Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 520
Filter
1.
Dental Press J Orthod ; 29(5): e242460, 2024.
Article in English | MEDLINE | ID: mdl-39383373

ABSTRACT

INTRODUCTION: The use of arch models is essential in diagnosis and planning in orthodontics. The demand for digital and printed models has increased among professionals. OBJECTIVE: The aim of the study was to assess the agreement of horizontal and vertical linear measurements obtained from digital models, printed models, and direct measurements. MATERIALS AND METHODS: Intraoral scans of 30 individuals were obtained. Digital measurements were performed using the STL files. From printed models, the measurements were done using a digital caliper, and the real measurements were done directly to the mouth of respective patients. RESULTS: The one-sample t test showed no discrepancy between the paired sets of measurements, with the value of 0 (p>0.05). The evaluation of the measurements was done using Bland-Altman analysis in pairs. The three methods showed agreement in horizontal and vertical measurements. Linear regression analyses showed no proportional bias in the data (p>0.05). CONCLUSION: The horizontal and vertical measurements evaluated showed agreement when measured on digital models, printed models and directly in the individuals' mouths.


Subject(s)
Models, Dental , Humans , Dental Arch/anatomy & histology , Dental Arch/diagnostic imaging , Cephalometry/methods , Linear Models , Printing, Three-Dimensional
2.
BMC Musculoskelet Disord ; 25(1): 783, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367410

ABSTRACT

AIMS: The World Health Organization points out that, by 2030, two billion people will need at least one assistive product. 3D printing can be used to meet the demands when dispensing these products. PURPOSE: This review aims to map the use of 3D printing in the manufacture of orthoses and prostheses for people with physical disability at rehabilitation centers. METHODS: Publications that deal with the use of 3D printing for the manufacture of orthoses and prostheses were used, preferably studies from 2012 to 2022. RESULTS: The majority of studies, 56.25%, were quantitative and 46.25% were evaluative research. None of the studies were characterized as developed at rehabilitation centers. 75% of them had the participation of people with physical disability. The use of 3D printing was, for the most part, for the development of assistive technologies for the upper limbs at 56.25%, while 31.25% were for the lower limbs. CONCLUSION: The assistive products developed were orthoses and prostheses for the wrist, hands, fingers, upper limbs, writing devices, sockets, knees, and feet. Although there were positive results in their performance, some limitations related to strength, stiffness, and resistance were observed.


Subject(s)
Disabled Persons , Orthotic Devices , Printing, Three-Dimensional , Prosthesis Design , Rehabilitation Centers , Humans , Disabled Persons/rehabilitation , Artificial Limbs
3.
J Cardiothorac Surg ; 19(1): 548, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342312

ABSTRACT

BACKGROUND: Accurate diagnosis and treatment of complex cardiac tumors poses challenges, particularly when surgical resection is considered. 3D reconstruction and printing appear as a novel approach to allow heart teams for optimal surgical and post operative care. METHODS: We report two patients with uncommon masses including a cardiac angiosarcoma (CAS) and a IgG4-related disease (IgG4-RD) with exclusive cardiac involvement. In both cases, three-dimensional (3D) reconstruction and 3D-printed models were utilized to aid the surgical team achieve optimal pre-operative planning. Both patients underwent ECG-gated cardiac computed tomography angiography (CCTA) imaging and, due to the complex anatomy of the masses, their large dimensions, proximity to vital cardiac and vascular structures, and unclear etiology, computational and 3D-printed models were created for surgical planning. An exploratory literature review of studies using 3D-printed models in surgical planning was performed. RESULTS: In case 1 (CAS), due to the size and extension of the mass to the right ventricular free wall, surgical intervention was not considered curative and, during thoracotomy, an open biopsy confirmed the imaging suspicion of CAS which guided the initiation of optimal medical treatment with chemotherapy and, after clear tumor retraction, the patient underwent a second surgical intervention, and during the 18 months of follow-up showed no signs of recurrence. In Case 2 (IgG4-RD), the patient underwent uncomplicated total surgical resection; this allowed directed treatment and, at 12 months follow-up, there are no signs of recurrence. Computational and 3D-printed models were used to plan the surgery and to confirm the findings. Limited studies have explored the use of 3D printing in the surgical planning of tumors. CONCLUSIONS: We present two patients with uncommon cardiac tumors, highlighting the significant value of 3D models in the anatomical characterization and assessment of their extension. These models may be essential in surgical planning for complex cardiovascular cases and could provide more information than conventional imaging modalities. Further studies are needed to demonstrate the impact of 3D technologies in studying cardiac tumors.


