Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.603
1.
J Vet Sci ; 25(3): e39, 2024 May.
Article En | MEDLINE | ID: mdl-38834509

IMPORTANCE: Salmonella outbreaks linked to poultry meat have been reported continuously worldwide. Therefore, Salmonella contamination of poultry meats in slaughterhouses is one of the critical control points for reducing disease outbreaks in humans. OBJECTIVE: This study examined the carry-over contamination of Salmonella species through the entire slaughtering process in South Korea. METHODS: From 2018 to 2019, 1,097 samples were collected from the nine slaughterhouses distributed nationwide. One hundred and seventeen isolates of Salmonella species were identified using the invA gene-specific polymerase chain reaction, as described previously. The serotype, phylogeny, and antimicrobial resistance of isolates were examined. RESULTS: Among the 117 isolates, 93 were serotyped into Salmonella Mbandaka (n = 36 isolates, 30.8%), Salmonella Thompson (n = 33, 28.2%), and Salmonella Infantis (n = 24, 20.5%). Interestingly, allelic profiling showed that all S. Mbandaka isolates belonged to the lineage of the sequence type (ST) 413, whereas all S. Thompson isolates were ST292. Moreover, almost all S. Thompson isolates (97.0%, 32/33 isolates) belonging to ST292 were multidrug-resistant and possessed the major virulence genes whose products are required for full virulence. Both serotypes were distributed widely throughout the slaughtering process. Pulsed-field gel electrophoretic analysis demonstrated that seven S. Infantis showed 100% identities in their phylogenetic relatedness, indicating that they were sequentially transmitted along the slaughtering processes. CONCLUSIONS AND RELEVANCE: This study provides more evidence of the carry-over transmission of Salmonella species during the slaughtering processes. ST292 S. Thompson is a potential pathogenic clone of Salmonella species possibly associated with foodborne outbreaks in South Korea.


Abattoirs , Chickens , Salmonella , Animals , Republic of Korea/epidemiology , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/physiology , Poultry Diseases/microbiology , Poultry Diseases/transmission , Poultry Diseases/epidemiology , Phylogeny , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/transmission , Salmonella Infections, Animal/epidemiology , Food Microbiology , Poultry/microbiology , Serogroup , Meat/microbiology
2.
PLoS Negl Trop Dis ; 18(6): e0012241, 2024 Jun.
Article En | MEDLINE | ID: mdl-38833441

Campylobacteriosis disproportionately affects children under five in low-income countries. However, epidemiological and antimicrobial resistance (AMR) information at the children-animal interface is lacking. We hypothesized that Campylobacter is a major cause of enteritis in children in Ethiopia, and contact with animals is a potential source of transmission. The objective of the study was to determine Campylobacter occurrence and its AMR in children under five with diarrhea, backyard farm animals, and companion pets. Stool from 303 children and feces from 711 animals were sampled. Campylobacter was isolated through membrane filtration on modified charcoal cefoperazone deoxycholate agar plates under microaerobic incubation, and the technique showed to be feasible for use in regions lacking organized laboratories. Typical isolates were characterized with MALDI-TOF MS and multiplex PCR. Of 303 children, 20% (n = 59) were infected, with a higher proportion in the 6 to 11-month age group. Campylobacter occurred in 64% (n = 14) of dogs and 44% (n = 112) of poultry. Campylobacter jejuni was present in both a child and animal species in 15% (n = 23) of 149 households positive for Campylobacter. MICs using the gradient strip diffusion test of 128 isolates displayed resistance rates of 20% to ciprofloxacin and 11% to doxycycline. MICs of ciprofloxacin and doxycycline varied between C. coli and C. jejuni, with higher resistance in C. coli and poultry isolates. Campylobacter infection in children and its prevalent excretion from backyard poultry and dogs is a understudied concern. The co-occurrence of C. jejuni in animals and children suggest household-level transmission As resistance to ciprofloxacin and doxycycline was observed, therapy of severe campylobacteriosis should consider susceptibility testing. Findings from this study can support evidence-based diagnosis, antimicrobial treatment, and further investigations on the spread of AMR mechanisms for informed One Health intervention.


Animals, Domestic , Anti-Bacterial Agents , Campylobacter Infections , Campylobacter , Diarrhea , Feces , Pets , Animals , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter Infections/drug therapy , Campylobacter Infections/transmission , Campylobacter Infections/epidemiology , Child, Preschool , Pets/microbiology , Humans , Infant , Anti-Bacterial Agents/pharmacology , Diarrhea/microbiology , Diarrhea/veterinary , Diarrhea/epidemiology , Campylobacter/drug effects , Campylobacter/isolation & purification , Male , Animals, Domestic/microbiology , Female , Feces/microbiology , Dogs , Ethiopia/epidemiology , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Poultry/microbiology , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Infant, Newborn
3.
BMC Infect Dis ; 24(1): 585, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38867171

