Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.814
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928362

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates the immune system through complicated transcriptional programs. Genistein, an AhR ligand, exhibits anti-inflammatory properties. However, its role in modulating immune responses via the AhR signaling pathway remains unclear. In this study, 360 male Arbor Acre broilers (1-day-old) were fed a basal diet supplemented with 40 or 80 mg/kg genistein and infected with or without Clostridium perfringens (Cp). Our results demonstrated that genistein ameliorated Cp-induced intestinal damage, as reflected by the reduced intestinal lesion scores and improved intestinal morphology and feed-to-gain ratio. Moreover, genistein increased intestinal sIgA, TGF-ß, and IL-10, along with elevated serum IgG, IgA, and lysozyme levels. Genistein improved intestinal AhR and cytochrome P450 family 1 subfamily A member 1 (CYP1A1) protein levels and AhR+ cell numbers in Cp-challenged broilers. The increased number of AhR+CD163+ cells in the jejunum suggested a potential association between genistein-induced AhR activation and anti-inflammatory effects mediated through M2 macrophage polarization. In IL-4-treated RAW264.7 cells, genistein increased the levels of AhR, CYP1A1, CD163, and arginase (Arg)-1 proteins, as well as IL-10 mRNA levels. This increase was attenuated by the AhR antagonist CH223191. In summary, genistein activated the AhR signaling pathway in M2 macrophages, which enhanced the secretion of anti-inflammatory cytokines and attenuated intestinal damage in Cp-infected broilers Cp.


Subject(s)
Chickens , Enteritis , Genistein , Macrophages , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/metabolism , Genistein/pharmacology , Genistein/therapeutic use , Macrophages/drug effects , Macrophages/metabolism , Mice , Enteritis/drug therapy , Enteritis/metabolism , Male , RAW 264.7 Cells , Poultry Diseases/drug therapy , Poultry Diseases/metabolism , Intestines/drug effects , Intestines/pathology , Clostridium perfringens , Clostridium Infections/drug therapy , Necrosis , Macrophage Activation/drug effects , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Signal Transduction/drug effects
2.
J Therm Biol ; 122: 103883, 2024 May.
Article in English | MEDLINE | ID: mdl-38875961

ABSTRACT

Melatonin (MT) is an amine hormone secreted by the body that has antioxidant and anti-inflammatory properties. The aim of this study was to investigate pathophysiological protection of MT in heat-stressed chickens. By modelling heat-stressed chickens and treating them with MT. After 21 days of administration, serum antioxidant enzymes, biochemical indices, inflammatory cytokine and heat-stress indices were detected, along with cardiopulmonary function indices and histological observations in chickens. The results show heat-stress induced a decrease (P < 0.05) in body weight and an increase in body temperature, which was reversed after MT intervention. Treatment with MT inhibited (P < 0.05) the secretion of pro-inflammatory factors interleukin-1ß, interleukin-6, tumor necrosis factor α, serum heat shock protein 70, corticosterone, and elevated (P < 0.05) the levels of biochemical factors total protein, albumin, globulin, and increased (P < 0.05) the activities of antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase in chicken serum caused by heat stress, and the best effect was observed with the medium dose of MT. The heat-stress caused cardiac atrophy and pulmonary congestion, decreased (P < 0.05) the cardiac function indices creatine kinase isoenzyme, cardiac troponin I, angiotensin receptor I, creatine kinase and lung function indices myeloperoxidase, angiotensin-II, heat shock factor I, and increased (P < 0.05) the lung vascular endothelial growth factor II. Sections of the heart and lungs after administration of MT were observed to be more complete with more normal tissue indices. At the same time, compared with heat stress, heart and lung function indices of grade chickens after MT administration were significantly (P < 0.05)reduced and tended to normal levels, and the best effect was observed in the medium-dose MT. In conclusion, heat stress can cause pathophysiological damage in chickens, and 1 mg/kg/d of exogenous melatonin can attenuate this adverse effect.


Subject(s)
Chickens , Heat Stress Disorders , Heat-Shock Response , Melatonin , Animals , Melatonin/pharmacology , Melatonin/administration & dosage , Heat-Shock Response/drug effects , Heat Stress Disorders/drug therapy , Heat Stress Disorders/veterinary , Antioxidants , Cytokines/metabolism , Cytokines/blood , Male , Poultry Diseases/drug therapy
3.
Poult Sci ; 103(7): 103866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833957

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1ß, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.


Subject(s)
Acute Lung Injury , Chickens , Escherichia coli Infections , Glucosides , Monoterpenes , NF-kappa B , Phosphatidylinositol 3-Kinases , Poultry Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Acute Lung Injury/prevention & control , Acute Lung Injury/etiology , Acute Lung Injury/veterinary , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Glucosides/pharmacology , Glucosides/administration & dosage , Monoterpenes/pharmacology , Monoterpenes/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/drug therapy , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Avian Proteins/metabolism , Avian Proteins/genetics , Dose-Response Relationship, Drug , Escherichia coli/drug effects
4.
Arch Microbiol ; 206(7): 292, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849633

ABSTRACT

In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.


