Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.590
Filter
1.
EMBO J ; 43(18): 4092-4109, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39090438

ABSTRACT

The phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution. We further demonstrate that impairing C4H function via CYP73 gene inactivation or inhibitor treatment in three bryophyte species-the moss Physcomitrium patens, the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis-consistently resulted in a shortage of phenylpropanoids and abnormal plant development. The latter could be rescued in the moss by exogenous supply of p-coumaric acid, the product of C4H. Our findings establish the emergence of the CYP73 gene family as a foundational event in the development of the plant phenylpropanoid pathway, and underscore the deep-rooted function of the C4H enzyme in embryophyte biology.


Subject(s)
Plant Proteins , Plant Proteins/metabolism , Plant Proteins/genetics , Marchantia/genetics , Marchantia/metabolism , Coumaric Acids/metabolism , Trans-Cinnamate 4-Monooxygenase/metabolism , Trans-Cinnamate 4-Monooxygenase/genetics , Anthocerotophyta/genetics , Anthocerotophyta/metabolism , Bryopsida/genetics , Bryopsida/metabolism , Bryopsida/growth & development , Bryopsida/enzymology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Phylogeny , Embryophyta/genetics , Embryophyta/metabolism , Propionates/metabolism , Propanols/metabolism , Evolution, Molecular , Gene Expression Regulation, Plant
2.
Molecules ; 29(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39202937

ABSTRACT

This study explored the enantiocomplementary bioreduction of substituted 1-(arylsulfanyl)propan-2-ones in batch mode using four wild-type yeast strains and two different recombinant alcohol dehydrogenases from Lactobacillus kefir and Rhodococcus aetherivorans. The selected yeast strains and recombinant alcohol dehydrogenases as whole-cell biocatalysts resulted in the corresponding 1-(arylsulfanyl)propan-2-ols with moderate to excellent conversions (60-99%) and high selectivities (ee > 95%). The best bioreductions-in terms of conversion (>90%) and enantiomeric excess (>99% ee)-at preparative scale resulted in the expected chiral alcohols with similar conversion and selectivity to the screening reactions.


Subject(s)
Alcohol Dehydrogenase , Oxidation-Reduction , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Stereoisomerism , Rhodococcus/enzymology , Rhodococcus/metabolism , Lactobacillus/metabolism , Lactobacillus/enzymology , Biocatalysis , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Propanols/metabolism , Propanols/chemistry
3.
Biomacromolecules ; 25(9): 5995-6006, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39133657

ABSTRACT

Sacran is a cyanobacterial supergiant polysaccharide with carboxylate and sulfate groups that exhibits antiallergic and antiinflammatory properties. However, its high anionic functions restrict cell compatibility. Quaternary ammonium groups were substituted to form sacran ampholytes, and the cell compatibility of the cationized sacran hydrogels was evaluated. The cationization process involved the reaction of N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride with the primary amine or hydroxyl groups of sacran. The degree of cationization ranged from 32 to 87% for sugar residues. Hydrogels of sacran ampholytes were prepared by annealing their dried sheets by thermal cross-linking; these hydrogels exhibited anisotropic expansion properties. The water contact angle on the hydrogels decreased from 26.5 to 15.3° with an increase in the degree of cationization, thereby enhancing hydrophilicity. The IC50 values of sacran ampholytes decreased with an increased degree of cationization, resulting in a reduction in cytotoxicity toward the L-929 mouse fibroblast cell line. This reduction was associated with an increase in the cell proliferation density after 3 days of incubation. Scanning electron microscopy images showed fibroblast intercellular connections. Therefore, the sacran ampholyte hydrogel exhibited increased hydrophilicity and cell compatibility, which is beneficial for various biomedical applications.