BACKGROUND: We investigated the presence of Chlamydia psittaci in poultry and the environment in live poultry wholesale markets in Changsha during 2021-2022 and conducted a phylogenetic analysis to understand its distribution in this market. METHODS: In total, 483 samples were analyzed using real-time polymerase chain reaction and 17 C. psittaci-positive samples using high-throughput sequencing, BLAST similarity, and phylogenetic analysis. RESULTS: Twenty-two out of 483 poultry and environmental samples were positive for C. psittaci (overall positivity rate: 4.55%) with no difference in positivity rates over 12 months. Chlamydia psittaci was detected at 11 sampling points (overall positivity rate: 27.5%), including chicken, duck, and pigeon/chicken/duck/goose shops, with pigeon shops having the highest positivity rate (46.67%). The highest positivity rates were found in sewage (12.5%), poultry fecal (7.43%), cage swab (6.59%), avian pharyngeal/cloacal swab (3.33%), and air (2.29%) samples. The ompA sequences were identified in two strains of C. psittaci, which were determined to bear genotype B using phylogenetic analysis. Thus, during monitoring, C. psittaci genotype B was detected in the poultry and environmental samples from the poultry wholesale market in Changsha. CONCLUSIONS: To address the potential zoonotic threat, C. psittaci monitoring programs in live poultry markets should be enhanced.


Chlamydophila psittaci , Phylogeny , Poultry Diseases , Poultry , Psittacosis , Animals , Chlamydophila psittaci/genetics , Chlamydophila psittaci/isolation & purification , Chlamydophila psittaci/classification , China/epidemiology , Psittacosis/microbiology , Psittacosis/veterinary , Psittacosis/epidemiology , Poultry/microbiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Chickens/microbiology , Ducks/microbiology , Feces/microbiology , Real-Time Polymerase Chain Reaction
4.
J Microbiol Biotechnol ; 34(5): 987-993, 2024 May 28.
Article En | MEDLINE | ID: mdl-38719774

Campylobacteriosis is a significant foodborne illness caused by Campylobacter bacteria. It is one of the most common bacterial causes of gastroenteritis worldwide, with poultry being a major reservoir and source of infection in humans. In poultry farms, Campylobacters colonize the intestinal tract of chickens and contaminate meat during processing. Vaccines under development against Campylobacters in poultry showed partial or no protection against their cecal colonization. Therefore, this review will elaborate on campylobacteriosis and emphasize the control strategies and recent vaccine trials against Campylobacters in poultry farms. The epidemiology, diagnosis, and treatment of Campylobacter infection, along with specific mention of poultry Campylobacter contamination events in Malaysia, will also be discussed.


Campylobacter Infections , Campylobacter , Chickens , Farms , Poultry Diseases , Poultry , Animals , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Campylobacter/isolation & purification , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Chickens/microbiology , Poultry/microbiology , Humans , Bacterial Vaccines/immunology , Malaysia/epidemiology , Meat/microbiology
6.
Microbiol Spectr ; 12(6): e0395623, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38700359

Antimicrobial resistance (AMR) poses a significant threat to global health and sustainable development goals, especially in low- and middle-income countries (LMICs). This study aimed to understand the transmission of AMR between poultry, humans, and the environment in Bangladesh using a One Health approach. We analyzed the whole genome sequences (WGS) of 117 extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-Ec) isolates, with 46 being carbapenem resistant. These isolates were obtained from human (n = 20) and poultry feces (n = 12), as well as proximal environments (wastewater) (n = 85) of three different study sites, including rural households (n = 48), rural poultry farms (n = 20), and urban wet markets (n = 49). The WGS of ESBL-Ec isolates were compared with 58 clinical isolates from global databases. No significant differences in antibiotic resistance genes (ARGs) were observed in ESBL-Ec isolated from humans with and without exposure to poultry. Environmental isolates showed higher ARG diversity than human and poultry isolates. No clonal transmission between poultry and human isolates was found, but wastewater was a reservoir for ESBL-Ec for both. Except for one human isolate, all ESBL-Ec isolates were distinct from clinical isolates. Most isolates (77.8%) carried at least one plasmid replicon type, with IncFII being the most prevalent. IncFIA was predominant in human isolates, while IncFII, Col(MG828), and p0111 were common in poultry. We observed putative sharing of ARG-carrying plasmids among isolates, mainly from wastewater. However, in most cases, bacterial isolates sharing plasmids were also clonally related, suggesting clonal spread was more probable than just plasmid transfer. IMPORTANCE: Our study underscores that wastewater discharged from households and wet markets carries antibiotic-resistant organisms from both human and animal sources. Thus, direct disposal of wastewater into the environment not only threatens human health but also endangers food safety by facilitating the spread of antimicrobial resistance (AMR) to surface water, crops, vegetables, and subsequently to food-producing animals. In regions with intensive poultry production heavily reliant on the prophylactic use of antibiotics, compounded by inadequate waste management systems, such as Bangladesh, the ramifications are particularly pronounced. Wastewater serves as a pivotal juncture for the dissemination of antibiotic-resistant organisms and functions as a pathway through which strains of human and animal origin can infiltrate the environment and potentially colonize new hosts. Further research is needed to thoroughly characterize wastewater isolates/populations and understand their potential impact on interconnected environments, communities, and wildlife.


Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , One Health , Poultry , Rural Population , beta-Lactamases , Bangladesh/epidemiology , Humans , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Animals , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Poultry/microbiology , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Carbapenems/pharmacology , Whole Genome Sequencing , Microbial Sensitivity Tests , Urban Population , Plasmids/genetics , Wastewater/microbiology , Drug Resistance, Bacterial/genetics
7.
Virulence ; 15(1): 2359467, 2024 Dec.
Article En | MEDLINE | ID: mdl-38808732

Pasteurella multocida (P. multocida) is a bacterial pathogen responsible for a range of infections in humans and various animal hosts, causing significant economic losses in farming. Integrative and conjugative elements (ICEs) are important horizontal gene transfer elements, potentially enabling host bacteria to enhance adaptability by acquiring multiple functional genes. However, the understanding of ICEs in P. multocida and their impact on the transmission of this pathogen remains limited. In this study, 42 poultry-sourced P. multocida genomes obtained by high-throughput sequencing together with 393 publicly available P. multocida genomes were used to analyse the horizontal transfer of ICEs. Eighty-two ICEs were identified in P. multocida, including SXT/R391 and Tn916 subtypes, as well as three subtypes of ICEHin1056 family, with the latter being widely prevalent in P. multocida and carrying multiple resistance genes. The correlations between insertion sequences and resistant genes in ICEs were also identified, and some ICEs introduced the carbapenem gene blaOXA-2 and the bleomycin gene bleO to P. multocida. Phylogenetic and collinearity analyses of these bioinformatics found that ICEs in P. multocida were transmitted vertically and horizontally and have evolved with host specialization. These findings provide insight into the transmission and evolution mode of ICEs in P. multocida and highlight the importance of understanding these elements for controlling the spread of antibiotic resistance.


Gene Transfer, Horizontal , Genome, Bacterial , Pasteurella Infections , Pasteurella multocida , Phylogeny , Pasteurella multocida/genetics , Pasteurella multocida/classification , Animals , Pasteurella Infections/microbiology , Pasteurella Infections/epidemiology , Pasteurella Infections/transmission , DNA Transposable Elements , Conjugation, Genetic , Evolution, Molecular , Poultry/microbiology , Prevalence , High-Throughput Nucleotide Sequencing
8.
PLoS One ; 19(5): e0303856, 2024.
Article En | MEDLINE | ID: mdl-38787822

This study investigates the impact of casein hydrolysates on the poultry ceca inoculated with Campylobacter focusing on microbial molecular preferences for different protein sources in the presence of Campylobacter jejuni. Three casein sources (intact casein (IN), casein enzyme hydrolysate (EH), and casein acid hydrolysate (AH)) were introduced to cecal contents in combination with inoculated C. jejuni in an in vitro model system incubated for 48 h at 42°C under microaerophilic conditions. Samples were collected at 0, 24, and 48 h. Genomic DNA was extracted and amplified using custom dual-indexed primers, followed by sequencing on an Illumina MiSeq platform. The obtained sequencing data were then analyzed via QIIME2-2021.11. Metabolite extracts were analyzed with ultra-high-performance liquid orbitrap chromatography-mass spectrometry (UHPLC-MS). Statistical analysis of metabolites was conducted using MetaboAnalyst 5.0, while functional analysis was performed using Mummichog 2.0 with a significance threshold set at P < 0.00001. DNA sequencing and metabolomic analyses revealed that C. jejuni was most abundant in the EH group. Microbial diversity and richness improved in casein supplemented groups, with core microbial differences observed, compared to non-supplemented groups. Vitamin B-associated metabolites significantly increased in the supplemented groups, displaying distinct patterns in vitamin B6 and B9 metabolism between EH and AH groups (P < 0.05). Faecalibacterium and Phascolarctobacterium were associated with AH and EH groups, respectively. These findings suggest microbial interactions in the presence of C. jejuni and casein supplementation are influenced by microbial community preferences for casein hydrolysates impacting B vitamin production and shaping competitive dynamics within the cecal microbial community. These findings underscore the potential of nutritional interventions to modulate the poultry GIT microbiota for improved health outcomes.


Campylobacter jejuni , Caseins , Cecum , Metabolome , Campylobacter jejuni/drug effects , Campylobacter jejuni/metabolism , Animals , Cecum/microbiology , Cecum/metabolism , Cecum/drug effects , Caseins/metabolism , Metabolome/drug effects , Chickens/microbiology , Gastrointestinal Microbiome/drug effects , Poultry/microbiology
9.
J Microbiol Biotechnol ; 34(5): 1101-1108, 2024 May 28.
Article En | MEDLINE | ID: mdl-38563109

