peripheral quantitative CT scans, and compared results to published data of other great apes. Relative leg-to-arm strength was quantified using ratios of femur and tibia over humerus, radius, and ulna, respectively. Differences between orangutan species and between sexes in median ratios were assessed using Wilcoxon rank sum tests. The tibia of Bornean orangutans was stronger relative to the humerus and the ulna than in Sumatran orangutans (p = 0.008 and 0.025, respectively), consistent with behavioral studies that indicate higher frequencies of terrestrial locomotion in the former. In three Zpol ratios, adult female orangutans showed greater leg-to-arm bone strength compared to flanged males, which may relate to females using their legs more during arboreal locomotion than in adult flanged males. A greater amount of habitat discontinuity on Borneo compared to Sumatra has been posited as a possible explanation for observed interspecific differences in locomotor behaviors, but recent camera trap studies has called this into question. Alternatively, greater frequencies of terrestriality in Pongo pygmaeus may be due to the absence of tigers on Borneo. The results of this study are consistent with the latter explanation given that habitat continuity was greater a century ago when our study sample was collected.


Subject(s)
Hominidae , Pongo abelii , Female , Male , Animals , Pongo pygmaeus , Ecosystem , Behavior, Animal , Indonesia
13.
J Hum Evol ; 189: 103507, 2024 04.
Article in English | MEDLINE | ID: mdl-38417249

ABSTRACT

The rarity of Pongo fossils with precise absolute dating from the Middle Pleistocene hampers our understanding of the taxonomy and spatiotemporal distribution of Quaternary orangutans in southern China. Here, we report a newly discovered sample of 113 isolated teeth of fossil Pongo from Zhongshan Cave in the Bubing Basin, Guangxi, southern China. We describe the Pongo specimens from Zhongshan Cave and compare them metrically to other samples of fossil Pongo species (i.e., Pongo weidenreichi, Pongo devosi, Pongo duboisi, Pongo palaeosumatrensis, Pongo javensis, and Pongo sp.) and to extant orangutans (i.e., Pongo pygmaeus and Pongo abelii). The Zhongshan Pongo assemblage is dated using U-series and coupled electron spin resonance/U-series methods. Our results reasonably constrain the Zhongshan Pongo assemblage to 184 ± 16 ka, which is consistent with the biostratigraphic evidence. The Zhongshan Pongo teeth are only 6.5% larger on average than those of extant Pongo. The Zhongshan teeth are smaller overall than those of Pongo from all other cave sites in southern China, and they currently represent the smallest fossil orangutans in southern China. Based on their dental size, and the presence of a well-developed lingual pillar and lingual cingulum on the upper and lower incisors, an intermediate frequency of lingual cingulum remnants on the upper molars, and a higher frequency of moderate to heavy wrinkling on the upper and lower molars, we provisionally assign the Zhongshan fossils to P. devosi. Our results confirm earlier claims that P. weidenreichi is replaced by a smaller species in southern China, P. devosi, by the late Middle Pleistocene. The occurrence of P. devosi in Zhongshan Cave further extends its spatial and temporal distribution. The Pongo specimens from Zhongshan provide important new evidence to demonstrate that the dental morphological features of Pongo in southern China changed substantially during the late Middle Pleistocene.


Subject(s)
Hominidae , Pongo abelii , Tooth , Animals , Pongo/anatomy & histology , Fossils , China , Tooth/anatomy & histology , Pongo pygmaeus , Hominidae/anatomy & histology
14.
PLoS One ; 19(1): e0295221, 2024.
Article in English | MEDLINE | ID: mdl-38232055