Subject(s)
Alkaloids , Anti-Bacterial Agents , Berberine , Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Gentamicins , Matrines , Microbial Sensitivity Tests , Poultry Diseases , Quinolizines , Animals , Gentamicins/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Berberine/pharmacology , Anti-Bacterial Agents/pharmacology , Quinolizines/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Alkaloids/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Virulence/drug effects , Drug Synergism
5.
Animal ; 18(6): 101185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843664

ABSTRACT

Although anticoccidials effectively control coccidiosis, a needed reduction in the reliance on antimicrobials in animal production leads to the exploration of alternative compounds. The present study aimed to test five different dietary treatments to counteract the negative impact of coccidiosis on broiler chickens' health and performance. 1-day-old male Ross 308 broilers (n = 960) were randomly assigned to one of eight treatments, with six cages per treatment (20 birds/cage). To the diet of the broiler chickens of treatments (Trt) 1-5, a synbiotic was added from d0-10. From d10-28, birds of Trt1 and Trt2 were fed synbiotics, whereas birds of Trt3 were fed diets with glutamine, and birds of Trt4 and Trt5 were fed diets with a combination of ß-glucans and betaine. From d28-35 onwards, birds of Trt1 were fed a diet with a synbiotic, whereas birds of Trt2-4 received diets with glutamine, and birds of Trt5 were fed a non-supplemented diet. Birds of the positive control group (PC; Trt6) were fed a standard diet supplemented with an anticoccidial (Decoquinate). The challenged negative control (NCchall; Trt7) and non-challenged negative control (NC) Trt8 were fed a standard diet without anticoccidial or other dietary treatment. At 7 days (d) of age, all birds were inoculated with 1 023, 115, and 512 sporulated oocysts of E. acervulina, E. maxima, and E. tenella, respectively, except for Trt8. Body weight gain (BWG), feed intake, and feed conversion ratio were assessed for each feeding phase (d0-10, d10-28 and d28-35) and overall experimental period (d0-35). Oocyst shedding, Eimeria lesion scores, cecal length, and relative weight were assessed at d13, d22, d28 and d35. Additionally, oocyst shedding was determined at d9 and d17. Litter quality was evaluated at d27 and d34, and footpad lesions at d34. During the starter (d0-10) and finisher (d28-35) periods, performance did not differ between the treatments. During the grower period (d10-28), Trt6 (PC) and Trt8 (NC) chickens had the highest BWG of all treatments (P < 0.001). Dietary treatment had no effect on litter quality and severity of footpad lesions. In the PC group (Trt6), low oocyst excretion and lesion scores were found. When comparing Trt1-5 with NCchall (Trt7), none of the treatments significantly reduced oocyst output or lesion scores. In conclusion, in this experiment, none of the dietary treatments performed similar or better compared to the PC group (Trt6) regarding performance or reducing Eimeria oocyst shedding or lesion scores.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Eimeria , Oocysts , Poultry Diseases , Animals , Coccidiosis/veterinary , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Poultry Diseases/drug therapy , Male , Animal Feed/analysis , Eimeria/physiology , Diet/veterinary , Dietary Supplements/analysis , Synbiotics/administration & dosage , Random Allocation , Betaine/administration & dosage , Betaine/pharmacology , Glutamine/pharmacology , Glutamine/administration & dosage , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , beta-Glucans/therapeutic use
6.
Poult Sci ; 103(7): 103817, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759568

ABSTRACT

Cadmium (Cd) is a common environmental pollutant associated with an increased incidence of renal metabolic diseases. Luteolin (Lut), a natural flavonoid, is widely used for its multifaceted therapeutic properties in inflammatory diseases. However, whether Lut protects against Cd-induced nephrotoxicity is still equivocal. The present study investigated the effects of Lut supplementation on renal oxidative stress, inflammation and metabolism and their related mechanisms. Therefore, 40 chickens were treated with Cd and/or Lut with automatic water and free food intake for 1 mo and then the kidney tissues were collected to explore this issue. In this study, Cd exposure induced renal glycolipid metabolism disorders and resultant kidney damage by periodic acid Schiff (PAS) staining, Oil Red O staining, total cholesterol (TC), triglyceride (TG), and glucose (Glu) levels in kidney, which were significantly ameliorated by Lut. Moreover, Lut also normalized the expression levels of factors related to Cd-disturbed glycolipid metabolism, improving metabolic homeostasis, and contributing to alleviating kidney damage. Furthermore, Lut demonstrated therapeutic potential against Cd-induced renal oxidative stress and inflammation by enhancing antioxidant capacity and inhibiting cytokine production in the kidney tissues. Mechanistically, Lut activated the AMPK/SIRT1/FOXO1 signaling pathway, attenuating oxidative stress and inflammatory responses, ameliorating the metabolic disturbance. In conclusion, these observations demonstrate that Lut treatment activates AMPK/SIRT1/FOXO1 signaling pathway, decreases oxidative stress and inflammation response, which may contribute to prevent Cd-induced metabolism disorder and consequent kidney damage.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cadmium , Chickens , Kidney , Luteolin , Animals , Cadmium/toxicity , Antioxidants/pharmacology , Luteolin/pharmacology , Luteolin/administration & dosage , Kidney/drug effects , Kidney/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Oxidative Stress/drug effects , Poultry Diseases/chemically induced , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Inflammation/veterinary , Inflammation/chemically induced , Inflammation/drug therapy , Kidney Diseases/veterinary , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/drug therapy , Metabolic Diseases/veterinary , Metabolic Diseases/drug therapy , Metabolic Diseases/chemically induced , Diet/veterinary , Male , Dietary Supplements/analysis , Animal Feed/analysis , Random Allocation
7.
Poult Sci ; 103(7): 103840, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772093