Earlier studies have validated the isolation of extended-spectrum beta-lactamase-producing Salmonella (ESBL-Sal) strains from food. While poultry is recognized as a reservoir for Salmonella contamination, pertinent data regarding ESBL-Sal remains limited. Consequently, the Ministry of Food and Drug Safety has isolated Salmonella spp. from retail meat and evaluated their antibiotic susceptibility and genetic characteristics via whole-genome sequencing. To further elucidate these aspects, this study investigates the prevalence, antibiotic resistance profiles, genomic characteristics, and homology of ESBL-Sal spp. obtained from livestock-derived products in South Korean retail outlets. A total of 653 Salmonella spp. were isolated from 1,876 meat samples, including 509 beef, 503 pork, 555 chicken, and 309 duck samples. The prevalence rates of Salmonella were 0.0%, 1.4%, 17.5%, and 28.2% in the beef, pork, chicken, and duck samples, respectively. ESBL-Sal was exclusively identified in poultry meat, with a prevalence of 1.4% in the chicken samples (8/555) and 0.3% in the duck samples (1/309). All ESBL-Sal strains carried the blaCTX-M-1 gene and exhibited resistance to ampicillin, ceftiofur, ceftazidime, nalidixic acid, and tetracycline. Eight ESBL-Sal isolates were identified as S. Enteritidis with sequence type (ST) 11. The major plasmid replicons of the Enteritidis-ST11 strains were IncFIB(S) and IncFII(S), carrying antimicrobial resistance genes (ß-lactam, tetracycline, and aminoglycoside) and 166 virulence factor genes. The results of this study provide valuable insights for the surveillance and monitoring of ESBL-Sal in South Korean food chain.


Anti-Bacterial Agents , Chickens , Ducks , Food Microbiology , Meat , Microbial Sensitivity Tests , Salmonella , beta-Lactamases , beta-Lactamases/genetics , Animals , Republic of Korea , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/enzymology , Salmonella/drug effects , Meat/microbiology , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Ducks/microbiology , Cattle , Swine/microbiology , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics , Prevalence , Poultry/microbiology , Plasmids/genetics
10.
Microbiol Spectr ; 12(6): e0399423, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38687075

Salmonella enterica serovar Kentucky ST198 is a major health threat due to its resistance to ciprofloxacin and several other drugs, including third-generation cephalosporins. Many drug-resistant genes have been identified in the Salmonella genomic island 1 variant K (SGI1-K). In this study, we investigated the antimicrobial resistance (AMR) profile and genotypic relatedness of two isolates of ciprofloxacin-resistant (CIPR) S. Kentucky ST198 from poultry in Northeastern Thailand. We successfully assembled the complete genomes of both isolates, namely SSSE-01 and SSSE-03, using hybrid de novo assembly of both short- and long-read sequence data. The complete genomes revealed their highly similar genomic structures and a novel variant of SGI1-K underlying multidrug-resistant (MDR) patterns, including the presence of blaTEM-1b, which confers resistance to beta-lactams, including cephalosporins and lnu(F) which confers resistance to lincomycin and other lincosamides. In addition, the chromosomal mutations in the quinolone resistance-determining region (QRDR) were found at positions 83 (Ser83Phe) and 87 (Asp87Asn) of GyrA and at positions 57 (Thr57Ser) and 80 (Ser80Ile) of ParC suggesting high resistance to ciprofloxacin. We also compared SSSE-01 and SSSE-03 with publicly available complete genome data and revealed significant variations in SGI1-K genetic structures and variable relationships to antibiotic resistance. In comparison to the other isolates, SGI1-K of SSSE-01 and SSSE-03 had a relatively large deletion in the backbone, spanning from S011 (traG∆) to S027 (resG), and the inversion of the IS26-S044∆-yidY segment. Their MDR region was characterized by the inversion of a large segment, including the mer operon and the relocation of IntI1 and several resistance genes downstream of the IS26-S044∆-yidY segment. These structural changes were likely mediated by the recombination of IS26. The findings broaden our understanding of the possible evolution pathway of SGI1-K in fostering drug resistance, which may provide opportunities to control these MDR strains.IMPORTANCEThe emergence of ciprofloxacin-resistant (CIPR) Salmonella Kentucky ST198 globally has raised significant concerns. This study focuses on two poultry isolates from Thailand, revealing a distinct Salmonella genomic island 1 variant K (SGI1-K) genetic structure. Remarkably, multiple antibiotic resistance genes (ARGs) were identified within the SGI1-K as well as other locations in the chromosome, but not in plasmids. Comparing the SGI1-K genetic structures among global and even within-country isolates unveiled substantial variations. Intriguingly, certain isolates lacked ARGs within the SGI1-K, while others had ARGs relocated outside. The presence of chromosomal extended-spectrum ß-lactamase (ESBL) genes and lincosamide resistance, lnu(F), gene, could potentially inform the choices of the treatment of CIPRS. Kentucky ST198 infections in humans. This study highlights the importance of understanding the diverse genetic structures of SGI1-K and emphasizes the role of animals and humans in the emergence of antimicrobial resistance.


Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genomic Islands , Salmonella enterica , Genomic Islands/genetics , Drug Resistance, Multiple, Bacterial/genetics , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Animals , Serogroup , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Thailand , Poultry/microbiology , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Bacterial Proteins/genetics , Genome, Bacterial
11.
J Water Health ; 22(3): 572-583, 2024 Mar.
Article En | MEDLINE | ID: mdl-38557572

Beta-lactamase-producing Enterobacterales bacteria cause severe hard-to-treat infections. Currently, they are spreading beyond hospitals and becoming a serious global health concern. This study investigated the prevalence and molecular characterization of extended-spectrum ß-lactamase and AmpC-type ß-lactamase-producing Enterobacterales (ESBL-PE, AmpC-PE) in wastewater from livestock and poultry slaughterhouses in Ardabil, Iran. A total of 80 Enterobacterales bacteria belonging to 9 species were identified. Among the isolates, Escherichia coli (n = 21/80; 26.2%) and Citrobacter spp. (n = 18/80; 22.5%) exhibited the highest frequency. Overall, 18.7% (n = 15/80) and 2.5% (n = 2/80) of Enterobacterales were found to be ESBL and AmpC producers, respectively. The most common ESBL producer isolates were E. coli (n = 9/21; 42.8%) and Klebsiella pneumoniae (n = 6/7; 85.7%). All AmpC-PE isolates belonged to E. coli strains (n = 2/21; 9.5%). In this study, 80% of ESBL-PE and 100% of AmpC-PE isolates were recovered from poultry slaughterhouse wastewater. All ESBL-PE and AmpC-PE isolates were multidrug-resistant. In total, 93.3% of ESBL-PE isolates harbored the blaCTX-M gene, with the blaCTX-M-15 being the most common subgroup. The emergence of ESBL-PE and AmpC-PE in wastewater of food-producing animals allows for zoonotic transmission to humans through contaminated food products and contaminations of the environment.


Escherichia coli Infections , Escherichia coli , Animals , Humans , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Poultry/microbiology , Abattoirs , Livestock , Wastewater , Prevalence , Iran , Anti-Bacterial Agents , beta-Lactamases/genetics , Bacterial Proteins/genetics , Bacteria
12.
Open Vet J ; 14(1): 438-448, 2024 Jan.
Article En | MEDLINE | ID: mdl-38633178

Background: Nowadays veterinarians and poultry producers use antibiotics to increase growth rates, bird health, and feed efficiency, egg production, for preventative and therapeutic purposes, and to lessen the prevalence of poultry diseases. Most poultry producers have used a variety of antibiotics, either with or without veterinarian instruction. Although antibiotics are beneficial for the majority of their uses, their unauthorized use has resulted in residues accumulated in poultry products intended for human consumption which represents a serious risk to the general public that could be toxicological, microbiological, or immunological. Aim: This study aimed to the estimation of the residues of three major antimicrobials used in the intensive chicken-rearing systems in Egypt, namely Oxytetracycline (OTC), Gentamicin, and Ciprofloxacin. Moreover, the effect of cooking on such residues was investigated. Methods: A total of 100 chicken meat samples (breast, thigh, gizzard, liver, 25 each) were examined for detection of the aforementioned antimicrobials using the microbial inhibition assay and high-performance liquid chromatography (HPLC). Besides, samples containing the highest antimicrobial residues were examined for the effect of boiling for 30 minutes on such residues. Results: The obtained results revealed that 23%, 21%, and 17% of the examined samples were positive for OTC, gentamicin, and ciprofloxacin residues , respectively . Cooking (boiling) for 30 minutes showed a reduction of the antibiotic residue by 88.2%, 95.2%, and 31.3%, respectively. Conclusion: Antimicrobial residues were detected in the chicken meat parts retailed in Egypt. Cooking can reduce the antimicrobial residues at least in part.


Anti-Infective Agents , Oxytetracycline , Animals , Humans , Anti-Bacterial Agents/pharmacology , Chickens , Poultry/microbiology , Ciprofloxacin , Gentamicins
13.
Appl Environ Microbiol ; 90(5): e0029624, 2024 May 21.
Article En | MEDLINE | ID: mdl-38647295

The consumption of contaminated poultry meat is a significant threat for public health, as it implicates in foodborne pathogen infections, such as those caused by Arcobacter. The mitigation of clinical cases requires the understanding of contamination pathways in each food process and the characterization of resident microbiota in the productive environments, so that targeted sanitizing procedures can be effectively implemented. Nowadays these investigations can benefit from the complementary and thoughtful use of culture- and omics-based analyses, although their application in situ is still limited. Therefore, the 16S-rRNA gene-based sequencing of total DNA and the targeted isolation of Arcobacter spp. through enrichment were performed to reconstruct the environmental contamination pathways within a poultry abattoir, as well as the dynamics and distribution of this emerging pathogen. To that scope, broiler's neck skin and caeca have been sampled during processing, while environmental swabs were collected from surfaces after cleaning and sanitizing. Metataxonomic survey highlighted a negligible impact of fecal contamination and a major role of broiler's skin in determining the composition of the resident abattoir microbiota. The introduction of Arcobacter spp. in the environment was mainly conveyed by this source rather than the intestinal content. Arcobacter butzleri represented one of the most abundant species and was extensively detected in the abattoir by both metataxonomic and enrichment methods, showing higher prevalence than other more thermophilic Campylobacterota. In particular, Arcobacter spp. was recovered viable in the plucking sector with high frequency, despite the adequacy of the sanitizing procedure.IMPORTANCEOur findings have emphasized the persistence of Arcobacter spp. in a modern poultry abattoir and its establishment as part of the resident microbiota in specific environmental niches. Although the responses provided here are not conclusive for the identification of the primary source of contamination, this biogeographic assessment underscores the importance of monitoring Arcobacter spp. from the early stages of the production chain with the integrative support of metataxonomic analysis. Through such combined detection approaches, the presence of this pathogen could be soon regarded as hallmark indicator of food safety and quality in poultry slaughtering.


