Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.111
Filter
1.
J Vet Sci ; 25(3): e39, 2024 May.
Article in English | MEDLINE | ID: mdl-38834509

ABSTRACT

IMPORTANCE: Salmonella outbreaks linked to poultry meat have been reported continuously worldwide. Therefore, Salmonella contamination of poultry meats in slaughterhouses is one of the critical control points for reducing disease outbreaks in humans. OBJECTIVE: This study examined the carry-over contamination of Salmonella species through the entire slaughtering process in South Korea. METHODS: From 2018 to 2019, 1,097 samples were collected from the nine slaughterhouses distributed nationwide. One hundred and seventeen isolates of Salmonella species were identified using the invA gene-specific polymerase chain reaction, as described previously. The serotype, phylogeny, and antimicrobial resistance of isolates were examined. RESULTS: Among the 117 isolates, 93 were serotyped into Salmonella Mbandaka (n = 36 isolates, 30.8%), Salmonella Thompson (n = 33, 28.2%), and Salmonella Infantis (n = 24, 20.5%). Interestingly, allelic profiling showed that all S. Mbandaka isolates belonged to the lineage of the sequence type (ST) 413, whereas all S. Thompson isolates were ST292. Moreover, almost all S. Thompson isolates (97.0%, 32/33 isolates) belonging to ST292 were multidrug-resistant and possessed the major virulence genes whose products are required for full virulence. Both serotypes were distributed widely throughout the slaughtering process. Pulsed-field gel electrophoretic analysis demonstrated that seven S. Infantis showed 100% identities in their phylogenetic relatedness, indicating that they were sequentially transmitted along the slaughtering processes. CONCLUSIONS AND RELEVANCE: This study provides more evidence of the carry-over transmission of Salmonella species during the slaughtering processes. ST292 S. Thompson is a potential pathogenic clone of Salmonella species possibly associated with foodborne outbreaks in South Korea.


Subject(s)
Abattoirs , Chickens , Salmonella , Animals , Republic of Korea/epidemiology , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/physiology , Poultry Diseases/microbiology , Poultry Diseases/transmission , Poultry Diseases/epidemiology , Phylogeny , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/transmission , Salmonella Infections, Animal/epidemiology , Food Microbiology , Poultry/microbiology , Serogroup , Meat/microbiology
2.
Microb Pathog ; 192: 106710, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801865

ABSTRACT

Commercial broiler farms face challenges of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli transmitted from both vertical and horizontal routes. Understanding the dynamics of ESBL-E. coli transmission in compromised biosecurity settings of small-scale rural poultry farms is essential. This study aimed to elucidate the probable transmission pathways of ESBL-E. coli in such settings, employing phylogenetic analysis and molecular docking simulations to explore the catalytic properties of ß-lactamase variants. Sampling was conducted on a small-scale poultry farm in West Bengal, India, collecting 120 samples at three intervals during the broiler production cycle. E. coli isolates underwent resistance testing against eight antimicrobials, with confirmation of ESBL production. Genotypic analysis of ESBL genes and sequencing were performed, alongside molecular docking analyses and phylogenetic comparisons with publicly available sequences. Among 173 E. coli isolates, varying resistance profiles were observed, with complete resistance to cefixime and high resistance to amoxicillin and tetracycline. The incidence of ESBL-E. coli fluctuated over the production cycle, with dynamic changes in the prevalence of blaCTX-M-type and blaSHV-type genes. Phylogenetic analysis indicated partial clonal relationships with human clinical strains and poultry strains from the Indian subcontinent. Molecular docking confirmed the catalytic efficiencies of these ESBL variants. The study highlights probable vertical transmission of ESBL-E. coli and emphasizes drinking water as a potential source of horizontal transmission in small-scale poultry farms. Strict biosecurity measures could prevent the spread of antimicrobial-resistant bacteria in birds and their products in a small scale poultry farm.


Subject(s)
Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Escherichia coli , Farms , Microbial Sensitivity Tests , Molecular Docking Simulation , Phylogeny , Poultry Diseases , Poultry , beta-Lactamases , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/enzymology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/transmission , Poultry/microbiology , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Poultry Diseases/microbiology , Poultry Diseases/transmission , India , Genotype , Humans , Computer Simulation , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
3.
Appl Environ Microbiol ; 90(6): e0229723, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38722170

