Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 408
1.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38832903

Profilin binds microtubules in vitro. However, a new study by Vitriol and colleagues (https://doi.org/10.1083/jcb.202309097) now suggests that effects of profilin on microtubule dynamics in cells are indirect and result from its impact on actin dynamics rather than its direct binding to microtubules.


Actins , Microtubules , Profilins , Actins/metabolism , Microtubules/metabolism , Profilins/metabolism , Profilins/genetics , Protein Binding
2.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38722279

In addition to its well-established role in actin assembly, profilin 1 (PFN1) has been shown to bind to tubulin and alter microtubule growth. However, whether PFN1's predominant control over microtubules in cells occurs through direct regulation of tubulin or indirectly through the polymerization of actin has yet to be determined. Here, we manipulated PFN1 expression, actin filament assembly, and actomyosin contractility and showed that reducing any of these parameters for extended periods of time caused an adaptive response in the microtubule cytoskeleton, with the effect being significantly more pronounced in neuronal processes. All the observed changes to microtubules were reversible if actomyosin was restored, arguing that PFN1's regulation of microtubules occurs principally through actin. Moreover, the cytoskeletal modifications resulting from PFN1 depletion in neuronal processes affected microtubule-based transport and mimicked phenotypes that are linked to neurodegenerative disease. This demonstrates how defects in actin can cause compensatory responses in other cytoskeleton components, which in turn significantly alter cellular function.


Actins , Microtubules , Profilins , Animals , Humans , Mice , Actin Cytoskeleton/metabolism , Actins/metabolism , Actins/genetics , Actomyosin/metabolism , Microtubules/metabolism , Neurons/metabolism , Profilins/metabolism , Profilins/genetics , Tubulin/metabolism , Tubulin/genetics
3.
Int J Biol Macromol ; 266(Pt 2): 131247, 2024 May.
Article En | MEDLINE | ID: mdl-38565371

Essential to plant adaptation, cell wall (CW) integrity is maintained by CW-biosynthesis genes. Cytoskeletal actin-(de)polymerizing, phospholipid-binding profilin (PRF) proteins play important roles in maintaining cellular homeostasis across kingdoms. However, evolutionary selection of PRF genes and their systematic characterization in family Brassicaceae, especially in Brassica juncea remain unexplored. Here, a comprehensive analysis of genome-wide identification of BjPRFs, their phylogenetic association, genomic localization, gene structure, and transcriptional profiling were performed in an evolutionary framework. Identification of 23 BjPRFs in B. juncea indicated an evolutionary conservation within Brassicaceae. The BjPRFs evolved through paralogous and orthologous gene formation in Brassica genomes. Evolutionary divergence of BjPRFs indicated purifying selection, with nonsynonymous (dN)/synonymous (dS) value of 0.090 for orthologous gene-pairs. Hybrid homology-modeling identified evolutionary distinct and conserved domains in BjPRFs which suggested that these proteins evolved following the divergence of monocot and eudicot plants. RNA-seq profiles of BjPRFs revealed their functional evolution in spatiotemporal manner during plant-development and stress-conditions in diploid/amphidiploid Brassica species. Real-Time PCR experiments in seedling, vegetative, floral and silique tissues of B. juncea suggested their essential roles in systematic plant development. These observations underscore the expansion of BjPRFs in B. juncea, and offer valuable evolutionary insights for exploring cellular mechanisms, and stress resilience.


Evolution, Molecular , Gene Expression Regulation, Plant , Mustard Plant , Phylogeny , Plant Proteins , Profilins , Stress, Physiological , Mustard Plant/genetics , Stress, Physiological/genetics , Profilins/genetics , Profilins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Genome, Plant , Gene Expression Profiling
4.
Rev Alerg Mex ; 71(1): 78, 2024 Feb 01.
Article Es | MEDLINE | ID: mdl-38683095

OBJECTIVE: Analyze phylogenetic relationships and molecular mimicry of Cit s 2 and other plant profilins. METHODS: Online bioinformatics tools including Basic Local Alignment Search Tool (BLASTP), PRALINE and MEGA were used for multiple alignments and phylogenetic analysis. A 3D-homology model of Cit s 2 was predicted. Models were calculated with MODELLER. The best model was selected with the model scoring option of MAESTRO. Conserved regions between Cit s 2 and other profilins were located on the 3D model and antigenic regions were predicted by ElliPro server (3-5). RESULTS: Cit s 2 amino acid sequence (Uniprot code:P84177) was compared with other 30 profilins from different allergenic sources. The identity between Cit s 2 and other profilins ranged between 82 and 99%. The highest identity was observed with Cucumis melo (99%) followed by Prunus persica (98%) and Malus domestica (92%). High conserved antigenic regions were observed on the 3D predicted model. Seven lineal and six discontinuous epitopes were found in Cit s 2. CONCLUSION: High conserved antigenic regions were observed on the 3D predicted model of Cit s 2, which might involve potential cross-reactivity between Cit s 2 and other profilins. Future studies are needed to further analyze these results.