ABSTRACT

Marek's disease virus (MDV) is a significant tumorigenic virus that causes severe immunosuppression in chickens. Lentinan (LNT) is an immunomodulator containing ß-glucans and is widely used in areas such as antiviral, anticancer, and immune regulation. To investigate the immunomodulatory effects of LNT on specific pathogen-free (SPF) chicks and its potential to inhibit MDV infection, we conducted an MDV challenge experiment and observed the immune-enhancing effect of LNT on SPF chicks. The results showed that LNT promoted the growth and development of SPF chicks and induced the upregulation of cytokines such as Mx protein, interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α), and interleukin-2 (IL-2). The specific gravity of CD4+ T-lymphocytes and CD8+ T-lymphocytes and their ratios were also significantly upregulated. Prophylactic use of LNT inhibited MDV replication in lymphocytes, liver, and spleen. It also alleviated MDV-induced weight loss and hepatosplenomegaly in SPF chicks. The present study confirms that LNT can enhance the levels of innate and cellular immunity in SPF chicks and contributes to the inhibition of MDV replication in vivo and mitigation of immune organ damage in chicks due to MDV infection. This provides an adjunctive measure for better control of MDV infection.


Subject(s)
Chickens , Herpesvirus 2, Gallid , Lentinan , Marek Disease , Poultry Diseases , Animals , Marek Disease/immunology , Lentinan/pharmacology , Lentinan/administration & dosage , Poultry Diseases/virology , Poultry Diseases/immunology , Poultry Diseases/drug therapy , Herpesvirus 2, Gallid/physiology , Specific Pathogen-Free Organisms , Animal Feed/analysis , Immunologic Factors/pharmacology , Immunologic Factors/administration & dosage , Diet/veterinary , Random Allocation
8.
Vet Parasitol ; 329: 110194, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749123

ABSTRACT

To investigate the therapeutic effect of toosendanin (TSN) against Eimeria tenella (E. tenella) in chicks. In this experiment, a chick model of artificially induced E. tenella infection was established. The anti-coccidial effect was investigated by treating different doses of TSN. A preliminary mechanism of action was conducted, using cecal cell apoptosis as a starting point. TSN at the concentration of 5 mg/kg BW showed the best effect against E. tenella with the ACI value of 164.35. In addition, TSN reduced pathological damage to cecal tissue, increased the secretion of glycogen and mucus in cecal mucosa, and enhanced the mucosal protective effect. It also elevated the levels of IFN-γ, IL-2, and IgG in serum, and raised the sIgA content in cecal tissue of infected chicks, thereby improving overall immune function. TSN was observed to promote the apoptosis of cecum tissue cells by TUNEL staining analysis. Immunohistochemistry analysis revealed that in TSN-treated groups, the expression of Caspase-3 and Bax was elevated, while the expression of Bcl-2 was reduced. TSN induced apoptosis in host cells by dose-dependently decreasing the Bcl-2/Bax ratio and upregulating Caspase-3 expression. In summary, TSN exhibited significant anticoccidial efficacy by facilitating apoptosis in host cecal cells, with the most pronounced effect observed at a dosage of 5 mg/kg body weight.


Subject(s)
Apoptosis , Cecum , Chickens , Coccidiosis , Eimeria tenella , Poultry Diseases , Animals , Eimeria tenella/drug effects , Apoptosis/drug effects , Cecum/parasitology , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Coccidiostats/pharmacology , Coccidiostats/therapeutic use
9.
Res Vet Sci ; 174: 105291, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729095