ABSTRACT

Salmonella Typhimurium is a zoonotic pathogen that poses a major threat to public health. This generalist serotype can be found in many hosts and the environment where varying selection pressures may result in the accumulation of antimicrobial resistance determinants. However, the transmission of this serotype between food-producing hosts, specifically between poultry layer flocks and nearby dairy herds, was never demonstrated. We investigated an outbreak at a dairy in Israel to determine the role of nearby poultry houses to be sources of infection. The 2-month outbreak resulted in a 47% mortality rate among 15 calves born in that period. Routine treatment of fluid therapy, a nonsteroidal anti-inflammatory, and cefquinome was ineffective, and control was achieved by the introduction of vaccination of dry cows against Salmonella (Bovivac S, MSD Animal Health) and a strict colostrum regime. Whole genome sequencing and antimicrobial sensitivity tests were performed on S. Typhimurium strains isolated from the dairy (n = 4) and strains recovered from poultry layer farms (n = 10). We identified acquired antimicrobial-resistant genes, including the blaCTX-M-55 gene, conferring resistance to extended-spectrum cephalosporins, which was exclusive to dairy isolates. Genetic similarity with less than five single nucleotide polymorphism differences between dairy and poultry strains suggested a transmission link. This investigation highlights the severe impact of S. Typhimurium on dairy farms and the transmission risk from nearby poultry farms. The accumulation of potentially transferable genes conferring resistance to critically important antimicrobials underscores the increased public health risk associated with S. Typhimurium circulation between animal hosts.IMPORTANCESalmonella Typhimurium is one of the major causes of food-borne illness globally. Infections may result in severe invasive disease, in which antimicrobial treatment is warranted. Therefore, the emergence of multi-drug-resistant strains poses a significant challenge to successful treatment and is considered one of the major threats to global health. S. Typhimurium can be found in a variety of animal hosts and environments; however, its transmission between food-producing animals, specifically poultry layers flocks and dairy herds, was never studied. Here, we demonstrate the transmission of the pathogen from poultry to a nearby dairy farm. Alarmingly, the multi-drug-resistant strains collected during the outbreak in the dairy had acquired resistance to extended-spectrum cephalosporins, antibiotics critically important in treating Salmonellosis in humans. The findings of the study emphasize the increased risk to public health posed by zoonotic pathogens' circulation between animal hosts.


Subject(s)
Anti-Bacterial Agents , Farms , Public Health , Salmonella Infections, Animal , Salmonella typhimurium , Animals , Salmonella typhimurium/genetics , Salmonella typhimurium/drug effects , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/transmission , Cattle , Anti-Bacterial Agents/pharmacology , Poultry/microbiology , Poultry Diseases/microbiology , Poultry Diseases/transmission , Israel/epidemiology , Dairying , Cattle Diseases/microbiology , Cattle Diseases/transmission , Cattle Diseases/epidemiology , Drug Resistance, Bacterial/genetics , Disease Outbreaks/veterinary , Chickens/microbiology , Humans , Drug Resistance, Multiple, Bacterial/genetics
4.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793692

ABSTRACT

Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.


Subject(s)
Ducks , Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks/virology , Flavivirus/pathogenicity , Flavivirus/immunology , Flavivirus/genetics , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Flavivirus Infections/transmission , Genome, Viral , Poultry Diseases/virology , Poultry Diseases/transmission , Viral Vaccines/immunology , Farmers , Antibodies, Viral/blood , Humans
5.
Nat Commun ; 15(1): 3494, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693163

ABSTRACT

H9N2 avian influenza viruses (AIVs) are a major concern for the poultry sector and human health in countries where this subtype is endemic. By fitting a model simulating H9N2 AIV transmission to data from a field experiment, we characterise the epidemiology of the virus in a live bird market in Bangladesh. Many supplied birds arrive already exposed to H9N2 AIVs, resulting in many broiler chickens entering the market as infected, and many indigenous backyard chickens entering with pre-existing immunity. Most susceptible chickens become infected within one day spent at the market, owing to high levels of viral transmission within market and short latent periods, as brief as 5.3 hours. Although H9N2 AIV transmission can be substantially reduced under moderate levels of cleaning and disinfection, effective risk mitigation also requires a range of additional interventions targeting markets and other nodes along the poultry production and distribution network.


Subject(s)
Chickens , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza A Virus, H9N2 Subtype/immunology , Influenza in Birds/transmission , Influenza in Birds/epidemiology , Influenza in Birds/virology , Chickens/virology , Bangladesh/epidemiology , Poultry Diseases/transmission , Poultry Diseases/virology , Poultry Diseases/epidemiology , Models, Biological
6.
Emerg Microbes Infect ; 13(1): 2348521, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38686548