ABSTRACT

We investigated children's and non-human great apes' ability to anticipate others' choices from their evident food preferences-regardless of whether these preferences deviate or align with one's own. We assessed children from three culturally-diverse societies (Namibia, Germany, and Samoa; N = 71; age range = 5-11) and four non-human great ape species (chimpanzees (Pan troglodytes), bonobos (Pan paniscus), gorillas (Gorilla gorilla), and orangutans (Pongo abelii); N = 25; age range = 7-29) regarding their choices in a dyadic food-retrieval task. Across conditions, participants' preferences were either aligned (same preference condition) or opposed (opposite preference condition) to those of their competitors. Children across societies altered their choices based on their competitor's preferences, indicating a cross-culturally recurrent capacity to anticipate others' choices relying on preferences-based inferences. In contrast to human children, all non-human great apes chose according to their own preferences but independent of those of their competitors. In sum, these results suggest that the tendency to anticipate others' choices based on their food preferences is cross-culturally robust and, among the great apes, most likely specific to humans.


Subject(s)
Hominidae , Pongo abelii , Animals , Humans , Gorilla gorilla , Pan troglodytes , Pongo pygmaeus , Pan paniscus
15.
J Zoo Wildl Med ; 54(4): 837-844, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38252010

ABSTRACT

Shigella flexneri is a nonmotile gram-negative bacillus that affects humans and nonhuman primates. In August 2021, 15 primates at the ABQ BioPark demonstrated clinical signs of Shigella infection: 3 out of 4 Sumatran and hybrid orangutans (Pongo abelii), 6 out of 8 gorillas (Gorilla gorilla), 2 out of 9 chimpanzees (Pan troglodytes), and 4 out of 4 siamangs (Hylobates syndactylus). Three siamangs and one gorilla succumbed to complications of shigellosis during the initial outbreak and a chimpanzee died 10 mon later. Although it is well documented that Shigella may cause morbidity and mortality in nonhuman primates, the rapid and devastating nature of the outbreak, the difference from previous reports in zoological collections (enzootic vs outbreak), and the chronological overlap with the increase in human cases in the region makes discussion of this Shigella outbreak of significance. The cases presented here are significantly different than previous reports, because these were part of an outbreak that arose and subsided, versus other reports where the authors describe an enzootic disease with persistently infected animals. Close communication with the New Mexico Department of Health allowed for the investigation into possible sources of the outbreak, recommendations regarding biosecurity protocols, and staff education.


Subject(s)
Hylobatidae , Pongo abelii , Animals , Humans , Shigella flexneri , Pan troglodytes , Disease Outbreaks/veterinary , Pongo pygmaeus
16.
J Zoo Wildl Med ; 54(4): 879-883, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38252015

ABSTRACT

A 36-yr-old female intact hybrid orangutan (Pongo sp.) presented with evidence of chronic bacterial cystitis with no response to treatment with multiple systemic antibiotics. Abnormalities were identified within the reproductive tract on CT scan, and hysteroscopy was pursued based on the recommendation of an obstetrician-gynecologist. Hysteroscopic examination revealed a large amount of intrauterine foreign material consistent with wood wool from the orangutan's bedding. A hysteroscopic morcellator (MyoSure®) was used to remove the foreign material. Histologic examination of endometrial biopsies showed severe suppurative to pyogranulomatous endometritis with intralesional foreign (wood) fibers and bacteria. The orangutan was treated with antibiotics, but evidence of bacterial cystitis persisted. After 15 wk, additional wood wool was identified within the uterus by hysteroscopic examination and was removed similarly. Five months later, there was no recurrence of foreign material on hysteroscopy or CT. This report describes the first documentation of intrauterine foreign material in a nonhuman primate. Hysteroscopic morcellation is a useful technique for noninvasive removal of intrauterine foreign material in great apes.