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is a widespread bacterium that causes significant economic losses to the poultry industry. APEC biofilm formation may result in chronic, persistent, and recurrent infections in clinics, making treatment challenging. Baicalein is a natural product that exhibits antimicrobial and antibiofilm activities. This study investigates the inhibitory effect of baicalein on APEC biofilm formation at different stages. The minimum inhibitory concentration (MIC) of baicalein on APEC was determined, and the growth curve of APEC biofilm formation was determined. The effects of baicalein on APEC biofilm adhesion, accumulation, and maturation were observed using optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. The biofilm inhibition rate of baicalein was calculated at different stages. The MIC of baicalein against APEC was 256 µg/mL. The process of APEC biofilm maturation takes approximately 48 h after incubation, with initial adhesion completed at 12 h, and cell accumulation finished at 24 h. Baicalein had a significant inhibitory effect on APEC biofilm formation at concentrations above 1 µg/mL (p < 0.01). Notably, baicalein had the highest rate of biofilm formation inhibition when added at the adhesion stage. Therefore, it can be concluded that baicalein is a potent inhibitor of APEC biofilm formation in vitro and acts, primarily by inhibiting cell adhesion. These findings suggests that baicalein has a potential application for inhibiting APEC biofilm formation and provides a novel approach for the prevention and control APEC-related diseases.


Subject(s)
Bacterial Adhesion , Biofilms , Escherichia coli , Flavanones , Microbial Sensitivity Tests , Flavanones/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Escherichia coli/drug effects , Escherichia coli/physiology , Bacterial Adhesion/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Chickens , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Microscopy, Electron, Scanning
10.
Front Cell Infect Microbiol ; 14: 1390934, 2024.
Article in English | MEDLINE | ID: mdl-38812753

ABSTRACT

Avian colibacillosis (AC), caused by infection with Escherichia coli (E. coli), is a major threat to poultry health, food safety and public health, and results in high mortality and significant economic losses. Currently, new drugs are urgently needed to replace antibiotics due to the continuous emergence and increasing resistance of multidrug-resistant (MDR) strains of E. coli caused by the irrational use of antibiotics in agriculture and animal husbandry. In recent years, antimicrobial peptides (AMPs), which uniquely evolved to protect the host, have emerged as a leading alternative to antibiotics in clinical settings. CATH-2, a member of the antimicrobial cathelicidin peptide family, has been reported to have antibacterial activity. To enhance the antimicrobial potency and reduce the adverse effects on animals, we designed five novel AMPs, named C2-1, C2-2, C2-3, C2-4 and C2-5, based on chicken CATH-2, the secondary structures of these AMPs were consistently α-helical and had an altered net charge and hydrophobicity compared to those of the CATH-2 (1-15) sequences. Subsequently, the antimicrobial activities of CATH-2 (1-15) and five designed peptides against MDR E. coli were evaluated in vitro. Specifically, C2-2 showed excellent antimicrobial activity against either the ATCC standard strain or veterinary clinical isolates of MDR E. coli, with concentrations ranging from 2-8 µg/mL. Furthermore, C2-2 maintained its strong antibacterial efficacy under high temperature and saline conditions, demonstrating significant stability. Similarly, C2-2 retained a high level of safety with no significant hemolytic activity on chicken mature red blood cells or cytotoxicity on chicken kidney cells over the concentration range of 0-64 µg/mL. Moreover, the administration of C2-2 improved the survival rate and reduced the bacterial load in the heart, liver and spleen during MDR E. coli infection in chickens. Additionally, pathological damage to the heart, liver and intestine was prevented when MDR E. coli infected chickens were treated with C2-2. Together, our study showed that C2-2 may be a promising novel therapeutic agent for the treatment of MDR E. coli infections and AC.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Poultry Diseases , Animals , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Poultry Diseases/drug therapy , Poultry Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Antimicrobial Peptides/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cathelicidins
11.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732016

ABSTRACT

Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens.


Subject(s)
Anti-Bacterial Agents , Chickens , Enterococcus , Microbial Sensitivity Tests , Animals , Chickens/microbiology , Enterococcus/drug effects , Enterococcus/genetics , Enterococcus/isolation & purification , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Probiotics/pharmacology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy
12.
Acta Parasitol ; 69(2): 1192-1200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605153