ABSTRACT

A free-range organic broiler (Gallus gallus domesticus) premises in Staffordshire was infected by high pathogenicity avian influenza virus (HPAIV) H5N8 during the 2020-2021 epizootic in the United Kingdom (UK). Following initial confirmation of the infection in poultry, multiple wild bird species were seen scavenging on chicken carcasses. Detected dead wild birds were subsequently demonstrated to have been infected and succumbed to HPAIV H5N8. Initially, scavenging species, magpie (Pica pica) and raven (Corvus corax) were found dead on the premises but over the following days, buzzards (Buteo buteo) were also found dead within the local area with positive detection of HPAIV in submitted carcasses. The subacute nature of microscopic lesions within a buzzard was consistent with the timeframe of infection. Finally, a considerable number of free-living pheasants (Phasianus colchicus) were also found dead in the surrounding area, with carcasses having higher viral antigen loads compared to infected chickens. Limited virus dissemination was observed in the carcasses of the magpie, raven, and buzzard. Further, an avirulent avian paramyxovirus type 1 (APMV-1) was detected within poultry samples as well as in the viscera of a magpie infected with HPAIV. Immunohistochemistry did not reveal colocalization of avian paramyxovirus antigens with lesions, supporting an avirulent APMV-1 infection. Overall, this case highlights scenarios in which bi-directional transmission of avian viral diseases between commercial and wild bird species may occur. It also underlines the importance of bio separation and reduced access when infection pressure from HPAIV is high.


Subject(s)
Animals, Wild , Chickens , Disease Outbreaks , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Poultry Diseases , Animals , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza in Birds/epidemiology , Chickens/virology , Animals, Wild/virology , Disease Outbreaks/veterinary , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/genetics , United Kingdom/epidemiology , Poultry Diseases/virology , Poultry Diseases/transmission , Poultry Diseases/epidemiology , Poultry/virology , Crows/virology , Birds/virology
7.
Vet Res ; 54(1): 4, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694192

ABSTRACT

In 2019 a low pathogenic H3N1 avian influenza virus (AIV) caused an outbreak in Belgian poultry farms, characterized by an unusually high mortality in chickens. Influenza A viruses of the H1 and H3 subtype can infect pigs and become established in swine populations. Therefore, the H3N1 epizootic raised concern about AIV transmission to pigs and from pigs to humans. Here, we assessed the replication efficiency of this virus in explants of the porcine respiratory tract and in pigs, using virus titration and/or RT-qPCR. We also examined transmission from directly, intranasally inoculated pigs to contact pigs. The H3N1 AIV replicated to moderate titers in explants of the bronchioles and lungs, but not in the nasal mucosa or trachea. In the pig infection study, infectious virus was only detected in a few lung samples collected between 1 and 3 days post-inoculation. Virus titers were between 1.7 and 4.8 log10 TCID50. In line with the ex vivo experiment, no virus was isolated from the upper respiratory tract of pigs. In the transmission experiment, we could not detect virus transmission from directly inoculated to contact pigs. An increase in serum antibody titers was observed only in the inoculated pigs. We conclude that the porcine respiratory tract tissue explants can be a useful tool to assess the replication efficiency of AIVs in pigs. The H3N1 AIV examined here is unlikely to pose a risk to swine populations. However, continuous risk assessment studies of emerging AIVs in pigs are necessary, since different virus strains will have different genotypic and phenotypic traits.


Subject(s)
Influenza A virus , Influenza in Birds , Poultry Diseases , Animals , Humans , Antibodies, Viral/blood , Chickens , Influenza in Birds/transmission , Influenza in Birds/virology , Lung , Poultry Diseases/transmission , Poultry Diseases/virology , Swine , Swine Diseases/transmission , Swine Diseases/virology
8.
J Biol Chem ; 298(12): 102699, 2022 12.
Article in English | MEDLINE | ID: mdl-36379254

ABSTRACT

Unlike most flaviviruses transmitted by arthropods, Tembusu virus (TMUV) is still active during winter and causes outbreaks in some areas, indicating vector-independent spread of the virus. Gastrointestinal transmission might be one of the possible routes of vector-free transmission, which also means that the virus has to interact with more intestinal bacteria. Here, we found evidence that TMUV indeed can transmit through the digestive tract. Interestingly, using an established TMUV disease model by oral gavage combined with an antibiotic treatment, we revealed that a decrease in intestinal bacteria significantly reduced local TMUV proliferation in the intestine, revealing that the bacterial microbiome is important in TMUV infection. We found that lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria enhanced TMUV proliferation by promoting its attachment. Toll-like receptor 4 (TLR4), a cell surface receptor, can transmit signal from LPS. We confirmed colocalization of TLR4 with TMUV envelope (E) protein as well as their interaction in infected cells. Coherently, TMUV infection of susceptible cells was inhibited by an anti-TLR4 antibody, purified soluble TLR4 protein, and knockdown of TLR4 expression. LPS-enhanced TMUV proliferation could also be blocked by a TLR4 inhibitor. Meanwhile, pretreatment of duck primary cells with TMUV significantly impaired LPS-induced interleukin 6 production. Collectively, our study provides first insights into vector-free transmission mechanisms of flaviviruses.