Subject(s)
Heart Neoplasms , Hemangiosarcoma , Printing, Three-Dimensional , Humans , Heart Neoplasms/surgery , Heart Neoplasms/diagnostic imaging , Male , Hemangiosarcoma/surgery , Hemangiosarcoma/diagnostic imaging , Middle Aged , Imaging, Three-Dimensional , Female , Aged , Cardiac Surgical Procedures/methods , Computed Tomography Angiography
4.
Biomed Res Int ; 2024: 7205011, 2024.
Article in English | MEDLINE | ID: mdl-39263421

ABSTRACT

Background: Over the past decade, 3D printing technology has revolutionized various fields, including dentistry. Provisional restorations play a crucial role in prosthetic rehabilitation, necessitating the evaluation of their bond strength with different provisional cement agents. Aims: This study is aimed at assessing the immediate and long-term bond strength of 3D-printed dental crowns using three provisional cement agents. Materials and Methods: Provisional crowns (N = 36) were manufactured using 3D modeling software and cemented in dentin analogues (G10 Nema resin). After the crowns' fabrication, they were randomly divided into three groups (n = 12) for cementation with Relyx Temp 3M ESPE, Provicol-VOCO, and Meron-VOCO. Tensile strength tests were conducted using a universal testing machine, with half of the specimens subjected to 2000 thermal cycles before testing. Finite element analysis was employed to assess tensile stress distribution. Results: Statistical analysis (two-way ANOVA and Tukey's test at a 95% confidence level) revealed significant effects of cement type (p = 0.006) and thermal aging (p = 0.001) on bond strength. Glass ionomer cement exhibited the highest immediate resistance, while all types of cement were adversely affected by thermal aging, resulting in decreased bond strength. Conclusion: Thermal aging significantly alters the properties of 3D printing resin and affects the bond strength of provisional cement with 3D-printed crowns. Despite the adverse effects of thermal aging, glass ionomer cement demonstrated the highest immediate resistance. Clinicians should carefully consider these findings when selecting provisional cements for 3D-printed crowns.


Subject(s)
Crowns , Printing, Three-Dimensional , Tensile Strength , Humans , Materials Testing , Finite Element Analysis , Glass Ionomer Cements/chemistry , Dental Cements/chemistry , Dental Bonding/methods
5.
An Acad Bras Cienc ; 96(suppl 1): e20230633, 2024.
Article in English | MEDLINE | ID: mdl-39319832

ABSTRACT

Biorefineries require low-cost production processes, low waste generation and equipment that can be used not only for a single process, but for the manufacture of several products. In this context, in this research a continuous 3D printing microbioreactor coupled to an Arduino-controlled automatic feeding system was developed for the intensification of the ethanol production process from xylose/xylulose (3:1), using a new biocatalyst containing the co-culture of Scheffersomyces stipitis and Saccharomyces cerevisiae (50/50). Initially, batch fermentations of monocultures of S. cerevisiae and S. stipitis and co-culture were carried out. Subsequently, the immobilized co-culture was used as a biocatalyst in continuous fermentations using the developed microreactor. Fermentations carried out in the microbioreactor presented a 2-fold increase in the ethanol concentration and a 3-fold increase in productivity when compared to monocultures. The microbioreactor developed proved to be efficient and can be extended for other bioproducts production. This approach proved to be a promising alternative for the use of the hemicellulose fraction of biomasses without the need to use modified strains.