Subject(s)
Cystitis , Foreign Bodies , Morcellation , Female , Animals , Pongo , Morcellation/veterinary , Pongo pygmaeus , Uterus , Anti-Bacterial Agents , Cystitis/veterinary , Foreign Bodies/surgery , Foreign Bodies/veterinary
17.
Am J Biol Anthropol ; 183(3): e24800, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37377134

ABSTRACT

OBJECTIVES: The shape of the trapezium and first metacarpal (Mc1) markedly influence thumb mobility, strength, and the manual abilities of extant hominids. Previous research has typically focused solely on trapezium-Mc1 joint shape. Here we investigate how morphological integration and shape covariation between the entire trapezium (articular and non-articular surfaces) and the entire Mc1 reflect known differences in thumb use in extant hominids. MATERIALS AND METHODS: We analyzed shape covariation in associated trapezia and Mc1s across a large, diverse sample of Homo sapiens (n = 40 individuals) and other extant hominids (Pan troglodytes, n = 16; Pan paniscus, n = 13; Gorilla gorilla gorilla, n = 27; Gorilla beringei, n = 6; Pongo pygmaeus, n = 14; Pongo abelii, n = 9) using a 3D geometric morphometric approach. We tested for interspecific significant differences in degree of morphological integration and patterns of shape covariation between the entire trapezium and Mc1, as well as within the trapezium-Mc1 joint specifically. RESULTS: Significant morphological integration was only found in the trapezium-Mc1 joint of H. sapiens and G. g. gorilla. Each genus showed a specific pattern of shape covariation between the entire trapezium and Mc1 that was consistent with different intercarpal and carpometacarpal joint postures. DISCUSSION: Our results are consistent with known differences in habitual thumb use, including a more abducted thumb during forceful precision grips in H. sapiens and a more adducted thumb in other hominids used for diverse grips. These results will help to infer thumb use in fossil hominins.


Subject(s)
Hominidae , Metacarpal Bones , Pongo abelii , Animals , Humans , Hominidae/anatomy & histology , Thumb , Metacarpal Bones/anatomy & histology , Gorilla gorilla/anatomy & histology , Pan troglodytes/anatomy & histology , Pan paniscus , Pongo pygmaeus/anatomy & histology
18.
Am J Biol Anthropol ; 183(3): e24755, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37171151

ABSTRACT

OBJECTIVES: In this study, we investigated the shape differences of the distal ulna in a phylogenetic context among a broad range of primate taxa. Furthermore, we evaluated covariation between ulnar and triquetrum shape and a possible association between ulnar shape and locomotor behavior. MATERIALS AND METHODS: We applied 3D geometric morphometrics on a large dataset comprising the distal ulna of 124 anthropoid primate specimens belonging to 12 different genera. For each species, a mean shape was calculated using 11 Procrustes-aligned surface landmarks on the distal ulna. These mean shapes are used in a bgPCA, pPCA, and PACA and 3D morphs were used to visualize more subtle differences between taxa. A p2B-PLS analysis was performed to test the covariance between distal ulnar and triquetrum shape. RESULTS: The results show that more closely related species exhibit a similar distal ulnar shape. Overall, extant hominid ulnae show a shape shift compared to those of extant monkeys and hylobatids. This includes a shortening of the ulnar styloid process and dorspalmarly widening of the ulnar head, shape characteristics that are independent of phylogeny. Within the hominids, Pongo pygmaeus seem to possess the most plesiomorphic distal ulnar shape, while Gorilla and Homo sapiens display the most derived distal ulna. Cercopithecoids, hylobatids, and P. pygmaeus are characterized by a relatively deep ECU groove, which is a shape trait dependent of phylogeny. Although there was no significant covariation between distal ulnar shape and triquetrum shape, the shape differences of the distal ulna between the different primate taxa reveal a possible link with locomotor behavior. CONCLUSIONS: The comparative analyses of this study reveal different shape trends in a phylogenetic context. Highly arboreal primates, such as hylobatids and Ateles fusciceps, show a distal ulnar morphology that appears to be adapted to tensile and torsional forces. In primates that use their wrist under more compressive conditions, such as quadrupedal cercopithecoids and great apes, the distal ulnar morphology seems to reflect increased compressive forces. In modern humans, the distal ulnar shape can be associated to enhanced manipulative skills and power grips. There was no significant covariation between distal ulnar shape and triquetrum shape, probably due to the variation in the amount of contact between the triquetrum and ulna. In combination with future research on wrist mobility in diverse primate taxa, the results of this study will allow us to establish form-function relationships of the primate wrist and contribute towards an evidence-based interpretation of fossil remains.