Subject(s)
Flavivirus Infections , Gastrointestinal Microbiome , Poultry Diseases , Toll-Like Receptor 4 , Flavivirus Infections/microbiology , Flavivirus Infections/transmission , Flavivirus Infections/virology , Lipopolysaccharides/metabolism , Toll-Like Receptor 4/metabolism , Ducks , Animals , Poultry Diseases/microbiology , Poultry Diseases/transmission , Poultry Diseases/virology , Virus Replication , Gene Knockdown Techniques , Bacterial Proteins/metabolism
9.
J Virol ; 96(17): e0071722, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35950858

ABSTRACT

The geographical spread and inter-host transmission of the subgroup J avian leukosis virus (ALV-J) may be the most important issues for epidemiology. An integrated analysis, including phylogenetic trees, homology modeling, evolutionary dynamics, selection analysis and viral transmission, based on the gp85 gene sequences of the 665 worldwide ALV-J isolates during 1988-2020, was performed. A new Clade 3 has been emerging and was evolved from the dominating Clade 1.3 of the Chinese Yellow-chicken, and the loss of a α-helix or ß-sheet of the gp85 protein monomer was found by the homology modeling. The rapid evolution found in Clades 1.3 and 3 may be closely associated with the adaption and endemicity of viruses to the Yellow-chickens. The early U.S. strains from Clade 1.1 acted as an important source for the global spread of ALV-J and the earliest introduction into China was closely associated with the imported chicken breeders in the 1990s. The dominant outward migrations of Clades 1.1 and 1.2, respectively, from the Chinese northern White-chickens and layers to the Chinese southern Yellow-chickens, and the dominating migration of Clade 1.3 from the Chinese southern Yellow-chickens to other regions and hosts, indicated that the long-distance movement of these viruses between regions in China was associated with the live chicken trade. Furthermore, Yellow-chickens have been facing the risk of infections of the emerging Clades 2 and 3. Our findings provide new insights for the epidemiology and help to understand the critical factors involved in ALV-J dissemination. IMPORTANCE Although the general epidemiology of ALV-J is well studied, the ongoing evolutionary and transmission dynamics of the virus remain poorly investigated. The phylogenetic differences and relationship of the clades and subclades were characterized, and the epidemics and factors driving the geographical spread and inter-host transmission of different ALV-J clades were explored for the first time. The results indicated that the earliest ALV-J (Clade 1.1) from the United States, acted as the source for global spreads, and Clades 1.2, 1.3 and 3 were all subsequently evolved. Also the epidemiological investigation showed that the early imported breeders and the inter-region movements of live chickens facilitated the ALV-J dispersal throughout China and highlighted the needs to implement more effective containment measures.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Chickens , Phylogeny , Poultry Diseases , Animals , Avian Leukosis/epidemiology , Avian Leukosis/transmission , Avian Leukosis Virus/genetics , Chickens/virology , China , Poultry Diseases/epidemiology , Poultry Diseases/transmission , Poultry Diseases/virology , United States
10.
J Virol ; 96(13): e0014922, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35670594

ABSTRACT

Waterfowl is the natural reservoir for avian influenza viruses (AIV), where the infection is mostly asymptomatic. In 2016, the panzootic high pathogenicity (HP) AIV H5N8 of clade 2.3.4.4B (designated H5N8-B) caused significant mortality in wild and domestic ducks, in stark contrast to the predecessor 2.3.4.4A virus from 2014 (designated H5N8-A). Here, we studied the genetic determinants for virulence and transmission of H5N8 clade 2.3.4.4 in Pekin ducks. While ducks inoculated with recombinant H5N8-A did not develop any clinical signs, H5N8-B-inoculated and cohoused ducks died after showing neurological signs. Swapping of the HA gene segments did not increase virulence of H5N8-A but abolished virulence and reduced systemic replication of H5N8-B. Only H5N8-A carrying H5N8-B HA, NP, and NS with or without NA exhibited high virulence in inoculated and contact ducks, similar to H5N8-B. Compared to H5N8-A, HA, NA, NS, and NP proteins of H5N8-B possess peculiar differences, which conferred increased receptor binding affinity, neuraminidase activity, efficiency to inhibit interferon-alpha induction, and replication in vitro, respectively. Taken together, this comprehensive study showed that HA is not the only virulence determinant of the panzootic H5N8-B in Pekin ducks, but NP, NS, and to a lesser extent NA were also necessary for the exhibition of high virulence in vivo. These proteins acted synergistically to increase receptor binding affinity, sialidase activity, interferon antagonism, and replication. This is the first ad-hoc study to investigate the mechanism underlying the high virulence of HPAIV in Pekin ducks. IMPORTANCE Since 2014, several waves of avian influenza virus (AIV) H5N8 of clade 2.3.4.4 occurred globally on unprecedented levels. Unlike viruses in the first wave in 2014-2015 (H5N8-A), viruses in 2015-2016 (H5N8-B) exhibited unusually high pathogenicity (HP) in wild and domestic ducks. Here, we found that the high virulence of H5N8-B in Pekin ducks could be attributed to multiple factors in combination, namely, hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), and nonstructural protein 1 (NS1). Compared to H5N8-A, H5N8-B possesses distinct genetic and biological properties including increased HA receptor-binding affinity and neuraminidase activity. Likewise, H5N8-B NS1 and NP were more efficient to inhibit interferon induction and enhance replication in primary duck cells, respectively. These results indicate the polygenic trait of virulence of HPAIV in domestic ducks and the altered biological properties of the HPAIV H5N8 clade 2.3.4.4B. These findings may explain the unusual high mortality in Pekin ducks during the panzootic H5N8 outbreaks.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Poultry Diseases , Viral Proteins , Virulence , Animals , Ducks , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/transmission , Interferons , Neuraminidase/genetics , Poultry Diseases/transmission , Poultry Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence/genetics
11.
PLoS Negl Trop Dis ; 16(2): e0010186, 2022 02.
Article in English | MEDLINE | ID: mdl-35176020