ABSTRACT

AIM OF THE STUDY: The growing resistance of helminth parasites to currently available commercial anthelmintic drugs, combined with apprehensions regarding detrimental chemical residues in livestock products, has sparked an interest in exploring medicinal plants as an alternative strategy for treating helminthiasis. As a result, this study was designed to investigate the anthelmintic activity of crude methanolic extracts (CME) of Saussurea costus root on Ascaridia.galli, a pathogenic nematode of poultry. MATERIALS AND METHODS: In vitro, the anthelmintic effect of Saussurea costus root was evaluated in comparison to commercial anthelmintic, levamisole on the adult nematode parasites, A.galli using worm motility inhibition (WMI) test. The CME of S.costus was also evaluated for in vivo anthelmintic activity in chickens experimentally infected with Ascaridia galli. For the in vivo study, one hundred-day-old chickens were orally infected with embryonated eggs of A. galli worms. The efficacy of the plant extract as an anthelmintic was assessed through two tests: faecal egg count reduction (FECR) test and worm count reduction (WCR) test. The study investigated three distinct doses of plant extract under in vivo setup: 500 mg kg-1 body weight (bw), 1000 mg kg-1 bw, and 2000 mg kg-1 bw. RESULTS: In vitro, all the tested concentrations of S.costus (25 mg/ml, 50 mg/ml, and 100 mg/ml) showed a significant (P < 0.001) anthelmintic effects on live adult A. galli worms in terms of inhibition of worm motility at different hours post-treatment. At the highest concentration of the extract, we observed worm motility inhibition of 100% at 24 h post-exposure. On day 14 post-treatment, all birds were slaughtered, and adult A. galli worms were subsequently retrieved from their small intestines. Birds treated with CME extract of S. costus root exhibited a significant (P < 0.001) reduction in faecal egg count. However, the administration of the extract at the dosage of 500 mg kg-1bw to the birds did not reveal any significant (P > 0.05) differences in the worm count compared to the negative control group. The CME of S. costus at a dose of 2000 mg kg-1bw showed the highest anthelmintic activity by inducing 83.10% FECR and 76.47% WCR. CONCLUSION: In conclusion, the root extract of S. costus has a promising anthelmintic activity on A. galli as demonstrated by the results of the present experiment.


Subject(s)
Anthelmintics , Ascaridia , Ascaridiasis , Chickens , Plant Extracts , Poultry Diseases , Saussurea , Animals , Ascaridia/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Anthelmintics/pharmacology , Chickens/parasitology , Saussurea/chemistry , Ascaridiasis/veterinary , Ascaridiasis/drug therapy , Ascaridiasis/parasitology , Parasite Egg Count , Feces/parasitology , Plant Roots/chemistry , Levamisole/pharmacology , Levamisole/therapeutic use
13.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38682892

ABSTRACT

This study was conducted to explore the effect of dietary supplementation of water-soluble extract of rosemary (WER) on growth performance and intestinal health of broilers infected with Eimeria tenella (E. tenella), and evaluate the anticoccidial activity of WER. 360 1-d-old Chinese indigenous male yellow-feathered broiler chickens were randomly allocated to six groups: blank control (BC) group and infected control (IC) group received a basal diet; positive control (PC) group, received a basal diet supplemented with 200 mg/kg diclazuril; WER100, WER200, and WER300 groups received a basal diet containing 100, 200, and 300 mg/kg WER, respectively. On day 21, all birds in the infected groups (IC, PC, WER100, WER200, and WER300) were orally gavaged with 1 mL phosphate-buffered saline (PBS) of 8 × 104 sporulated oocysts of E. tenella, and birds in the BC group were administrated an aliquot of PBS dilution. The results showed that dietary supplementation of 200 mg/kg WER increased the average daily gain of broilers compared to the IC group from days 22 to 29 (P < 0.001). The anticoccidial index values of 100, 200, and 300 mg/kg WER were 137.49, 157.41, and 144.22, respectively, which indicated that WER exhibited moderate anticoccidial activity. Compared to the IC group, the groups supplemented with WER (100, 200, and 300 mg/kg) significantly lowered fecal oocyst output (P < 0.001) and cecal coccidia oocysts, alleviated intestinal damage and maintained the integrity of intestinal epithelium. Dietary supplementation with WER significantly improved antioxidant capacity, elevated the levels of secretory immunoglobulin A, and diminished inflammation within the cecum, particularly at a dosage of 200 mg/kg. The results of this study indicated that dietary supplementation with 200 mg/kg WER could improve broiler growth performance and alleviate intestinal damage caused by coccidiosis.


Avian coccidiosis, a prevalent parasitic disease caused by Eimeria protozoa, leads to significant economic losses in the global poultry industry. Currently, the control of coccidiosis in chickens primarily relies on chemical and ionophore anticoccidials. However, the long-term use of these compounds has resulted in the development of drug-resistant strains, presenting a critical challenge. Additionally, the toxic and side effects of ionophore anticoccidials have become increasingly apparent. Thus, there is an urgent need to find economical and environmentally friendly measures to control coccidiosis in chickens. In this study, we established a model of Eimeria tenella infection in broilers to explore whether the water-soluble extract of rosemary (WER) could serve as an alternative method for controlling avian coccidiosis. Our results showed that dietary supplementation with WER (100, 200, and 300 mg/kg) had a beneficial anticoccidial effect, alleviating intestinal damage caused by coccidiosis by enhancing the intestinal antioxidant defense and activating the immune function of the infected broilers. Specifically, dietary supplementation with 200 mg/kg WER emerged as a promising strategy for controlling avian coccidiosis in the poultry industry.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Dietary Supplements , Eimeria tenella , Plant Extracts , Poultry Diseases , Rosmarinus , Animals , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Eimeria tenella/drug effects , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Dietary Supplements/analysis , Male , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Animal Feed/analysis , Diet/veterinary , Rosmarinus/chemistry , Intestines/drug effects , Intestines/parasitology , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Random Allocation
14.
Poult Sci ; 103(6): 103658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593548