Subject(s)
Bioreactors , Coculture Techniques , Ethanol , Fermentation , Printing, Three-Dimensional , Saccharomyces cerevisiae , Saccharomycetales , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Coculture Techniques/methods , Bioreactors/microbiology , Saccharomycetales/metabolism , Saccharomycetales/growth & development
6.
Anal Methods ; 16(35): 6011-6019, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39171860

ABSTRACT

The potential impact on human health and the environment has spurred significant interest in detecting and quantifying pharmaceutical compounds across various matrices, from environmental to biological samples. Here, we present an electrochemical approach for determining levofloxacin in drug, synthetic urine, water, and breast milk samples. An affordable sensor was constructed using 3D printing and composite material based on nail polish, graphite, and aluminum oxide. The conductive composite material was characterized spectroscopically, electrochemically, and by imaging techniques. Subsequently, an electrochemical method based on square wave voltammetry was optimized and applied. The method exhibited good sensitivity (5.11 ± 0.0912 µA L µmol-1 cm-2) and enhanced stability (RSD = 7.2%), with electrochemical responses correlating with the concentration of levofloxacin in the samples tested, yielding recovery values in the range of 98 to 111%. The developed method demonstrated a robust linear working range from 2 to 100 µmol L-1 and a nanomolar detection limit of 128 nmol L-1, rendering it suitable for quantitative analysis. The sensor also shows promise as a platform for the sensitive detection of pharmaceutical compounds, contributing to greater safety and sustainability in these domains.


Subject(s)
Aluminum Oxide , Electrochemical Techniques , Electrodes , Graphite , Levofloxacin , Graphite/chemistry , Levofloxacin/analysis , Humans , Aluminum Oxide/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Cost-Benefit Analysis , Printing, Three-Dimensional , Nails/chemistry , Anti-Bacterial Agents/analysis
7.
Dent Mater ; 40(10): 1685-1691, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39095245

ABSTRACT

OBJECTIVE: To formulate an experimental methacrylate-based photo-polymerizable resin for 3D printing with ytterbium trifluoride as filler and to evaluate the mechanical, physicochemical, and biological properties. METHODS: Resin matrix was formulated with 60 wt% UDMA, 40 wt% TEGDMA, 1 wt% TPO, and 0.01 wt% BHT. Ytterbium Trifluoride was added in concentrations of 1 (G1 %), 2 (G2 %), 3 (G3 %), 4 (G4 %), and 5 (G5 %) wt%. One group remained without filler addition as control (GC). The samples were designed in 3D builder software and printed using a UV-DLP 3D printer. The samples were ultrasonicated with isopropanol and UV cured for 60 min. The resins were tested for degree of conversion (DC), flexural strength, Knoop microhardness, softening in solvent, radiopacity, colorimetric analysis, and cytotoxicity (MTT and SRB). RESULTS: Post-polymerization increased the degree of conversion of all groups (p < 0.05). G2 % showed the highest DC after post-polymerization. G2 % showed no differences in flexural strength from the G1 % and GC (p > 0.05). All groups showed a hardness reduction after solvent immersion. No statistical difference was found in radiopacity, softening in solvent (ΔKHN%), colorimetric spectrophotometry, and cytotoxicity (MTT) (p > 0.05). G1 % showed reduced cell viability for SRB assay (p < 0.05). SIGNIFICANCE: It was possible to produce an experimental photo-polymerizable 3D printable resin with the addition of 2 % ytterbium trifluoride as filler without compromising the mechanical, physicochemical, and biological properties, comparable to the current provisional materials.