Abattoirs , Arcobacter , Chickens , Arcobacter/isolation & purification , Arcobacter/genetics , Arcobacter/classification , Animals , Chickens/microbiology , Food Microbiology , RNA, Ribosomal, 16S/genetics , Poultry/microbiology , Microbiota , Meat/microbiology , Food Contamination/analysis
14.
Microbiol Spectr ; 12(5): e0378423, 2024 May 02.
Article En | MEDLINE | ID: mdl-38511948

Clostridium perfringens is a prevalent bacterial pathogen in poultry, and due to the spread of antimicrobial resistance, alternative treatments are needed to prevent and treat infection. Bacteriophages (phages), viruses that kill bacteria, offer a viable option and can be used therapeutically to treat C. perfringens infections. The aim of this study was to isolate phages against C. perfringens strains currently circulating on farms across the world and establish their virulence and development potential using host range screening, virulence assays, and larva infection studies. We isolated 32 phages of which 19 lysed 80%-92% of our global C. perfringens poultry strain collection (n = 97). The virulence of these individual phages and 32 different phage combinations was quantified in liquid culture at multiple doses. We then developed a multi-strain C. perfringens larva infection model, to mimic an effective poultry model used by the industry. We tested the efficacy of 16/32 phage cocktails in the larva model. From this, we identified that our phage cocktail consisting of phages CPLM2, CPLM15, and CPLS41 was the most effective at reducing C. perfringens colonization in infected larvae when administered before bacterial challenge. These data suggest that phages do have significant potential to prevent and treat C. perfringens infection in poultry. IMPORTANCE: Clostridium perfringens causes foodborne illness worldwide, and 95% of human infections are linked to the consumption of contaminated meat, including chicken products. In poultry, C. perfringens infection causes necrotic enteritis, and associated mortality rates can be up to 50%. However, treating infections is difficult as the bacterium is becoming antibiotic-resistant. Furthermore, the poultry industry is striving toward reduced antibiotic usage. Bacteriophages (phages) offer a promising alternative, and to progress this approach, robust suitable phages and laboratory models that mimic C. perfringens infections in poultry are required. In our study, we isolated phages targeting C. perfringens and found that many lyse C. perfringens strains isolated from chickens worldwide. Consistent with other published studies, in the model systems we assayed here, when some phages were combined as cocktails, the infection was cleared most effectively compared to individual phage use.


Bacteriophages , Clostridium Infections , Clostridium perfringens , Host Specificity , Poultry Diseases , Clostridium perfringens/virology , Animals , Bacteriophages/physiology , Clostridium Infections/microbiology , Clostridium Infections/therapy , Clostridium Infections/veterinary , Poultry Diseases/microbiology , Poultry Diseases/virology , Virulence , Chickens , Poultry/microbiology , Phage Therapy/methods , Larva/microbiology , Larva/virology , Disease Models, Animal
15.
Poult Sci ; 103(4): 103548, 2024 Apr.
Article En | MEDLINE | ID: mdl-38442560

Campylobacter is a major cause of bacterial foodborne diarrhea worldwide. Consumption of raw or undercooked chicken meat contaminated with Campylobacter is the most common causative agent of human infections. Given the high prevalence of contamination in poultry meat and the recent rise of multi-drug-resistant (MDR) Campylobacter strains, an effective intervention method of reducing bird colonization is needed. In this study, the Campylobacter-specific lytic phage CP6 was isolated from chicken feces. Phage CP6 exhibited a broad host range against different MDR Campylobacter isolates (97.4% of strains were infected). Some biological characteristics were observed, such as a good pH (3-9) stability and moderate temperature tolerance (<50 ℃). The complete genome sequence revealed a linear double-stranded DNA (178,350 bp, group II Campylobacter phage) with 27.51% GC content, including 209 predicted open reading frames, among which only 54 were annotated with known functions. Phylogenetic analysis of the phage major capsid protein demonstrated that phage CP6 was closely related to Campylobacter phage CPt10, CP21, CP20, IBB35, and CP220. CP6 phage exerted good antimicrobial effects on MDR Campylobacter in vitro culture and reduced CFUs of the host cells by up to 1-log compared with the control in artificially contaminated chicken breast meat. Our findings suggested the potential of CP6 phage as a promising antimicrobial agent for combating MDR Campylobacter in food processing.