ABSTRACT

BACKGROUND: In Greece vector borne diseases (VBD) and foremost West Nile virus (WNV) pose an important threat to public health and the tourist industry, the primary sector of contribution to the national economy. The island of Crete, is one of Greece's major tourist destinations receiving annually over 5 million tourists making regional VBD control both a public health and economic priority. METHODOLOGY: Under the auspices of the Region of Crete, a systematic integrative surveillance network targeting mosquitoes and associated pathogens was established in Crete for the years 2018-2020. Using conventional and molecular diagnostic tools we investigated the mosquito species composition and population dynamics, pathogen infection occurrences in vector populations and in sentinel chickens, and the insecticide resistance status of the major vector species. PRINCIPAL FINDINGS: Important disease vectors were recorded across the island including Culex pipiens, Aedes albopictus, and Anopheles superpictus. Over 75% of the sampled specimens were collected in the western prefectures potentially attributed to the local precipitation patterns, with Cx. pipiens being the most dominant species. Although no pathogens (flaviviruses) were detected in the analysed mosquito specimens, chicken blood serum analyses recorded a 1.7% WNV antibody detection rate in the 2018 samples. Notably detection of the first WNV positive chicken preceded human WNV occurrence in the same region by approximately two weeks. The chitin synthase mutation I1043F (associated with high diflubenzuron resistance) was recorded at an 8% allelic frequency in Lasithi prefecture Cx. pipiens mosquitoes (sampled in 2020) for the first time in Greece. Markedly, Cx. pipiens populations in all four prefectures were found harboring the kdr mutations L1014F/C/S (associated with pyrethroid resistance) at a close to fixation rate, with mutation L1014C being the most commonly found allele (≥74% representation). Voltage gated sodium channel analyses in Ae. albopictus revealed the presence of the kdr mutations F1534C and I1532T (associated with putative mild pyrethroid resistance phenotypes) yet absence of V1016G. Allele F1534C was recorded in all prefectures (at an allelic frequency range of 25-46.6%) while I1532T was detected in populations from Chania, Rethymnon and Heraklion (at frequencies below 7.1%). Finally, no kdr mutations were detected in the Anopheles specimens included in the analyses. CONCLUSIONS/SIGNIFICANCE: The findings of our study are of major concern for VBD control in Crete, highlighting (i) the necessity for establishing seasonal integrated entomological/pathogen surveillance programs, supporting the design of targeted vector control responses and; ii) the need for establishing appropriate insecticide resistance management programs ensuring the efficacy and sustainable use of DFB and pyrethroid based products in vector control.


Subject(s)
Culicidae/drug effects , Insecticide Resistance , Insecticides/pharmacology , Mosquito Vectors/drug effects , Vector Borne Diseases/veterinary , Vector Borne Diseases/virology , West Nile Fever/veterinary , West Nile Fever/virology , Animals , Chickens , Culicidae/classification , Culicidae/physiology , Culicidae/virology , Diflubenzuron/pharmacology , Greece , Humans , Insect Proteins/genetics , Insect Proteins/metabolism , Mosquito Vectors/classification , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Mutation , Poultry Diseases/transmission , Poultry Diseases/virology , Pyrethrins/pharmacology , Vector Borne Diseases/transmission , West Nile Fever/transmission , West Nile virus/genetics , West Nile virus/isolation & purification , West Nile virus/physiology
12.
Parasit Vectors ; 15(1): 29, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057849

ABSTRACT

The possibility that Dermanyssus gallinae, the poultry red mite, could act as a vector of infectious disease-causing pathogens has always intrigued researchers and worried commercial chicken farmers, as has its ubiquitous distribution. For decades, studies have been carried out which suggest that there is an association between a wide range of pathogens and D. gallinae, with the transmission of some of these pathogens mediated by D. gallinae as vector. The latter include the avian pathogenic Escherichia coli (APEC), Salmonella enterica serovars Enteritidis and Gallinarum and influenza virus. Several approaches have been adopted to investigate the relationship between D. gallinae and pathogens. In this comprehensive review, we critically describe available strategies and methods currently available for conducting trials, as well as outcomes, analyzing their possible strengths and weaknesses, with the aim to provide researchers with useful tools for correctly approach the study of the vectorial role of D. gallinae.