Subject(s)
Hardness , Materials Testing , Methacrylates , Printing, Three-Dimensional , Methacrylates/chemistry , Flexural Strength , Polymerization , Polyethylene Glycols/chemistry , Composite Resins/chemistry , Polymethacrylic Acids/chemistry , Polyurethanes/chemistry , Colorimetry , Surface Properties
8.
J Biomater Appl ; 39(5): 421-438, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39196759

ABSTRACT

The skin is a tissue constantly exposed to the risk of damage, such as cuts, burns, and genetic disorders. The standard treatment is autograft, but it can cause pain to the patient being extremely complex in patients suffering from burns on large body surfaces. Considering that there is a need to develop technologies for the repair of skin tissue like 3D bioprinting. Skin is a tissue that is approximately 1/16 of the total body weight and has three main layers: epidermis, dermis, and hypodermis. Therefore, there are several studies using cells, biomaterials, and bioprinting for skin regeneration. Here, we provide an overview of the structure and function of the epidermis, dermis, and hypodermis, and showed in the recent research in skin regeneration, the main cells used, biomaterials studied that provide initial support for these cells, allowing the growth and formation of the neotissue and general characteristics, advantages and disadvantages of each methodology and the landmarks in recent research in the 3D skin bioprinting.


Subject(s)
Biocompatible Materials , Bioprinting , Printing, Three-Dimensional , Regenerative Medicine , Skin , Tissue Engineering , Humans , Regenerative Medicine/methods , Biocompatible Materials/chemistry , Tissue Engineering/methods , Animals , Skin/cytology , Tissue Scaffolds/chemistry , Regeneration
9.
Acta Cir Bras ; 39: e394724, 2024.
Article in English | MEDLINE | ID: mdl-39109778

ABSTRACT

PURPOSE: To evaluate the impact of simulators on the training of urology residents in retrograde intrarenal surgery (RIRS). METHODS: The study involved training eight urology residents, using two artificial simulators; one developed by the Universidade Estadual do Pará, using three-dimensional printing technology, and the other one patented by the medical equipment manufacturer Boston Scientific The qualification of residents took place through a training course, consisting of an adaptation phase (S0), followed by three training sessions, with weekly breaks between them (S1, S2 and S3). Study members should carry out a RIRS in a standardized way, with step-by-step supervision by the evaluator using a checklist. The participants' individual performance was verified through a theoretical assessment, before and after training (pre- and post-training), as well as by the score achieved in each session on a scale called global psychomotor skill score. In S3, residents performed an analysis of the performance and quality of the simulation, by completing the scale of student satisfaction and self confidence in learning (SSSCL). RESULTS: At the end of the course, everyone was able to perform the procedure in accordance with the standard. The training provided a learning gain and a considerable improvement in skills and competencies in RIRS, with p < 0.05. SSSCL demonstrated positive feedback, with an overall approval rating of 96%. CONCLUSIONS: Artificial simulators proved to be excellent auxiliary tools in the training of urology residents in RIRS.


Subject(s)
Clinical Competence , Internship and Residency , Simulation Training , Urologic Surgical Procedures , Urology , Humans , Internship and Residency/methods , Urology/education , Simulation Training/methods , Urologic Surgical Procedures/education , Male , Educational Measurement , Female , Adult , Computer Simulation , Kidney/surgery , Printing, Three-Dimensional
10.
Acta Cir Bras ; 39: e395424, 2024.
Article in English | MEDLINE | ID: mdl-39109784

ABSTRACT

PURPOSE: To develop and assess three-dimensional models of physeal fractures in dog femurs (3D MPFDF) using radiographic imaging. METHODS: The study was conducted in three phases: development of 3D MPFDF; radiographic examination of the 3D MPFDF; and comparative analysis of the anatomical and radiographic features of the 3D MPFDF. RESULTS: The base model and the 3D MPFDF achieved high fidelity in replicating the bone structures, accurately maintaining the morphological characteristics and dimensions such as length, width, and thickness, closely resembling natural bone. The radiographs of the 3D MPFDF displayed distinct radiopaque and radiolucent areas, enabling clear visualization of the various anatomical structures of the femur. However, in these radiographs, it was challenging to distinguish between the cortical and medullary regions due to the use of 99% internal padding in the printing process. Despite this limitation, the radiographs successfully demonstrated the representation of the Salter-Harris classification. CONCLUSIONS: This paper presents a pioneering project focused on technological advancement aimed at developing a method for the rapid and cost-effective production of three-printed models and radiographs of physeal fractures in dogs.