ABSTRACT

Finding effective antibiotic alternatives is crucial to managing the re-emerging health risk of Clostridium perfringens (CP) type A/G-induced avian necrotic enteritis (NE), a disease that has regained prominence in the wake of governmental restrictions on antibiotic use in poultry. Known for its antimicrobial and immunomodulatory effects, the use of bovine lactoferrin (bLF) in chickens is yet to be fully explored. In this study, we hypothesized that bLF can accumulate in the small intestines of healthy chickens through gavage and intramuscular supplementation and serves as a potential antibiotic alternative. Immunohistochemistry located bLF in various layers of the small intestines and ELISA testing confirmed its accumulation. Surprisingly, sham-treated chickens also showed the presence of bLF, prompting a western blotting analysis that dismissed the notion of cross-reactivity between bLF and the avian protein ovotransferrin. Although the significance of the route of administration remains inconclusive, this study supports the hypothesis that bLF is a promising and safe antibiotic alternative with demonstrated resistance to the degradative environment of the chicken intestines. Further studies are needed to determine its beneficial pharmacological effects in CP-infected chickens.


Subject(s)
Anti-Bacterial Agents , Chickens , Clostridium Infections , Clostridium perfringens , Lactoferrin , Poultry Diseases , Animals , Lactoferrin/administration & dosage , Lactoferrin/pharmacology , Clostridium perfringens/physiology , Clostridium perfringens/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Clostridium Infections/veterinary , Clostridium Infections/prevention & control , Cattle , Animal Feed/analysis , Intestine, Small/drug effects , Diet/veterinary , Enteritis/veterinary , Dietary Supplements/analysis
15.
Res Vet Sci ; 172: 105249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579633

ABSTRACT

The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Dietary Supplements , Eimeria , Gastrointestinal Microbiome , Polyether Polyketides , Poultry Diseases , Pyrans , Animals , Chickens/growth & development , Pyrans/pharmacology , Pyrans/administration & dosage , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Gastrointestinal Microbiome/drug effects , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Animal Feed/analysis , Diet/veterinary , Random Allocation , Ionophores/pharmacology , Ionophores/administration & dosage , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Male
16.
Poult Sci ; 103(6): 103667, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574462

ABSTRACT

A total of 576-day-old Ross 308 broilers chicks (male) were used to evaluate the effect of various levels of pistachio green hull aqueous extract (PHE) and Eimeria challenge on the growth performance, intestinal health and antioxidant capacity. During infection period (25-42 d), treatments included: 1) control + unchallenged (negative control, NC), 2) 200 ppm PHE + unchallenged, 3) 300 ppm PHE + unchallenged, 4) 400 ppm PHE + unchallenged, 5) control + challenged (positive control, PC), 6) 200 ppm PHE + challenged, 7) 300 ppm PHE + challenged and 8) 400 ppm PHE + challenged (with 6 replications for each treatment). The outcomes revealed that in the challenged birds, average body weight gain (ABW), daily weight gain (DWG), and feed conversion ratio (FCR) linearly improved with increasing the PHE levels (P < 0.05). Infected broilers had lower daily feed intake (DFI) compared to unchallenged birds (P < 0.05). Villus height (VH), villus height to crypt depth (VH: CD) ratio and villus surface area (VSA) reduced linearly (P < 0.05), while muscle layer thickness (MT) increased linearly in challenged birds (P < 0.05). The consumption of the PHE significantly reduced the excreta oocytes and duodenum and jejunum lesion scores in Eimeria-challenged broilers (P < 0.05). By increasing the PHE levels, total antioxidant capacity (TAC) and superoxide dismutase (SOD) levels increased (P < 0.05), while the Eimeria challenge reduced TAC, SOD, and glutathione peroxidase (GPx) levels (P <0.05). In general, the use of PHE in the broilers diet improved the antioxidant capacity, birds performance, but diminished the excreta oocytes and lesion scores with no negative effect on the intestinal morphology.


Subject(s)
Animal Feed , Antioxidants , Chickens , Coccidiosis , Diet , Eimeria , Pistacia , Plant Extracts , Poultry Diseases , Animals , Chickens/growth & development , Chickens/physiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/drug therapy , Eimeria/physiology , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Antioxidants/metabolism , Antioxidants/administration & dosage , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Diet/veterinary , Male , Animal Feed/analysis , Pistacia/chemistry , Intestines/drug effects , Intestines/parasitology , Random Allocation , Dietary Supplements/analysis , Dose-Response Relationship, Drug
17.
Poult Sci ; 103(6): 103720, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652949