Subject(s)
Cyanobacteria , Hydrogels , Polysaccharides , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Animals , Polysaccharides/chemistry , Polysaccharides/pharmacology , Cyanobacteria/chemistry , Fibroblasts/drug effects , Cell Line , Cell Proliferation/drug effects , Cations/chemistry , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Sulfates/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Propanols
4.
J Chromatogr A ; 1733: 465285, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39173502

ABSTRACT

Nucleic acid duplexes are typically analyzed in non-denaturing conditions. Melting temperature (Tm) is the property used to measure duplex stability; however, it is not known how the chromatographic conditions and mobile phase composition affect the duplex stability. We employed differential scanning calorimetry (DSC) method to measure the melting temperature of chemically modified silencing RNA duplex (21 base pairs, 0.15 mM duplex concentration) in mobile phases commonly used in reversed-phase, ion-pair reversed-phase, size exclusion and hydrophilic interaction chromatography. We investigated mobile phases consisting of ammonium acetate, alkylammonium ion-pairing reagents, alkali-ion chlorides, magnesium chloride, and additives including methanol, ethanol, acetonitrile and hexafluoroisopropanol. Increasing buffer concentration enhanced the duplex stability (Tm was 67.1 - 78.2 °C for 10-100 mM [Na+] concentration). The melting temperature decreases with the increase in cation size (70.2 °C in 10 mM [Li+], 68.1 °C in 10 mM [NH4+], 65.6 °C in 10 mM [Cs+], and 56.6 °C in 10 mM [triethylammonium+] solutions). Inclusion of 20 % of organic solvent in buffer reduced the melting temperature by 1-3 °C, and denaturation power increases in the order MeOH

Subject(s)
Calorimetry, Differential Scanning , RNA, Small Interfering , RNA, Small Interfering/chemistry , RNA Stability , Chromatography, Reverse-Phase/methods , Acetonitriles/chemistry , Acetates/chemistry , Methanol/chemistry , Hydrophobic and Hydrophilic Interactions , Solvents/chemistry , Propanols/chemistry , Chromatography, Liquid/methods , Ethanol/chemistry , Transition Temperature , Chromatography, Gel/methods , Magnesium Chloride/chemistry , Hydrocarbons, Fluorinated
5.
Food Chem ; 460(Pt 3): 140689, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39116767

ABSTRACT

Residues of pesticides in milk may pose a threat to human health. This study aimed to develop a liquid-phase microextraction (LPME) method using hexafluoroisopropanol (HFIP)-based supramolecular solvent (SUPRAS) for the simultaneous extraction and purification of four pesticides (boscalid, novaluron, cypermethrin and bifenthrin) in milk. Pesticides were extracted using SUPRAS prepared with nonanol and HFIP, and the extraction efficiency was analyzed. Results showed satisfactory recoveries ranging from 80.8%-111.0%, with relative standard deviations (RSDs) of <6.4%. Additionally, satisfactory linearities were observed, with correlation coefficients >0.9952. The limits of quantification (LOQs) were in the range of 1.8 µg·L-1-14.0 µg·L-1. The established method demonstrated high extraction efficiency with a short operation time (15 mins) and low solvent consumption (2.7 mL). The HFIP-based SUPRAS LPME method offers a convenient and efficient approach for the extraction of pesticides from milk, presenting a promising alternative to conventional techniques.


Subject(s)
Food Contamination , Liquid Phase Microextraction , Milk , Solvents , Liquid Phase Microextraction/methods , Milk/chemistry , Animals , Solvents/chemistry , Food Contamination/analysis , Pesticide Residues/isolation & purification , Pesticide Residues/chemistry , Pesticide Residues/analysis , Hexanols/chemistry , Cattle , Pesticides/isolation & purification , Pesticides/chemistry , Pesticides/analysis , Hydrocarbons, Fluorinated , Propanols
6.
Regul Toxicol Pharmacol ; 152: 105684, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39151719