Subject(s)
Femoral Fractures , Imaging, Three-Dimensional , Models, Anatomic , Printing, Three-Dimensional , Animals , Dogs , Femoral Fractures/diagnostic imaging , Imaging, Three-Dimensional/methods , Radiography , Femur/diagnostic imaging , Femur/anatomy & histology , Femur/injuries , Veterinary Medicine/methods , Reproducibility of Results
11.
Food Res Int ; 192: 114849, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147528

ABSTRACT

Following consumer trends and market needs, the food industry has expanded the use of unconventional sources to obtain proteins. In parallel, 3D and 4D food printing have emerged with the potential to enhance food processing. While 3D and 4D printing technologies show promising prospects for improving the performance and applicability of unconventional sourced proteins (USP) in food, this combination remains relatively unexplored. This review aims to provide an overview of the application of USP in 3D and 4D printing, focusing on their primary sources, composition, rheological, and technical-functional properties. The drawbacks, challenges, potentialities, and prospects of these technologies in food processing are also examined. This review underscores the current necessity for greater regulation of food products processed by 3D and 4D printing. The data presented here indicate that 3D and 4D printing represent viable, sustainable, and innovative alternatives for the food industry, emphasizing the potential for further exploration of 4D printing in food processing. Additional studies are warranted to explore their application with unconventional proteins.


Subject(s)
Food Handling , Printing, Three-Dimensional , Food Handling/methods , Rheology , Proteins , Food Industry
12.
Biomed Mater Eng ; 35(5): 415-423, 2024.
Article in English | MEDLINE | ID: mdl-39121111

ABSTRACT

BACKGROUND: Tissue engineering seeks to improve, maintain, or replace the biological functions of damaged organs or tissues with biological substitutes such as the development of scaffolds. In the case of bone tissue, they must have excellent mechanical properties like native bone. OBJECTIVE: In this work, three geometric models were designed for scaffolds with different structure lattices and porosity that could be biomechanically suitable and support cell growth for trabecular bone replacement applications in tissue engineering and regenerative medicine to the proximal femur area. METHODS: Geometries were designed using computer-aided design (CAD) software and evaluated using finite element analysis in compression tests. Three loads were considered according to the daily activity: 1177 N for slow walking, 2060 N for fast walking, and 245.25 N for a person in a bipedal position. All these loads for an adult weight of 75 kg. For each of them, three biomaterials were assigned: two polymers (poly-glycolic acid (PGA) and poly-lactic acid (PLA)) and one mineral (hydroxyapatite (HA)). 54 tests were performed: 27 for each of the tests. RESULTS: The results showed Young's modulus (E) between 1 and 4 GPa. CONCLUSION: If the resultant E is in the range of 0.1 to 5 GPa, the biomaterial is considered an appropriate alternative for the trabecular bone which is the main component of the proximal bone. However, for the models applied in this study, the best option is the poly-lactic acid which will allow absorbing the acting loads.


Subject(s)
Computer-Aided Design , Finite Element Analysis , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Humans , Tissue Engineering/methods , Durapatite/chemistry , Elastic Modulus , Bioprinting/methods , Polyesters/chemistry , Porosity , Computer Simulation , Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Polyglycolic Acid/chemistry , Printing, Three-Dimensional , Materials Testing , Bone and Bones
13.
Anal Methods ; 16(33): 5676-5683, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39118596

ABSTRACT

In this study, we describe a rapid and high-throughput smartphone-based digital colorimetric method for determining urea in milk. A compact and cost-effective 3D-printed image box microplate-based system was designed to measure multiple samples simultaneously, using minimal sample and reagent volumes. The apparatus was applied for the quantification of urea in milk based on its reaction with p-dimethylaminobenzaldehyde (DMAB). The predictive performance of calibration was evaluated using RGB and different colour models (CMYK, HSV, and CIELAB), with the average blue (B) values of the RGB selected as the analytical signal for urea quantification. Under optimized conditions, a urea concentration linear range from 50 to 400 mg L-1 was observed, with a limit of detection (LOD) of 15 mg L-1. The values found with the smartphone-based DIC procedure are in good agreement with spectrophotometric (spectrophotometer and microplate treader) and reference method (mid-infrared spectroscopy) values. This proposed approach offers an accessible and efficient solution for digital image colorimetry, with potential applications for various target analytes in milk and other fields requiring high-throughput colorimetric analysis.