OBJETIVO: Analizar las relaciones filogenéticas y el mimetismo molecular de Cit s 2 y otras profilinas vegetales. MÉTODOS: Se utilizaron herramientas bioinformáticas en línea, incluida la de búsqueda de alineación local básica (BLASTP), PRALINE y MEGA, para alineamientos múltiples y análisis filogenético. Se predijo un modelo de homología 3D de Cit s 2. Los modelos se calcularon con MODELLER. El mejor modelo fue seleccionado con la opción de puntuación de modelo de Maestro. Las regiones conservadas entre Cit s 2 y otras profilinas se ubicaron en el modelo 3D y las regiones antigénicas fueron predichas por el servidor ElliPro (3-5). RESULTADOS: La secuencia de aminoácidos de Cit s 2 (código Uniprot: P84177), se comparó con otras 30 profilinas de diferentes fuentes alergénicas. La mayor identidad se observó con Cucumis melo (99%) seguida de Prunus persica (98%) y Malus domestica (92%). Se observaron regiones antigénicas altamente conservadas en el modelo predicho en 3D. Se encontraron siete epítopes lineales, y seis epítopes discontinuos en Cit s 2. CONCLUSIÓN: Se observaron regiones antigénicas altamente conservadas en el modelo 3D predicho de Cit s 2, lo que podría implicar una posible reactividad cruzada entre Cit s 2 y otras profilinas. Se necesitan estudios futuros para analizar más a fondo estos resultados.


Antigens, Plant , Profilins , Allergens/immunology , Amino Acid Sequence , Computer Simulation , Conserved Sequence , Models, Molecular , Phylogeny , Plant Proteins/immunology , Profilins/immunology , Profilins/genetics , Profilins/chemistry , Cucumis/chemistry , Cucumis/metabolism , Prunus persica/chemistry , Prunus persica/metabolism , Malus/chemistry , Malus/metabolism , Antigens, Plant/chemistry
5.
J Cell Mol Med ; 28(7): e18266, 2024 Apr.
Article En | MEDLINE | ID: mdl-38501838

Pancreatic ductal adenocarcinoma (PDAC), a very aggressive tumour, is currently the third leading cause of cancer-related deaths. Unfortunately, many patients face the issue of inoperability at the diagnostic phase leading to a quite dismal prognosis. The onset of metastatic processes has a crucial role in the elevated mortality rates linked to PDAC. Individuals with metastatic advances receive only palliative therapy and have a grim prognosis. It is essential to carefully analyse the intricacies of the metastatic process to enhance the prognosis for individuals with PDAC. Malignancy development is greatly impacted by the process of macrophage efferocytosis. Our current knowledge about the complete range of macrophage efferocytosis activities in PDAC and their intricate interactions with tumour cells is still restricted. This work aims to resolve communication gaps and pinpoint the essential transcription factor that is vital in the immunological response of macrophage populations. We analysed eight PDAC tissue samples sourced from the gene expression omnibus. We utilized several software packages such as Seurat, DoubletFinder, Harmony, Pi, GSVA, CellChat and Monocle from R software together with pySCENIC from Python, to analyse the single-cell RNA sequencing (scRNA-seq) data collected from the PDAC samples. This study involved the analysis of a comprehensive sample of 22,124 cells, which were classified into distinct cell types. These cell types encompassed endothelial and epithelial cells, PDAC cells, as well as various immune cells, including CD4+ T cells, CD8+ T cells, NK cells, B cells, plasma cells, mast cells, monocytes, DC cells and different subtypes of macrophages, namely C0 macrophage TGM2+, C1 macrophage PFN1+, C2 macrophage GAS6+ and C3 macrophage APOC3+. The differentiation between tumour cells and epithelial cells was achieved by the implementation of CopyKat analysis, resulting in the detection and categorization of 1941 PDAC cells. The amplification/deletion patterns observed in PDAC cells on many chromosomes differ significantly from those observed in epithelial cells. The study of Pseudotime Trajectories demonstrated that the C0 macrophage subtype expressing TGM2+ had the lowest level of differentiation. Additionally, the examination of gene set scores related to efferocytosis suggested that this subtype displayed higher activity during the efferocytosis process compared to other subtypes. The most active transcription factors for each macrophage subtype were identified as BACH1, NFE2, TEAD4 and ARID3A. In conclusion, the examination of human PDAC tissue samples using immunofluorescence analysis demonstrated the co-localization of CD68 and CD11b within regions exhibiting the presence of keratin (KRT) and alpha-smooth muscle actin (α-SMA). This observation implies a spatial association between macrophages, fibroblasts, and epithelial cells. There is variation in the expression of efferocytosis-associated genes between C0 macrophage TGM2+ and other macrophage cell types. This observation implies that the diversity of macrophage cells might potentially influence the metastatic advancement of PDAC. Moreover, the central transcription factor of different macrophage subtypes offers a promising opportunity for targeted immunotherapy in the treatment of PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Efferocytosis , Single-Cell Gene Expression Analysis , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Macrophages/metabolism , Transcription Factors/metabolism , Tumor Microenvironment , DNA-Binding Proteins/genetics , TEA Domain Transcription Factors , Profilins/genetics
6.
Biochem Cell Biol ; 102(2): 206-212, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38048555