Subject(s)
Disease Vectors , Mite Infestations/transmission , Mite Infestations/veterinary , Poultry Diseases/parasitology , Poultry Diseases/transmission , Animals , Chickens/parasitology , Mites/microbiology , Mites/virology , Poultry/parasitology
13.
Vet Microbiol ; 264: 109293, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34883334

ABSTRACT

Control of ALV-J in breed of chicken is still a serious issue that need more attention to be paid. Vertical transmission of ALV-J often give rise to more adverse pathogenicity. However, the way to elimination of ALV-J underlying vertical transmission remains not-well understood. In addition, effective vaccines or drugs have not been developed to prevent and control the transmission of ALV-J so far. CD81, a member of the tetraspanins superfamily, plays important roles in regulating membrane proteins, facilitating cells adhesion or fusion, and also participates in viral infection. The purpose of this study was to investigate whether antibodies against certain tetraspanins affect infection of ALV-J. Here, we showed that anti-CD81 antibody could inhibit viral RNA and protein level. We also found that anti-CD81 antibody interacts with viral protein p27, p32 and gp37. Moreover, treatment with antibody to CD81 can effectively prevent the vertical transmission of ALV-J in animal model. Collectively, current study provides new avenues for the control of ALV-J transmission.


Subject(s)
Antibodies , Avian Leukosis Virus , Avian Leukosis , Poultry Diseases , Animals , Antibodies/metabolism , Avian Leukosis/prevention & control , Avian Leukosis/transmission , Avian Leukosis/virology , Avian Leukosis Virus/classification , Chickens , Infectious Disease Transmission, Vertical , Poultry Diseases/prevention & control , Poultry Diseases/transmission , Poultry Diseases/virology , Tetraspanin 28/immunology
14.
Sci Rep ; 11(1): 22553, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799568

ABSTRACT

The development of visual tools for the timely identification of spatio-temporal clusters will assist in implementing control measures to prevent further damage. From January 2015 to June 2020, a total number of 1463 avian influenza outbreak farms were detected in Taiwan and further confirmed to be affected by highly pathogenic avian influenza subtype H5Nx. In this study, we adopted two common concepts of spatio-temporal clustering methods, the Knox test and scan statistics, with visual tools to explore the dynamic changes of clustering patterns. Since most (68.6%) of the outbreak farms were detected in 2015, only the data from 2015 was used in this study. The first two-stage algorithm performs the Knox test, which established a threshold of 7 days and identified 11 major clusters in the six counties of southwestern Taiwan, followed by the standard deviational ellipse (SDE) method implemented on each cluster to reveal the transmission direction. The second algorithm applies scan likelihood ratio statistics followed by AGC index to visualize the dynamic changes of the local aggregation pattern of disease clusters at the regional level. Compared to the one-stage aggregation approach, Knox-based and AGC mapping were more sensitive in small-scale spatio-temporal clustering.


Subject(s)
Algorithms , Animal Husbandry , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/transmission , Poultry Diseases/transmission , Poultry/virology , Space-Time Clustering , Animals , Influenza in Birds/diagnosis , Influenza in Birds/virology , Poultry Diseases/diagnosis , Poultry Diseases/virology , Taiwan , Time Factors
15.
Emerg Microbes Infect ; 10(1): 2030-2041, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34666614

ABSTRACT

The segmented genome of influenza A virus has conferred significant evolutionary advantages to this virus through genetic reassortment, a mechanism that facilitates the rapid expansion of viral genetic diversity upon influenza co-infections. Therefore, co-infection of genetically diverse avian influenza viruses in poultry may pose a significant public health risk in generating novel reassortants with increased zoonotic potential. This study investigated the reassortment patterns of a Pearl River Delta-lineage avian influenza A(H7N9) virus and four genetically divergent avian influenza A(H9N2) viruses upon co-infection in embryonated chicken eggs and chickens. To characterize "within-host" and "between-host" genetic diversity, we further monitored the viral genotypes that were subsequently transmitted to contact chickens in serial transmission experiments. We observed that co-infection with A(H7N9) and A(H9N2) viruses may lead to the emergence of novel reassortant viruses in ovo and in chickens, albeit with different reassortment patterns. Novel reassortants detected in donor chickens co-infected with different combinations of the same A(H7N9) virus and different A(H9N2) viruses showed distinct onward transmission potential to contact chickens. Sequential transmission of novel reassortant viruses was only observed in one out of four co-infection combinations. Our results demonstrated different patterns by which influenza viruses may acquire genetic diversity through co-infection in ovo, in vivo, and under sequential transmission conditions.