Subject(s)
Colorimetry , Milk , Printing, Three-Dimensional , Smartphone , Urea , Milk/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Animals , Urea/analysis , Urea/chemistry , Limit of Detection , Benzaldehydes/chemistry , Benzaldehydes/analysis
14.
Einstein (Sao Paulo) ; 22: eAO0620, 2024.
Article in English | MEDLINE | ID: mdl-39166699

ABSTRACT

OBJECTIVE: Barros et al. demonstrated a 3D printed model that exhibits anatomical representativeness, low cost, and scalability. The model was created based on subtraction data obtained from computed tomography scans. Images were modeled and reconstructed in 3D to display the male inguinal region, typically viewed using a laparoscopic approach. To evaluate the functionality and quality of the anatomical representation of the hernia 3D training model. METHODS: A model was created based on subtraction data derived from computed tomography scans of the pelvic bones and lumbar spine using the Blender 3.2.2 software program. Images were modeled and reconstructed in 3D to display the male inguinal region, typically viewed using a laparoscopic approach. Polylactic acid plastic was used to print the model. Some structures were made using ethylene vinyl acetate to enable possible material replacement and model reutilization. Thirty surgeons with various training levels were invited to use the model. Transabdominal inguinal hernioplasty was performed by simulating the same steps as those of a laparoscopic surgery, and the surgeons answered a questionnaire regarding the simulation. RESULTS: Twenty-eight surgeons responded, seven of whom were experts in the treatment of abdominal wall hernias. The model was deemed easy to use, realistic, and anatomically precise, establishing it as a valuable supplement to minimally invasive surgery training. CONCLUSION: The evaluation of this 3D model was favorable, as it accurately depicted the inguinal region anatomically, while also proving to be cost-effective for training purposes. The model could be a good option, particularly beneficial for training surgeons at the beginning of their careers.


Subject(s)
Hernia, Inguinal , Herniorrhaphy , Models, Anatomic , Simulation Training , Humans , Male , Hernia, Inguinal/surgery , Herniorrhaphy/education , Laparoscopy , Printing, Three-Dimensional , Simulation Training/methods , Tomography, X-Ray Computed
15.
Oper Dent ; 49(5): 608-616, 2024 09 01.
Article in English | MEDLINE | ID: mdl-39187962

ABSTRACT

OBJECTIVE: To evaluate the effects of UV postcuring times on color stability (CS), surface properties (wettability [°] and surface roughness [Ra]), and conversion of 3D-printed resins for temporary restorations. METHODS: Disc-shaped specimens (10.0×3.0 mm) and maxillary central incisors (8.2×10.3 mm) were fabricated using provisional 3D-printed resin (PriZma Bio Prov [PZ] and PrintaX AA TEMP [PX]) in A2 shade and subjected to UV postcure times of 0 (T0), 5 (T1), 10 (T2), and 15 (T3) minutes (n=15). The incisors were used for CS evaluation with a colorimeter. In contrast, discs were used to measure the contact angle using the sessile drop method, surface roughness with an optical profilometer, and degree of conversion with FT-NIR. For CS, Ra, contact angle, and degree of conversion, a two-way ANOVA with Bonferroni post-hoc test (α=0.05) was used. RESULTS: PX resin demonstrated greater color stability than PZ (p=0.001). Long UV postcuring times (10 to 15 minutes) will increase the contact angle (p=0.013) and stabilize the degree of conversion (p=0.01), while 5 to 10 minutes of UV postcuring will provide better surface smoothness (p=0.04) of both resins. CONCLUSIONS: Long UV postcuring times (10 to 15 minutes) lead to greater alterations in color, contact angle, and stability of the degree of conversion, while 5 to 10 minutes lead to a smoother surface of the 3D-printed temporary resins.