Profilin is a small protein that controls actin polymerization in yeast and higher eukaryotes. In addition, profilin has emerged as a multifunctional protein that contributes to other processes in multicellular organisms. This study focuses on profilin (Pfy1) in the budding yeast Saccharomyces cerevisiae. The primary sequences of yeast Pfy1 and its metazoan orthologs diverge vastly. However, structural elements of profilin are conserved among different species. To date, the full spectrum of Pfy1 functions has yet to be defined. The current work explores the possible involvement of yeast profilin in nuclear protein import. To this end, a panel of well-characterized yeast profilin mutants was evaluated. The experiments demonstrate that yeast profilin (i) regulates nuclear protein import, (ii) determines the subcellular localization of essential nuclear transport factors, and (iii) controls the relative abundance of actin and tubulin. Together, these results define yeast profilin as a moonlighting protein that engages in multiple essential cellular activities.


Actins , Profilins , Animals , Actins/genetics , Actins/metabolism , Profilins/genetics , Profilins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tubulin/genetics , Tubulin/metabolism , Active Transport, Cell Nucleus , Nuclear Proteins/metabolism
7.
J Cell Biol ; 222(12)2023 12 04.
Article En | MEDLINE | ID: mdl-37948068

Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.


Actin Cytoskeleton , Actins , Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Profilins/genetics , Profilins/metabolism , Mammals , Animals
8.
Anal Chem ; 95(41): 15141-15145, 2023 10 17.
Article En | MEDLINE | ID: mdl-37787459

Profilin 1 (PFN1) is a cytoskeleton protein that modulates actin dynamics through binding to monomeric actin and polyproline-containing proteins. Mutations in PFN1 have been linked to the pathogenesis of familial amyotrophic lateral sclerosis (ALS). Here, we employed an unbiased proximity labeling strategy in combination with proteomic analysis for proteome-wide profiling of proteins that differentially interact with mutant and wild-type (WT) PFN1 proteins in human cells. We uncovered 11 mRNA splicing proteins that are preferentially enriched in the proximity proteomes of the two ALS-linked PFN1 variants, C71G and M114T, over that of wild-type PFN1. We validated the preferential interactions of the ALS-linked PFN1 variants with two mRNA splicing factors, hnRNPC and U2AF2, by immunoprecipitation, followed with immunoblotting. We also found that the two ALS-linked PFN1 variants promoted the exonization of Alu elements in the mRNAs of MTO1, TCFL5, WRN and POLE genes in human cells. Together, we showed that the two ALS-linked PFN1 variants interacted preferentially with mRNA splicing proteins, which elicited aberrant exonization of the Alu elements in mRNAs. Thus, our work provided pivotal insights into the perturbations of ALS-linked PFN1 variants in RNA biology and their potential contributions to ALS pathology.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Profilins/genetics , Profilins/metabolism , Actins/metabolism , Proteomics , Mutation , Basic Helix-Loop-Helix Transcription Factors/genetics
9.
Eur J Cell Biol ; 102(4): 151363, 2023 Dec.
Article En | MEDLINE | ID: mdl-37778219