Subject(s)
Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Poultry Diseases/virology , Animals , Chick Embryo , Chickens , Coinfection/transmission , Coinfection/virology , Genotype , Humans , Influenza A Virus, H7N9 Subtype/physiology , Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/transmission , Influenza, Human/transmission , Phylogeny , Poultry Diseases/transmission , Reassortant Viruses/genetics , Reassortant Viruses/physiology , Recombination, Genetic , Viral Zoonoses/transmission , Viral Zoonoses/virology
16.
Sci Rep ; 11(1): 19556, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599201

ABSTRACT

Escherichia coli constitutes an immense challenge to the poultry industry due to its devastating effect on productivity, mortality, and carcass condemnations. To aid future studies on disease mechanisms and interventions, an aerogenous infection model was established in adult broiler breeders. Hens (n = 120) were randomly allocated into six groups receiving either aerosolised E. coli or vehicle, or intratracheal E. coli or vehicle. Replication of aerosol inoculation was performed on distinct days. Alternating euthanasia time points were predetermined in order to evaluate the progression of the disease. All animals were thoroughly necropsied, and bacteriological samples were collected as well as tissues for histopathology. Birds inoculated with E. coli exhibited clinical signs and developed characteristic gross and histopathological lesions of colibacillosis, including splenic fibrinoid necrosis, folliculitis, polyserositis and impaction of parabronchi with fibrinoheterophilic exudate and necrotic debris, as well as positive in situ localisation of intralesional E. coli by immunohistochemistry. This study presents a successful development of a discriminative colibacillosis model through aerosol inoculation of adult broiler breeders. Gross and histopathological lesions characteristic of colibacillosis were established in two independent experiments.


Subject(s)
Chickens , Escherichia coli Infections/veterinary , Escherichia coli , Poultry Diseases/microbiology , Aerosols , Animals , Bacterial Typing Techniques , Biopsy , Disease Models, Animal , Mortality , Poultry Diseases/diagnosis , Poultry Diseases/prevention & control , Poultry Diseases/transmission
17.
Viruses ; 13(10)2021 09 23.
Article in English | MEDLINE | ID: mdl-34696333

ABSTRACT

During the 2020-2021 winter season, an outbreak of clade 2.3.4.4b H5N8 high pathogenicity avian influenza (HPAI) virus occurred in South Korea. Here, we evaluated the pathogenicity and transmissibility of A/mandarin duck/Korea/H242/2020 (H5N8) (H242/20(H5N8)) first isolated from this outbreak in specific pathogen-free (SPF) chickens and commercial ducks in comparison with those of A/duck/Korea/HD1/2017(H5N6) (HD1/17(H5N6)) from a previous HPAI outbreak in 2017-2018. In chickens, the 50% chicken lethal dose and mean death time of H242/20(H5N8) group were 104.5 EID50 and 4.3 days, respectively, which indicate less virulent than those of HD1/17(H5N6) (103.6 EID50 and 2.2 days). Whereas, chickens inoculated with H242/20(H5N8) survived longer and had a higher titer of viral shedding than those inoculated with HD1/17(H5N6), which may increase the risk of viral contamination on farms. All ducks infected with either HPAI virus survived without clinical symptoms. In addition, they exhibited a longer virus shedding period and a higher transmission rate, indicating that ducks may play an important role as a silent carrier of both HPAI viruses. These results suggest that the pathogenic characteristics of HPAI viruses in chickens and ducks need to be considered to effectively control HPAI outbreaks in the field.


Subject(s)
Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry Diseases/epidemiology , Poultry Diseases/virology , Animals , Chickens/virology , Disease Outbreaks/veterinary , Ducks/virology , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A virus/classification , Influenza in Birds/transmission , Poultry Diseases/transmission , Republic of Korea/epidemiology , Specific Pathogen-Free Organisms , Virulence , Virus Shedding
18.
Sci Rep ; 11(1): 19962, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620890

ABSTRACT

Live animal markets are known hotspots of zoonotic disease emergence. To mitigate those risks, we need to understand how networks shaped by trading practices influence disease spread. Yet, those practices are rarely recorded in high-risk settings. Through a large cross-sectional study, we assessed the potential impact of live poultry trading networks' structures on avian influenza transmission dynamics in Bangladesh. Networks promoted mixing between chickens sourced from different farming systems and geographical locations, fostering co-circulation of viral strains of diverse origins in markets. Viral transmission models suggested that the observed rise in viral prevalence from farms to markets was unlikely explained by intra-market transmission alone, but substantially influenced by transmission occurring in upstream network nodes. Disease control interventions should therefore alter the entire network structures. However, as networks differed between chicken types and city supplied, standardised interventions are unlikely to be effective, and should be tailored to local structural characteristics.