Subject(s)
Color , Composite Resins , Printing, Three-Dimensional , Surface Properties , Ultraviolet Rays , Composite Resins/chemistry , Dental Restoration, Temporary , Humans , Time Factors , Materials Testing , Dental Materials/chemistry , Wettability
16.
Einstein (Sao Paulo) ; 22: eRC0582, 2024.
Article in English | MEDLINE | ID: mdl-38958338

ABSTRACT

The focus of this case report is to technically describe a noninvasive diagnostic evaluation of bow Hunter's syndrome using a dynamic computed tomography angiography protocol and discuss its advantages. In addition, we aimed to exemplify the quality of the study by presenting images of a 3D-printed model generated to help plan the surgical treatment for the patient. The dynamic computed tomography angiography protocol consisted of a first image acquisition with the patient in the anatomic position of the head and neck. This was followed by a second acquisition with the head and neck rotated to the side that triggered the symptoms, with technical parameters similar to the first acquisition. The acquired images were used to print a 3D model to better depict the findings for the surgical team. The dynamic computed tomography angiography protocol developed in this study helped visualize the vertebrobasilar arterial anatomy, detect vertebral artery stenosis produced by head and neck rotation, depict the structure responsible for artery stenosis (e.g., bony structure or membranes), and study possible complications of the disease (e.g., posterior cerebral circulation infarction). Additionally, the 3D-printed model better illustrated the findings of stenosis, aiding in surgical planning. In conclusion, dynamic computed tomography angiography for the evaluation of bow Hunter's syndrome is a feasible noninvasive technique that can be used as an alternative to traditional diagnostic methods.


Subject(s)
Computed Tomography Angiography , Vertebrobasilar Insufficiency , Humans , Computed Tomography Angiography/methods , Vertebrobasilar Insufficiency/diagnostic imaging , Vertebrobasilar Insufficiency/surgery , Male , Vertebral Artery/diagnostic imaging , Imaging, Three-Dimensional/methods , Printing, Three-Dimensional
17.
Biomed Mater ; 19(5)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38986475

ABSTRACT

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Subject(s)
Biocompatible Materials , Bone Regeneration , Calcium Phosphates , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , Osteoblasts , Polyesters , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Zinc Oxide , Tissue Scaffolds/chemistry , Calcium Phosphates/chemistry , Polyesters/chemistry , Bone Regeneration/drug effects , Tissue Engineering/methods , Mesenchymal Stem Cells/cytology , Zinc Oxide/chemistry , Biocompatible Materials/chemistry , Cell Differentiation/drug effects , Osteoblasts/cytology , Osteogenesis/drug effects , Materials Testing , Bone and Bones , Guided Tissue Regeneration/methods , Humans , Animals , Alkaline Phosphatase/metabolism , Elastic Modulus , Porosity , Surface Properties
18.
Dentomaxillofac Radiol ; 53(7): 501-508, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39018170

ABSTRACT

OBJECTIVES: This study aimed to evaluate the impact of 3D-printed mannequins on the training of predoctoral students. METHODS: Two 3D-printed training models were developed: a traditional model that simulates a sound adult patient and a customized model with pathological and physiological changes (impacted third molar and edentulous region). Students accomplished their pre-clinical training divided into a control group (CG, n = 23), which had access to the traditional model, and a test group (TG, n = 20), which had access to both models. Afterward, they performed a full mouth series on patients and filled out a perception questionnaire. Radiographs were evaluated for technical parameters. Descriptive statistics and the Mann-Whitney test were used to compare the groups. RESULTS: Students provided positive feedback regarding the use of 3D printing. The TG reported a more realistic training experience than the CG (P = .037). Both groups demonstrated good clinical performance (CG = 7.41; TG = 7.52), and no significant differences were observed between them. CONCLUSIONS: 3D printing is an option for producing simulators for pre-clinical training in Oral Radiology, reducing student stress and increasing confidence during clinical care.