In vitro reconstitution assays using purified actin have greatly improved our understanding of cytoskeletal dynamics and their regulation by actin-binding proteins. However, early purification methods consisted of harsh conditions to obtain pure actin and often did not include correct maturation and obligate modification of the isolated actin monomers. Novel insights into the folding requirements and N-terminal processing of actin as well as a better understanding of the interaction of actin with monomer sequestering proteins such as DNaseI, profilin and gelsolin, led to the development of more gentle approaches to obtain pure recombinant actin isoforms with known obligate modifications. This review summarizes the approaches that can be employed to isolate natively folded endogenous and recombinant actin from tissues and cells. We further emphasize the use and limitations of each method and describe how these methods can be implemented to study actin PTMs, disease-related actin mutations and novel actin-like proteins.


Actins , Microfilament Proteins , Animals , Actins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Profilins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Mammals/metabolism , Gelsolin/genetics , Gelsolin/metabolism
10.
J Clin Invest ; 133(24)2023 Dec 15.
Article En | MEDLINE | ID: mdl-37847555

The progression of proteinuric kidney diseases is associated with podocyte loss, but the mechanisms underlying this process remain unclear. Podocytes reenter the cell cycle to repair double-stranded DNA breaks. However, unsuccessful repair can result in podocytes crossing the G1/S checkpoint and undergoing abortive cytokinesis. In this study, we identified Pfn1 as indispensable in maintaining glomerular integrity - its tissue-specific loss in mouse podocytes resulted in severe proteinuria and kidney failure. Our results suggest that this phenotype is due to podocyte mitotic catastrophe (MC), characterized histologically and ultrastructurally by abundant multinucleated cells, irregular nuclei, and mitotic spindles. Podocyte cell cycle reentry was identified using FUCCI2aR mice, and we observed altered expression of cell-cycle associated proteins, such as p21, p53, cyclin B1, and cyclin D1. Podocyte-specific translating ribosome affinity purification and RNA-Seq revealed the downregulation of ribosomal RNA-processing 8 (Rrp8). Overexpression of Rrp8 in Pfn1-KO podocytes partially rescued the phenotype in vitro. Clinical and ultrastructural tomographic analysis of patients with diverse proteinuric kidney diseases further validated the presence of MC podocytes and reduction in podocyte PFN1 expression within kidney tissues. These results suggest that profilin1 is essential in regulating the podocyte cell cycle and its disruption leads to MC and subsequent podocyte loss.


Kidney Diseases , Podocytes , Profilins , Animals , Humans , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Death/genetics , Kidney Diseases/metabolism , Kidney Glomerulus/pathology , Podocytes/pathology , Profilins/genetics , Proteinuria/pathology
11.
FASEB J ; 37(10): e23170, 2023 10.
Article En | MEDLINE | ID: mdl-37676718

Small cell lung cancer (SCLC) is one of the most malignant tumors that has an extremely poor prognosis. RNA-binding protein (RBP) and long noncoding RNA (lncRNA) have been shown to be key regulators during tumorigenesis as well as lung tumor progression. However, the role of RBP ELAVL4 and lncRNA LYPLAL1-DT in SCLC remains unclear. In this study, we verified that lncRNA LYPLAL1-DT acts as an SCLC oncogenic lncRNA and was confirmed in vitro and in vivo. Mechanistically, LYPLAL1-DT negatively regulates the expression of miR-204-5p, leading to the upregulation of PFN2, thus, promoting SCLC cell proliferation, migration, and invasion. ELAVL4 has been shown to enhance the stability of LYPLAL1-DT and PFN2 mRNA. Our study reveals a regulatory pathway, where ELAVL4 stabilizes PFN2 and LYPLAL1-DT with the latter further increasing PFN2 expression by blocking the action of miR-204-5p. Upregulated PFN2 ultimately promotes tumorigenesis and invasion in SCLC. These findings provide novel prognostic indicators as well as promising new therapeutic targets for SCLC.


Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Small Cell Lung Carcinoma , Humans , RNA, Long Noncoding/genetics , Profilins/genetics , Small Cell Lung Carcinoma/genetics , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , ELAV-Like Protein 4
12.
Calcif Tissue Int ; 113(5): 552-557, 2023 11.
Article En | MEDLINE | ID: mdl-37728743

Paget's disease of bone (PDB) is a common, late-onset bone disorder, characterized by focal increases of bone turnover that can result in bone lesions. Heterozygous pathogenic variants in the Sequestosome 1 (SQSTM1) gene are found to be the main genetic cause of PDB. More recently, PFN1 and ZNF687 have been identified as causal genes in patients with a severe, early-onset, polyostotic form of PDB, and an increased likelihood to develop giant cell tumors. In our study, we screened the coding regions of PFN1 and ZNF687 in a Belgian PDB cohort (n = 188). In the PFN1 gene, no variants could be identified, supporting the observation that variants in this gene are extremely rare in PDB. However, we identified 3 non-synonymous coding variants in ZNF687. Interestingly, two of these rare variants (p.Pro937His and p.Arg939Cys) were clustering in the nuclear localization signal of the encoded ZNF687 protein, also harboring the p.Pro937Arg variant, a previously reported disease-causing variant. In conclusion, our findings support the involvement of genetic variation in ZNF687 in the pathogenesis of classical PDB, thereby expanding its mutational spectrum.


Osteitis Deformans , Humans , Osteitis Deformans/genetics , Osteitis Deformans/pathology , Nuclear Localization Signals/genetics , Sequestosome-1 Protein/genetics , Genetic Testing , Transcription Factors/genetics , Mutation , Profilins/genetics
13.
J Biol Chem ; 299(8): 105044, 2023 08.
Article En | MEDLINE | ID: mdl-37451478

Overexpression of actin-binding protein profilin-1 (Pfn1) correlates with advanced disease features and adverse clinical outcome of patients with clear cell renal carcinoma, the most prevalent form of renal cancer. We previously reported that Pfn1 is predominantly overexpressed in tumor-associated vascular endothelial cells in human clear cell renal carcinoma. In this study, we combined in vivo strategies involving endothelial cell-specific depletion and overexpression of Pfn1 to demonstrate a role of vascular endothelial Pfn1 in promoting tumorigenicity and enabling progressive growth and metastasis of renal carcinoma cells in a syngeneic orthotopic mouse model of kidney cancer. We established an important role of endothelial Pfn1 in tumor angiogenesis and further identified endothelial Pfn1-dependent regulation of several pro- (VEGF, SERPINE1, CCL2) and anti-angiogenic factors (platelet factor 4) in vivo. Endothelial Pfn1 overexpression increases tumor infiltration by macrophages and concomitantly diminishes tumor infiltration by T cells including CD8+ T cells in vivo, correlating with the pattern of endothelial Pfn1-dependent changes in tumor abundance of several prominent immunomodulatory cytokines. These data were also corroborated by multiplexed quantitative immunohistochemistry and immune deconvolution analyses of RNA-seq data of clinical samples. Guided by Upstream Regulator Analysis of tumor transcriptome data, we further established endothelial Pfn1-induced Hif1α elevation and suppression of STAT1 activation. In conclusion, this study demonstrates for the first time a direct causal relationship between vascular endothelial Pfn1 dysregulation, immunosuppressive tumor microenvironment, and disease progression with mechanistic insights in kidney cancer. Our study also provides a conceptual basis for targeting Pfn1 for therapeutic benefit in kidney cancer.


Carcinoma, Renal Cell , Kidney Neoplasms , Profilins , Tumor Microenvironment , Animals , Humans , Mice , Carcinoma, Renal Cell/genetics , Endothelial Cells/metabolism , Kidney Neoplasms/genetics , Profilins/genetics , Profilins/metabolism , Disease Progression
14.
Calcif Tissue Int ; 113(2): 207-215, 2023 08.
Article En | MEDLINE | ID: mdl-37401976