Bacteriophages , Campylobacter Infections , Campylobacter jejuni , Campylobacter , Humans , Animals , Poultry/microbiology , Chickens/microbiology , Phylogeny , Meat/microbiology , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Anti-Bacterial Agents/pharmacology , Food Microbiology
16.
Environ Int ; 186: 108603, 2024 Apr.
Article En | MEDLINE | ID: mdl-38547543

Acinetobacter baumannii has become a prominent nosocomial pathogen, primarily owing to its remarkable ability to rapidly acquire resistance to a wide range of antimicrobial agents and its ability to persist in diverse environments. However, there is a lack of data on the molecular epidemiology and its potential implications for public health of A. baumannii strains exhibiting clinically significant resistances that originate from non-clinical environments. Therefore, the genetic characteristics and resistance mechanisms of 80 A. baumannii-calcoaceticus (ABC) complex isolates, sourced from environments associated with poultry and pig production, municipal wastewater treatment plants (WWTPs), and clinical settings, were investigated. In total, our study classified 54 isolates into 29 previously described sequence types (STs), while 26 isolates exhibited as-yet-unassigned STs. We identified a broad range of A. baumannii STs originating from poultry and pig production environments (e.g., ST10, ST238, ST240, ST267, ST345, ST370, ST372, ST1112 according to Pasteur scheme). These STs have also been documented in clinical settings worldwide, highlighting their clinical significance. These findings also raise concerns about the potential zoonotic transmission of certain STs associated with livestock environments. Furthermore, we observed that clinical isolates exhibited the highest diversity of antimicrobial resistance genes (ARGs). In contrast to non-clinical isolates, clinical isolates typically carried a significantly higher number of ARGs, ranging from 10 to 15. They were also the exclusive carriers of biocide resistance genes and acquired carbapenemases (blaOXA-23, blaOXA-58, blaOXA-72, blaGIM-1, blaNDM-1). Additionally, we observed that clinical strains displayed an increased capacity for carrying plasmids and undergoing genetic transformation. This heightened capability could be linked to the intense selective pressures commonly found within clinical settings. Our study provides comprehensive insights into essential aspects of ABC isolates originating from livestock-associated environments and clinical settings. We explored their resistance mechanisms and potential implications for public health, providing valuable knowledge for addressing these critical issues.


Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Livestock , Wastewater , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Wastewater/microbiology , Animals , Livestock/microbiology , Anti-Bacterial Agents/pharmacology , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Humans , Swine , Drug Resistance, Bacterial/genetics , Acinetobacter calcoaceticus/genetics , Acinetobacter calcoaceticus/drug effects , Microbial Sensitivity Tests , Poultry/microbiology , Drug Resistance, Multiple, Bacterial/genetics
17.
Infect Genet Evol ; 119: 105578, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417639

Campylobacter is among the most frequent agents of bacterial gastroenteritis in Europe and is primarily linked to the consumption of contaminated food. The aim of this study was to assess genomic diversity and to identify antimicrobial resistance and virulence genes of 155 Campylobacter isolated from broiler carcasses (neck skin samples) in a large-scale Swiss poultry abattoir over a three-year period. Samples originated from broilers from three different types of farming systems (particularly animal-friendly stabling (PAFS), free-range farms, and organic farms). Campylobacter jejuni (n = 127) and Campylobacter coli (n = 28) were analysed using a whole genome sequencing (WGS) approach (MiniSeq; Illumina). Sequence types (STs) were determined in silico from the WGS data and isolates were assigned into complex types (CTs) using the cgMLST SeqSphere+ scheme. Antimicrobial resistance genes were identified using the Resistance Gene Identifier (RGI), and virulence genes were identified using the virulence factor database (VFDB). A high degree of genetic diversity was observed. Many sequence types (C. jejuni ST19, ST21, ST48, ST50, ST122, ST262 and C. coli ST827) occurred more than once and were distributed throughout the study period, irrespective of the year of isolation and of the broiler farming type. Antimicrobial resistance determinants included blaOXA and tet(O) genes, as well as the T86I substitution within GyrA. Virulence genes known to play a role in human Campylobacter infection were identified such as the wlaN, cstIII, neuA1, neuB1, and neuC1. Subtyping of the Campylobacter isolates identified the occurrence of a highly clonal population of C. jejuni ST21 that was isolated throughout the three-year study period from carcasses from farms with geographically different locations and different farming systems. The high rate of genetic diversity observed among broiler carcass isolates is consistent with previous studies. The identification of a persisting highly clonal C. jejuni ST21 subtype suggests that the slaughterhouse may represent an environment in which C. jejuni ST21 may survive, however, the ecological reservoir potentially maintaining this clone remains unknown.