Subject(s)
Hominidae , Primates , Animals , Humans , Phylogeny , Hominidae/anatomy & histology , Ulna/anatomy & histology , Wrist/anatomy & histology , Gorilla gorilla , Haplorhini , Pongo pygmaeus
19.
Am J Primatol ; 86(2): e23581, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38041590

ABSTRACT

Oral health is a crucial aspect of overall well-being in both humans and nonhuman primates. Understanding the oral pathologies and dental conditions in apes can provide valuable insights into their evolutionary history, dietary habits, and overall health. The present study evaluates dental findings in wild great apes from museum specimens to gain insights into the influence of natural nutrition on dental health. Complete macerated skulls of wild, adult great apes from the collection of the Museum of Natural History, Berlin, Germany, were examined. We analyzed skulls of 53 gorillas (Gorilla gorilla), 63 chimpanzees (Pan troglodytes), and 41 orangutans (Pongo spp.). For each skull, we recorded wear of dental hard tissues (Lussi and Ganss index), carious lesions, and periodontal bone loss. Incisal and occlusal dental hard tissue defects were found in all skulls, as well as considerable external staining. In all species, incisors and canines showed the greatest loss of tissue, followed by molars. The wear of molars decreased from the first to the third molars, premolars showed the least pronounced defects. Some individuals had apical osteolytic defects along with severe dental hard tissue loss with pulp involvement or after dental trauma, respectively (n = 5). Our study did not observe any carious lesions among the examined great ape skulls. However, we did find evidence for localized or generalized periodontal bone loss in a subset of the specimens (n = 3 chimpanzees, n = 7 orangutans). The natural diet and foraging behavior of great apes induces abrasion and attrition of dental hard tissue but does not yield carious lesions. The occurrence of periodontitis in individual apes indicates that the natural circumstances can induce periodontal bone loss even in the wild, despite physiological nutrition.


Subject(s)
Alveolar Bone Loss , Dental Caries , Hominidae , Humans , Animals , Pan troglodytes , Gorilla gorilla , Pongo , Pongo pygmaeus , Skull
20.
Am J Biol Anthropol ; 183(3): e24788, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37283367

ABSTRACT

OBJECTIVES: Differences between adult humans and great apes in cervical vertebral morphology are well documented, but the ontogeny of this variation is still largely unexplored. This study examines patterns of growth in functionally relevant features of C1, C2, C4, and C6 in extant humans and apes to understand the development of their disparate morphologies. MATERIALS AND METHODS: Linear and angular measurements were taken from 530 cervical vertebrae representing 146 individual humans, chimpanzees, gorillas, and orangutans. Specimens were divided into three age-categories based on dental eruption: juvenile, adolescent, and adult. Inter- and intraspecific comparisons were evaluated using resampling methods. RESULTS: Of the eighteen variables examined here, seven distinguish humans from apes at the adult stage. Human-ape differences in features related to atlantoaxial joint function tend to be established by the juvenile stage, whereas differences in features related to the nuchal musculature and movement of the subaxial elements do not fully emerge until adolescence or later. The orientation of the odontoid process-often cited as a feature that distinguishes humans from apes-is similar in adult humans and adult chimpanzees, but the developmental patterns are distinct, with human adultlike morphology being achieved much earlier. DISCUSSION: The biomechanical consequences of the variation observed here is poorly understood. Whether the differences in growth patterns represent functional links to cranial development or postural changes, or both, requires additional investigation. Determining when humanlike ontogenetic patterns evolved in hominins may provide insight into the functional basis driving the morphological divergence between extant humans and apes.


Subject(s)
Hominidae , Pan troglodytes , Animals , Humans , Adolescent , Hominidae/anatomy & histology , Gorilla gorilla , Pongo , Cervical Vertebrae/diagnostic imaging , Pongo pygmaeus
SELECTION OF CITATIONS
SEARCH DETAIL
...