Recent studies have discovered an association between the PFN1 gene and Paget's disease. However, it is currently unknown whether the PFN1 gene is related to osteoporosis. This study was performed to investigate the association of Single-Nucleotide Polymorphisms (SNPs) in the PFN1 gene with Bone Mineral Density (BMD) as well as bone turnover markers and osteoporotic fractures in Chinese subjects. A total of 2836 unrelated Chinese subjects comprising 1247 healthy subjects and 1589 osteoporotic fractures patients (Fracture group) were enrolled in this study. Seven tagSNPs (rs117337116, rs238243, rs6559, rs238242, rs78224458, rs4790714, and rs13204) of the PFN1 gene were genotyped. The BMD of the lumbar spine 1-4 (L1-4), femoral neck, and total hip as well as bone turnover markers, such as ß-C-Terminal telopeptide of type 1 collagen (ß-CTX) and Procollagen type 1 N-terminal Propeptide (P1NP), were measured. The association between 7 tagSNPs and BMD and bone turnover markers was analyzed in 1247 healthy subjects only. After age matching, we selected 1589 osteoporotic fracture patients (Fracture group) and 756 nonfracture controls (Control group, selected from 1247 healthy subjects) for a case-control study, respectively. For the case-control study, we used logistic regression to investigate the relationship between 7 tagSNPs and osteoporotic fractures risk. In the All group, the PFN1 haplotype GAT was associated with the ß-CTX (P = 0.007). In the Female group, the PFN1 haplotype GAT was associated with the ß-CTX (P = 0.005). In the Male group, the rs13204, the rs78224458, and the PFN1 haplotype GAC were associated with the BMD of the L1-4 (all P = 0.012); the rs13204, the rs78224458, and the PFN1 haplotype GAC were associated with the BMD of the femoral neck (all P = 0.012); the rs13204 and rs78224458 were associated with the BMD of the total hip (both P = 0.015); and the PFN1 haplotype GAT was associated with the ß-CTX (P = 0.013). In the subsequent case-control study, the rs13204 and rs78224458 in the male group were associated with the risk of L1-4 fracture (P = 0.016 and 0.010, respectively) and total hip fracture (P = 0.013 and 0.016, respectively). Our study reveals that PFN1 gene polymorphisms are associated with BMD in Chinese males and ß-CTX in Chinese people and confirmed the relationship between PFN1 gene polymorphisms and Chinese male osteoporotic fractures in a case-control study.


Bone Density , Bone Remodeling , Osteoporotic Fractures , Female , Humans , Male , Biomarkers , Bone Density/genetics , Bone Remodeling/genetics , Case-Control Studies , East Asian People , Osteoporotic Fractures/genetics , Polymorphism, Single Nucleotide/genetics , Profilins/genetics
15.
Am J Pathol ; 193(8): 1059-1071, 2023 08.
Article En | MEDLINE | ID: mdl-37164274

Unexplained recurrent spontaneous abortion (URSA) has been associated with the dysfunction of trophoblasts and decidual macrophages. Current evidence suggests that profilin1 (PFN1) plays an important role in many biological processes. However, little is known about whether PFN1 is related to URSA. Herein, the location of PFN1 was detected by immunohistochemistry, and the level of PFN1 was detected by quantitative real-time PCR, Western blot analysis, and immunohistochemistry. The proliferation of trophoblasts was detected by CCK8 and 5-ethynyl-2'-deoxyuridine assays, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays were used to detect apoptosis of trophoblasts. The migration and invasion ability of trophoblasts was assessed by using the wound-healing test and transwell test. Polarization of macrophages was detected in macrophages cultured in trophoblast conditioned medium. PFN1 expression was observed in cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts and was decreased in the villous tissue of patients with URSA. The migration and invasion ability and cell viability of trophoblastic cell lines that underwent PFN1 knockdown significantly decreased, and apoptosis increased. Opposite findings were observed after the overexpression of PFN1 in trophoblastic cells. In addition, PFN1 could regulate trophoblast function through phosphatidylinositol 3-kinase/AKT signal transduction rather than mitogen-activated protein kinase signaling pathways. Finally, knockdown of PFN1 in trophoblasts promoted tumor necrosis factor-α secretion to induce macrophage polarization to M1 phenotype, mediated by the NF-κB signaling pathway. These findings indicate that PFN1 has a broad therapeutic potential for patients with URSA.


Abortion, Spontaneous , Trophoblasts , Pregnancy , Humans , Female , Trophoblasts/metabolism , Signal Transduction/physiology , NF-kappa B/metabolism , MAP Kinase Signaling System , Abortion, Spontaneous/metabolism , Cell Differentiation , Cell Movement , Cell Proliferation , Profilins/genetics , Profilins/metabolism
16.
PLoS Biol ; 21(4): e3002066, 2023 04.
Article En | MEDLINE | ID: mdl-37053271

With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.