ABSTRACT

This study investigated the effects of the early administration of enrofloxacin (E) or doxycycline (D) for the first 5 consecutive days of life, or the continuous administration of the coccidiostat monensin (M) throughout the rearing period on gastrointestinal function in turkeys infected with avian pathogenic Escherichia coli (APEC) in an early or later stage of rearing. Experiment 1 lasted 21 d, and turkeys in groups E, D, and M were infected with APEC on d 15. Experiment 2 lasted 56 d, and it had a factorial arrangement of treatments where birds in groups E, D, and M were infected with APEC on d 15 or d 50. In both experiments, control groups (C) consisted of infected and uninfected birds without antibiotic or coccidiostat administration. On d 21 (Experiment 1) and d 56 (Experiment 2), 8 birds from each subgroup were killed, and the ileal and cecal digesta were sampled to analyze the activity of bacterial enzymes and the concentrations of short-chain fatty acids (SCFA). The experimental treatments did not affect the final body weight or body weight gain of birds. Both experiments demonstrated that APEC contributed to an increase in ammonia levels of the cecal digesta (means from 2 experiments: 0.311 vs. 0.225 mg/g in uninfected birds) and ileal pH (6.79 vs. 6.00) and viscosity (2.43 vs. 1.83 mPa⋅s). Moreover, the E. coli challenge enhanced the extracellular activity of several cecal bacterial enzymes, especially in older turkeys infected with APEC in a later stage of life. The continuous administration of monensin throughout the rearing period resulted in a weaker gastrointestinal response in older birds, compared with the other 2 antibiotics administered for the first 5 d of life. The results of the study are inconclusive as both desirable and undesirable effects of preventive early short-term antibiotic therapy were observed in turkeys, including normalization of ileal viscosity and cecal ammonia concentration (positive effect), and disruption in cecal SCFA production (negative effect).


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Poultry Diseases , Turkeys , Animals , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Enrofloxacin/administration & dosage , Monensin/administration & dosage , Monensin/pharmacology , Male , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/drug effects , Random Allocation
18.
Poult Sci ; 103(5): 103547, 2024 May.
Article in English | MEDLINE | ID: mdl-38428353

ABSTRACT

Infectious bursal disease (IBD) significantly affects the poultry industry, causing substantial economic losses. This study aimed to investigate the effects of ghrelin on chicks infected with an attenuated virus strain of IBDV (aIBDV). Chicks were divided into 3 groups: a control group (group I), an aIBDV infection group (group II), and a ghrelin + aIBDV infection group (group III). Mice in groups II and III were fed until they reached 19 d of age and then inoculated with aIBDV to establish a subclinical infection model. Group III received an intraperitoneal injection of 0.5 nmol/100 g ghrelin from d 17 to 23. The present study utilized paraffin sectioning, H&E staining, and immunohistochemical staining to examine the effects of ghrelin on the bursa of fabricius and cecum tonsils in aIBDV-infected chicks. The results indicated that at 3 d postinfection (dpi), the average body weight of group III was significantly greater than that of group II (P < 0.05). At 3 and 7 dpi, the proportion of large lymphoid follicles in the bursa of fabricius in group III was notably greater than that in group II (P < 0.05). aIBDV infection resulted in bleeding, edema, and fibrosis in the cecal mucosal layer of chicks, but ghrelin administration mitigated these pathological changes. At 3 and 7 dpi, the thickness of the lamina propria in the cecal tonsils of group III was significantly lower than that in the cecal tonsils of group II (P < 0.05). Additionally, the percentage of large lymphoid follicles in the cecal tonsils of group III was significantly greater than that in group II at 3 and 5 dpi (P < 0.05). There were significantly fewer macrophages in the cecal tonsils of group III than in those of group II at 1, 3, and 5 dpi (P < 0.05). In conclusion, ghrelin supplementation improved performance and mitigated bursal atrophy in aIBDV-infected chicks. It also reduced histological lesions and immune responses in the cecum tonsil. Notably, the reduction in macrophages in the cecum tonsil following ghrelin administration may decrease the risk of aIBDV spread.


Subject(s)
Birnaviridae Infections , Bursa of Fabricius , Cecum , Chickens , Ghrelin , Infectious bursal disease virus , Poultry Diseases , Animals , Infectious bursal disease virus/physiology , Poultry Diseases/virology , Poultry Diseases/drug therapy , Poultry Diseases/immunology , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Ghrelin/administration & dosage , Ghrelin/pharmacology , Bursa of Fabricius/virology , Bursa of Fabricius/drug effects , Cecum/virology , Male
19.
Poult Sci ; 103(5): 103586, 2024 May.
Article in English | MEDLINE | ID: mdl-38442474