Anti-Infective Agents , Campylobacter Infections , Campylobacter jejuni , Campylobacter , Humans , Animals , Campylobacter/genetics , Campylobacter jejuni/genetics , Poultry/microbiology , Abattoirs , Chickens/microbiology , Campylobacter Infections/microbiology , Genetic Variation , Genomics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial
18.
Int J Food Microbiol ; 414: 110610, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38330527

Poultry is a common reservoir for Campylobacter and a main source for human campylobacteriosis. With broiler being the predominant poultry for food production, most food safety related research is conducted for this species, for turkey, few studies are available. Although animals are typically colonized at the farm level, the slaughtering process is considered an important factor in re- and cross-contamination. We examined the development of Campylobacter, E. coli and total colony counts (TCC) after several processing steps in three broiler and one turkey slaughterhouses. Whole carcass rinsing and neck skin sampling was applied for broilers resulting in 486 samples in total, while 126 neck skin samples were collected for turkeys. A decrease in the loads of the different bacterial groups along the broiler slaughtering process was observed. Campylobacter mean counts dropped from 4.5 ± 1.7 log10 CFU/ml after killing to 1.6 ± 0.4 log10 CFU/ml after chilling. However, an increase in Campylobacter counts was evident after evisceration before the values again decreased by the final processing step. Although the Campylobacter prevalence in the turkey samples showed a similar development, the bacterial loads were much lower with 1.7 ± 0.3 log10 CFU/g after killing and 1.7 ± 0.4 log10 CFU/g after chilling compared to those of broilers. The loads of E. coli and total colony count of turkey were higher after killing, were reduced by scalding and remained stable until after chilling. This study highlights trends during the slaughtering process in reducing the levels of Campylobacter, E. coli, and total colony counts for broiler and turkey carcasses, from the initial step to after chilling. These results contribute to our understanding of microbial dynamics during meat processing.


Campylobacter , Escherichia coli , Humans , Animals , Chickens/microbiology , Food Microbiology , Abattoirs , Poultry/microbiology , Turkeys , Hygiene , Colony Count, Microbial , Food Handling/methods
19.
Arch Microbiol ; 206(3): 99, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38351393

Feather waste is a highly prevalent form of keratinous waste that is generated by the poultry industry. The global daily production of feather waste has been shown to approach 5 million tons, typically being disposed of through methods such as dumping, landfilling, or incineration which contribute significantly to environmental pollutions. The proper management of these keratinous wastes is crucial to avoid environmental contamination. The study was carried out to isolate the keratinolytic fungi from the poultry disposal sites of different region of North-East India to evaluate its potential in bioremediation of the feathers wastes. Out of 12 fungal strains isolated from the sites, the fungus showing the highest zone of hydrolysis on both the skim milk and keratin agar medium was selected for the study and the molecular identification of the isolate was performed through DNA sequence analysis by amplifying the internal transcribed spacer (ITS) region. The sequence results showed higher similarity (above 95%) with Aspergillus spp. and was named Aspergillus sp. Iro-1. The strain was further analyzed for its feather degrading potential which was performed in submerged conditions under optimized conditions. The study showed that the strain could effectively degrade the feathers validated through weight loss method, and the structural deformations in the feathers were visualized through scanning electron microscopy (SEM). Aspergillus sp. Iro-1 was obtained from the southern region of Assam. It would be of great importance as the implementation of this sp. can help in the bioremediation of feathers wastes in this region. This is the first study of identification of feather degrading fungus from southern part of Assam (Barak).


Peptide Hydrolases , Poultry , Animals , Poultry/microbiology , Peptide Hydrolases/metabolism , Fungi/genetics , Fungi/metabolism , Hydrolysis , Biodegradation, Environmental , Keratins/metabolism , Hydrogen-Ion Concentration , Chickens , Temperature
20.
Vet Res Commun ; 48(3): 1791-1802, 2024 Jun.
Article En | MEDLINE | ID: mdl-38238509

Data and geographical trend of Salmonella serovars infecting poultry in Malaysia is limited. In this study, the trend of Salmonella serovars infection was presented for the past ten years from 2011 to 2020 and the predominant serovars were mapped based on geographical distribution. Analysis of passive surveillance data demonstrated a shift of Salmonella serovars that infected poultry in Malaysia. The Salmonella serovars varied within ten years of registered cases with the Veterinary Research Institute, Ipoh, Malaysia involving samples from live and dead birds. Total number of cases found from the year 2011 to 2020 were 391 cases, involving 73 Salmonella serovars with an additional one group of unclassified serovars known as Salmonella spp. Further analysis revealed that eight serovars were found predominant throughout the ten-year period. These included S. Albany, S. Braenderup, S. Brancaster, S. Corvallis, S. Enteritidis, S. Kentucky, S. Typhimurium and S. Weltevreden. Salmonella spp. (Salmonella that is incapable to be identified based on serotyping) were also one of the major groups observed throughout the years. This study could help the authorities to improvise policies for better disease control programs through the establishment of diagnostic tools for rapid Salmonella screening in poultry.


Poultry Diseases , Salmonella Infections, Animal , Salmonella , Serogroup , Animals , Malaysia/epidemiology , Salmonella/classification , Salmonella/isolation & purification , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Chickens/microbiology , Poultry/microbiology
...