Antimalarials , Malaria, Falciparum , Humans , Plasmodium falciparum/metabolism , Actins/genetics , Actins/metabolism , Profilins/genetics , Profilins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Malaria, Falciparum/genetics , Erythrocytes/parasitology , Antimalarials/pharmacology
17.
Cell Death Dis ; 14(4): 283, 2023 04 21.
Article En | MEDLINE | ID: mdl-37085490

Glioblastoma (GBM), the most common aggressive brain tumor, is characterized by rapid cellular infiltration and is routinely treated with ionizing radiation (IR), but therapeutic resistance inevitably recurs. The actin cytoskeleton of glioblastoma cells provides their high invasiveness, but it remains unclear whether Rho GTPases modulate DNA damage repair and therapeutic sensitivity. Here, we irradiated glioblastoma cells with different p53 status and explored the effects of Rho pathway inhibition to elucidate how actin cytoskeleton disruption affects the DNA damage response and repair pathways. p53-wild-type and p53-mutant cells were subjected to Rho GTPase pathway modulation by treatment with C3 toxin; knockdown of mDia-1, PFN1 and MYPT1; or treatment with F-actin polymerization inhibitors. Rho inhibition increased the sensitivity of glioma cells to IR by increasing the number of DNA double-strand breaks and delaying DNA repair by nonhomologous end-joining in p53-wild-type cells. p53 knockdown reversed this phenotype by reducing p21 expression and Rho signaling activity, whereas reactivation of p53 in p53-mutant cells by treatment with PRIMA-1 reversed these effects. The interdependence between p53 and Rho is based on nuclear p53 translocation facilitated by G-actin and enhanced by IR. Isolated IR-resistant p53-wild-type cells showed an altered morphology and increased stress fiber formation: inhibition of Rho or actin polymerization decreased cell viability in a p53-dependent manner and reversed the resistance phenotype. p53 silencing reversed the Rho inhibition-induced sensitization of IR-resistant cells. Rho inhibition also impaired the repair of IR-damaged DNA in 3D spheroid models. Rho GTPase activity and actin cytoskeleton dynamics are sensitive targets for the reversal of acquired resistance in GBM tumors with wild-type p53.


DNA Repair , Glioblastoma , rho GTP-Binding Proteins , Humans , DNA , DNA Repair/genetics , DNA Repair/radiation effects , Down-Regulation , Glioblastoma/genetics , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Neoplasm Recurrence, Local , Profilins/genetics , Radiation, Ionizing , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/radiation effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
18.
J Diabetes Complications ; 37(5): 108415, 2023 05.
Article En | MEDLINE | ID: mdl-36989867

AIMS: To construct a simple and feasible rat model to mimic diabetic vasculopathy by chronic injection of advanced glycation end products (AGEs) and further determine the role of profilin-1 in vasculopathy in AGE-injection rats. METHODS: Sprague-Dawley rats were injected with AGEs-BSA (25 mg/kg/day) for 0, 20, 30, 40, and 60 days by caudal vein. Then, the morphological changes in the aorta, heart, and kidney and the expression of profilin-1 were assessed. In cultured endothelial cells, shRNA profilin-1 was used to clarify the role of profilin-1 in AGEs-induced vascular endothelial lesions and inflammatory reactions. RESULTS: The aorta, heart, and kidney of the AGE-injection rats had obvious morphological changes. Also, the indicators of vascular remodeling in the aorta significantly increased, accompanied by the increased expression of profilin-1 in the aorta, heart, and kidney and polysaccharide content on the kidney basement membrane. In addition, the protein level of profilin-1 was markedly upregulated in the aorta of AGEs-injected rats and endothelial cells incubated with AGEs. shRNA profilin-1 markedly attenuated the upregulated expression of profilin-1, receptor for AGEs (RAGE), and NF-κB in endothelial cells incubated with AGEs, as well as reduced the high levels of ICAM-1, IL-8, TNF-α, ROS, and apoptosis induced by AGEs. CONCLUSIONS: Exogenous AGEs can mimic diabetic vasculopathy in vivo to some extent and increase profilin-1 expression in the target organs of diabetic complications. Blockade of profilin-1 attenuates vascular lesions and inflammatory reactions, suggesting its critical role in the metabolic memory mediated by AGEs.