Subject(s)
Education, Dental , Manikins , Printing, Three-Dimensional , Humans , Education, Dental/methods , Radiology/education , Clinical Competence , Male , Female , Students, Dental/psychology , Surveys and Questionnaires , Adult
19.
Methods ; 230: 21-31, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39074539

ABSTRACT

Envisaging to improve the evaluation of ophthalmic drug products while minimizing the need for animal testing, our group developed the OphthalMimic device, a 3D-printed device that incorporates an artificial lacrimal flow, a cul-de-sac area, a moving eyelid, and a surface that interacts effectively with ophthalmic formulations, thereby providing a close representation of human ocular conditions. An important application of such a device would be its use as a platform for dissolution/release tests that closely mimic in vivo conditions. However, the surface that artificially simulates the cornea should have a higher resistance (10 min) than the previously described polymeric films (5 min). For this key assay upgrade, we describe the process of obtaining and thoroughly characterizing a hydrogel-based hybrid membrane to be used as a platform base to simulate the cornea artificially. Also, the OphthalMimic device suffered design improvements to fit the new membrane and incorporate the moving eyelid. The results confirmed the successful synthesis of the hydrogel components. The membrane's water content (86.25 ± 0.35 %) closely mirrored the human cornea (72 to 85 %). Furthermore, morphological analysis supported the membrane's comparability to the natural cornea. Finally, the performance of different formulations was analysed, demonstrating that the device could differentiate their drainage profile through the viscosity of PLX 14 (79 ± 5 %), PLX 16 (72 ± 4 %), and PLX 20 (57 ± 14 %), and mucoadhesion of PLXCS0.5 (69 ± 1 %), PLX16CS1.0 (65 ± 3 %), PLX16CS1.25 (67 ± 3 %), and the solution (97 ± 8 %). In conclusion, using the hydrogel-based hybrid membrane in the OphthalMimic device represents a significant advancement in the field of ophthalmic drug evaluation, providing a valuable platform for dissolution/release tests. Such a platform aligns with the ethical mandate to reduce animal testing and promises to accelerate the development of safer and more effective ophthalmic drugs.


Subject(s)
Hydrogels , Humans , Hydrogels/chemistry , Ophthalmic Solutions/chemistry , Printing, Three-Dimensional , Cornea/drug effects , Cornea/metabolism , Administration, Ophthalmic , Membranes, Artificial
20.
Braz Oral Res ; 38: e063, 2024.
Article in English | MEDLINE | ID: mdl-39016369

ABSTRACT

Computer-aided manufacturing (CAM) technology allows the use of different manufacturing techniques. This in vitro study aimed to evaluate the marginal fit of temporary restorations manufactured using conventional chairside methods, milling, and three-dimensional printing. Fifteen 3-element temporary restorations specimens were produced and categorized into three groups: non-digital, obtained using the conventional chairside method (GC); milled (GM); and three-dimensionally printed (GP). Marginal fit was assessed using scanning electron microscopy (SEM) performed under two conditions: one with only the central screw tightened, and the other with all three screws tightened. Horizontal misfit values were categorized as over-, equal-, and under-extended and qualitatively analyzed. Statistical analysis was performed using the Tukey-Kramer test (α=0.05). In the vertical assessment, three-dimensionally printed restorations demonstrated greater misfit than restorations obtained by milling and the conventional chairside method (P<0.05). In the horizontal assessment, the misfit in the GP group was significantly higher than that in the GM and GC groups. Restorations obtained using the conventional chairside method and milled provisional restorations showed more favorable results than three-dimensionally printed restorations.


Subject(s)
Computer-Aided Design , Dental Marginal Adaptation , Dental Prosthesis Design , Dental Restoration, Temporary , Materials Testing , Microscopy, Electron, Scanning , Printing, Three-Dimensional , Surface Properties , Dental Restoration, Temporary/methods , Dental Prosthesis Design/methods , Reproducibility of Results , Reference Values , Statistics, Nonparametric , Humans
SELECTION OF CITATIONS
SEARCH DETAIL