ABSTRACT

Intestinal inflammation is a primary contributor to poor growth performance during poultry production. Chlorogenic acid (CGA) is a natural phenolic acid that exhibits superior anti-inflammatory activity and improved intestinal health. To investigate the protective effects and molecular mechanisms of CGA during intestinal inflammation in lipopolysaccharide (LPS)-challenged broilers, we randomly divided 288 one-day-old male Cobb broilers into 4 groups: a control group fed a basal diet (CON group), a basal diet + LPS group (LPS group), and 2 basal diet groups fed 500 or 750 mg/kg CGA + LPS (CGA_500 or CGA_750 groups). Broilers were injected with LPS or saline at 15, 17, 19, and 21 d old. Chlorogenic acid supplementation improved the growth performance of LPS-challenged broilers by increasing average daily gain (ADG) and reducing feed/gain (F/G) ratios (P < 0.05). CGA also improved intestinal barrier function in LPS-challenged boilers by enhancing jejunum morphology and integrity, decreasing intestinal permeability, and increasing occludin 3, zonula occludens-1, and mucin 2 expression (P < 0.05). CGA supplementation also improved systemic and jejunum antioxidant capacity by significantly enhancing glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities (P < 0.05), and reducing malonaldehyde (MDA) and protein carbonyl (PCO) levels (P < 0.05). Chlorogenic acid supplementation reduced systemic and jejunum pro-inflammatory cytokines (interleukin (IL)-1ß, IL-6, and IL-12) and increased anti-inflammatory cytokines (IL-10) in LPS-challenged broilers (P < 0.05) by inhibiting the toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway (P < 0.05). In addition, the protective effects of CGA toward intestinal inflammation and apoptosis appeared to be correlated with inhibited endoplasmic reticulum (ER) stress (P < 0.05). In summary, CGA supplementation improved intestinal morphology and integrity by inhibiting TLR4/NF-κB and ER stress pathways, which potentially reduced oxidative stress and inflammation, and ultimately improved the growth performance of LPS-challenged broilers.


Subject(s)
Chickens , Chlorogenic Acid , Dietary Supplements , Endoplasmic Reticulum Stress , Lipopolysaccharides , NF-kappa B , Poultry Diseases , Animals , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/pharmacology , Lipopolysaccharides/pharmacology , Male , NF-kappa B/metabolism , Poultry Diseases/chemically induced , Poultry Diseases/drug therapy , Endoplasmic Reticulum Stress/drug effects , Dietary Supplements/analysis , Diet/veterinary , Inflammation/veterinary , Inflammation/drug therapy , Inflammation/chemically induced , Random Allocation , Animal Feed/analysis , Intestines/drug effects , Intestines/pathology , Intestinal Diseases/veterinary , Intestinal Diseases/chemically induced , Intestinal Diseases/drug therapy , Intestinal Diseases/prevention & control , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage
20.
Acta Parasitol ; 69(1): 951-999, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38492183

ABSTRACT

PURPOSE: The in vivo efficacy of ultrasonicated Rosmarinus officinalis ethanolic extract (UROEE) and its chitosan-loaded nanoparticles (UROEE-CsNPs) was investigated as a dietary prophylactic agent and as a therapeutic treatment against Eimeria tenella infected broiler chickens. METHODS: Chickens were infected with 4 × 104 E. tenella oocysts at 21 days old for primary infection and with 8 × 104 oocysts at 35 days old for secondary infection. Eleven experimental groups were conducted. Dietary addition of 100 mg/kg UROEE and 20 mg/kg for CsNPs as well as UROEE-CsNPs were included for prophylactic groups from day 1 to 42. The same doses were used for therapeutic treatment groups for 5 constitutive days. Oocyst output in feces was counted. Histopathological and immunohistochemical studies were conducted. Gene expression of pro-inflammatory cytokines as IFN-γ, IL-1ß and IL-6 as well as anti-inflammatory cytokines as IL-10 and TGF-ß4 was analyzed using semi-quantitative reverse transcriptase-PCR. RESULTS: The results showed an efficacy of UROEE, CsNPs and UROEE-CsNPs in reduction of oocyst excretion and improving the cecal tissue architecture. CD4+ and CD8+ T lymphocytes protein expression were reduced. E. tenella infection lead to upregulation of pro-inflammatory cytokines as IFN-γ, IL-1ß, IL-6 and anti-inflammatory cytokines as TGF-ß4 following primary infection, while their expression was downregulated following secondary infection. CONCLUSION: The dietary prophylactic additives and therapeutic treatments with UROEE, CsNPs and UROEE-CsNPs could decrease the inflammatory response to E. tenella as indicated by oocyst output reduction, histopathological improvements, CD4+ and CD8+ T cells protein expression reduction as well as reducing mRNA expression levels of the tested cytokines following primary and secondary infections. Consequently, these results will help to develop better-combating strategies for the control and prevention of coccidiosis on poultry farms as a dietary prophylactic agent or as a therapeutic treatment.


Subject(s)
Chickens , Chitosan , Coccidiosis , Cytokines , Eimeria tenella , Nanoparticles , Plant Extracts , Poultry Diseases , Rosmarinus , Animals , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/prevention & control , Coccidiosis/drug therapy , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Eimeria tenella/drug effects , Cytokines/metabolism , Rosmarinus/chemistry , Oocysts/drug effects , Feces/parasitology , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...