Diabetic Angiopathies , Glycation End Products, Advanced , Rats , Animals , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Glycation End Products, Advanced/metabolism , Endothelial Cells/metabolism , Rats, Sprague-Dawley , Profilins/genetics , Profilins/metabolism , NF-kappa B/metabolism , Diabetic Angiopathies/genetics , Diabetic Angiopathies/metabolism , RNA, Small Interfering/metabolism
19.
Sci Rep ; 13(1): 2096, 2023 02 06.
Article En | MEDLINE | ID: mdl-36747013

Amyotrophic lateral sclerosis (ALS) is an inexorably progressive and degenerative disorder of motor neurons with no currently-known cure. Studies to determine the mechanism of neurotoxicity and the impact of ALS-linked mutations (SOD1, FUS, TARDP, C9ORF72, PFN1, TUBA4A and others) have greatly expanded our knowledge of ALS disease mechanisms and have helped to identify potential targets for ALS therapy. Cellular pathologies (e.g., aggregation of mutant forms of SOD1, TDP43, FUS, Ubiqulin2, PFN1, and C9ORF72), mitochondrial dysfunction, neuroinflammation, and oxidative damage are major pathways implicated in ALS. Nevertheless, the selective vulnerability of motor neurons remains unexplained. The importance of tubulins for long-axon infrastructure, and the special morphology and function of motor neurons, underscore the central role of the cytoskeleton. The recent linkage of mutations to the tubulin α chain, TUBA4A, to familial and sporadic cases of ALS provides a new investigative opportunity to shed light on both mechanisms of ALS and the vulnerability of motor neurons. In the current study we investigate TUBA4A, a structural microtubule protein with mutations causal to familial ALS, using molecular-dynamic (MD) modeling of protein structure to predict the effects of each mutation and its overall impact on GTP binding, chain stability, tubulin assembly, and aggregation propensity. These studies predict that each of the reported mutations will cause notable structural changes to the TUBA4A (α chain) tertiary protein structure, adversely affecting its physical properties and functions. Molecular docking and MD simulations indicate certain α chain mutations (e.g. K430N, R215C, and W407X) may cause structural deviations that impair GTP binding, and plausibly prevent or destabilize tubulin polymerization. Furthermore, several mutations (including R320C and K430N) confer a significant increase in predicted aggregation propensity of TUBA4A mutants relative to wild-type. Taken together, these in silico modeling studies predict structural perturbations and disruption of GTP binding, culminating in failure to form a stable tubulin heterocomplex, which may furnish an important pathogenic mechanism to trigger motor neuron degeneration in ALS.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/metabolism , Tubulin/genetics , Superoxide Dismutase-1/genetics , Molecular Docking Simulation , C9orf72 Protein/genetics , Mutation , Microtubules/metabolism , Guanosine Triphosphate , Profilins/genetics
20.
Cell Tissue Res ; 392(3): 779-791, 2023 Jun.
Article En | MEDLINE | ID: mdl-36788143

Previous reports from this laboratory have demonstrated the involvement of histone deacetylase 6 (HDAC6) in sperm motility. As the presence of HDAC6 has also been reported in the earlier stage germ cells, studies were undertaken to explore its role during these stages of spermatogenesis. HDAC6 was overexpressed in GC-1spg cells, which represent the stage between type B spermatogonia and primary spermatocyte, and its effect on germ cell transcriptome was investigated by microarray. Among the many transcripts that were differentially regulated, Profilin 2, reported previously as a neuronal specific isoform, was observed as one of the genes highly upregulated at the transcript level, which was further confirmed by real-time PCR, and the protein confirmed by indirect immunofluorescence (IIF). Profilin 2 colocalized with HDAC6, as seen both in GC-1 cells and sperm. On the sperm, the presence of Profilin 2 was detected throughout the flagella with its colocalization with HDAC6 seen conspicuously in the mid-piece region of the flagella. Co-immunoprecipitation studies confirmed Profilin 2 interaction with HDAC6. Docking studies using Z dock suggested the interaction of 8 residues of HDAC6 with 6 residues of Profilin 2. The novel observation of Profilin 2 in spermatogonial cells, its significant upregulation on HDAC6 overexpression and its interaction with HDAC6 suggests that HDAC6 in collaboration with Profilin 2 may play a role in regulating the movement of germ cells from one stage/compartment to the next.


Profilins , Testis , Male , Mice , Animals , Testis/metabolism , Histone Deacetylase 6/metabolism , Profilins/genetics , Profilins/metabolism , Up-Regulation , Sperm Motility , Semen/metabolism
...