Subject(s)
Commerce , Influenza in Birds/transmission , Animals , Bangladesh/epidemiology , Chickens/virology , Cross-Sectional Studies , Influenza A virus , Influenza in Birds/epidemiology , Poultry , Poultry Diseases/epidemiology , Poultry Diseases/transmission
19.
Viruses ; 13(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34578433

ABSTRACT

An outbreak caused by H7N3 low pathogenicity avian influenza virus (LPAIV) occurred in commercial turkey farms in the states of North Carolina (NC) and South Carolina (SC), United States in March of 2020. Subsequently, H7N3 high pathogenicity avian influenza virus (HPAIV) was detected on a turkey farm in SC. The infectivity, transmissibility, and pathogenicity of the H7N3 HPAIV and two LPAIV isolates, including one with a deletion in the neuraminidase (NA) protein stalk, were studied in turkeys and chickens. High infectivity [<2 log10 50% bird infectious dose (BID50)] and transmission to birds exposed by direct contact were observed with the HPAIV in turkeys. In contrast, the HPAIV dose to infect chickens was higher than for turkeys (3.7 log10 BID50), and no transmission was observed. Similarly, higher infectivity (<2-2.5 log10 BID50) and transmissibility were observed with the H7N3 LPAIVs in turkeys compared to chickens, which required higher virus doses to become infected (5.4-5.7 log10 BID50). The LPAIV with the NA stalk deletion was more infectious in turkeys but did not have enhanced infectivity in chickens. These results show clear differences in the pathobiology of AIVs in turkeys and chickens and corroborate the high susceptibility of turkeys to both LPAIV and HPAIV infections.


Subject(s)
Chickens/virology , Influenza A Virus, H7N3 Subtype/pathogenicity , Influenza in Birds/virology , Poultry Diseases/virology , Turkeys/virology , Animals , Disease Outbreaks/veterinary , Genome, Viral , Influenza A Virus, H7N3 Subtype/genetics , Influenza A Virus, H7N3 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/transmission , North Carolina/epidemiology , Phylogeny , Poultry Diseases/epidemiology , Poultry Diseases/transmission , South Carolina/epidemiology , Viral Load , Virulence , Virus Shedding
20.
Microbiol Spectr ; 9(2): e0131221, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34585949

ABSTRACT

The large (L) polymerase proteins of most nonsegmented, negative-stranded (NNS) RNA viruses have conserved methyltransferase motifs, (G)-G-G-D and K-D-K-E, which are important for the stabilization and translation of mRNA. However, the function of the (G)-G-G-D and K-D-K-E motifs in the NNS RNA virus Newcastle disease virus (NDV) remains unclear. We observed G-G-D and K-D-K-E motifs in all NDV genotypes. By using the infection cloning system of NDV rSG10 strain, recombinant NDVs with a single amino acid mutated to alanine in one motif (G-G-D or K-D-K-E) were rescued. The intracerebral pathogenicity index and mean death time assay results revealed that the G-G-D motif and K-D-K-E motif attenuate the virulence of NDV to various degrees. The replication, transcription, and translation levels of the K-D-K-E motif-mutant strains were significantly higher than those of wild-type virus owing to their altered regulation of the affinity between nucleocapsid protein and eukaryotic translation initiation factor 4E. When the infection dose was changed from a multiplicity of infection (MOI) of 10 to an MOI of 0.01, the cell-to-cell spread abilities of G-G-D- and K-D-K-E-mutant strains were reduced, according to plaque assay and dynamic indirect immunofluorescence assay results. Finally, we found that NDV strains with G-G-D or K-D-K-E motif mutations had less pathogenicity in 3-week-old specific-pathogen-free chickens than wild-type NDV. Therefore, these methyltransferase motifs can affect virulence by regulating the translation and cell-to-cell spread abilities of NDV. This work provides a feasible approach for generating vaccine candidates for viruses with methyltransferase motifs. IMPORTANCE Newcastle disease virus (NDV) is an important pathogen that is widespread globally. Research on its pathogenic mechanism is an important means of improving prevention and control efforts. Our study found that a deficiency in its methyltransferase motifs (G-G-D and K-D-K-E motifs) can attenuate NDV and revealed the molecular mechanism by which these motifs affect pathogenicity, which provides a new direction for the development of NDV vaccines. In addition to the (G)-G-G-D and K-D-K-E motifs of many nonsegmented, negative-stranded RNA viruses, similar motifs have been found in dengue virus, Zika virus, Japanese encephalitis virus (JEV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This suggests that such motifs may be present in more viruses. Our finding also provides a molecular basis for the discovery and functional study of (G)-G-G-D and K-D-K-E motifs of other viruses.


Subject(s)
Amino Acid Motifs/genetics , Methyltransferases/genetics , Newcastle Disease/transmission , Newcastle disease virus/growth & development , Newcastle disease virus/genetics , Viral Proteins/genetics , Animals , Cell Line , Chickens , Chlorocebus aethiops , Cricetinae , Genome, Viral/genetics , Newcastle disease virus/pathogenicity , Poultry Diseases/transmission , Poultry Diseases/virology , RNA, Viral/biosynthesis , RNA, Viral/genetics , Vero Cells , Virulence/genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...