ABSTRACT

Allyl alcohol (C3H6O; prop-2-en-1-ol; CAS RN 107-18-6; EINECS 203-470-7) is used as an intermediate/monomer in polymerization reactions producing chemicals/optical resins or as a coupling/cross-linking agent for unsaturated polyester and alkyd resins. Human exposure to allyl alcohol (AA) is restricted to workplace manufacturing facilities where it is used in enclosed systems, which limits release and impact on environmental receptors. To address regulatory questions about possible developmental toxicity, two OECD Guideline studies were conducted. A rat developmental toxicity study found fetal and maternal toxicity, in the form of resorptions and decreased body weight and food consumption, but no teratogenic effects. A rabbit developmental toxicity study was subsequently conducted upon request by the European Chemical Agency in 2011 under the REACH program and likewise reported maternal toxicity in the form of reductions in body weight gain and food consumption, but neither fetal toxicity or teratogenic effects. The results of both studies are presented and compared in this paper. Based on our review of the collective results of these studies, AA is considered non-teratogenic, yet does elicit increased post-implantation loss and reduced fetal body weight, possibly resulting from concomitant maternal toxicity. Based on the results of these studies, a maternal and developmental toxicity No Observed Adverse Effect Level of 10 mg/kg/day was apparent for both species.


Subject(s)
No-Observed-Adverse-Effect Level , Propanols , Animals , Female , Rabbits , Rats , Pregnancy , Propanols/toxicity , Fetal Development/drug effects , Male , Toxicity Tests/methods , Maternal Exposure/adverse effects
7.
Neurochem Int ; 179: 105807, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39069079

ABSTRACT

Cinnamic alcohol (CA) is a phenylpropanoid found in the essential oil of the bark of the genus Cinnamomum spp. Schaeff. (Lauraceae Juss.), known as cinnamon. To evaluate the neuroprotective effect of CA and its possible mechanism of action on mice submitted to the pentylenetetrazole (PTZ) induced epileptic seizures model. Behavioral, neurochemical, histomorphometric and immunohistochemistry analysis were carried out. The administration of CA (50-200 mg/kg, i.p., 30 min prior to PTZ and 0.7-25 mg/kg, i.p., 60 min prior to PTZ) increased the latency to seizure onset and the latency to death. The effects observed with CA treatment at 60 min were partially reversed by pretreatment with flumazenil. Furthermore, neurochemical assays indicated that CA reduced the concentration of malondialdehyde and nitrite, while increasing the concentration of reduced glutathione. Finally, histomorphometric and immunohistochemistry analysis revealed a reduction in inflammation and an increase in neuronal preservation in the hippocampi of CA pre-treated mice. Taken together, the results suggest that CA seems to modulate the GABAA receptor, decrease oxidative stress, mitigate neuroinflammation, and reduce cell death processes.


Subject(s)
Cinnamomum , Neuroprotective Agents , Oils, Volatile , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/isolation & purification , Mice , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Oils, Volatile/isolation & purification , Male , Cinnamomum/chemistry , Pentylenetetrazole , Seizures/drug therapy , Seizures/chemically induced , Seizures/metabolism , Seizures/prevention & control , Oxidative Stress/drug effects , Propanols/pharmacology
8.
Carbohydr Res ; 543: 109223, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39079235

ABSTRACT

The DIBAL-H reduction of the Baylis-Hillman sugar adduct, obtained from 3-O-benzyl-1,2-isopropylidene-α-D-xylo-pentodialdo-1,4-furanose yielded trisubstituted alkenes by eliminating the ß-hydroxyl group. Subsequently, the hydrolysis of the isopropylidene acetal to the corresponding hemiacetal was reacted with N-benzyl hydroxylamine hydrochloride to generate the nitrone, which underwent diastereoselective intramolecular 1,3-dipolar nitrone olefin cycloaddition (INOC) to give an isoxazolidine skeleton. The concomitant reductive cleavage of the N-O bond and benzyl group of the fused isoxazolidines afforded new functionalized aminocyclopentitols in good yields.


Subject(s)
Alkenes , Cycloaddition Reaction , Nitrogen Oxides , Propanols , Nitrogen Oxides/chemistry , Stereoisomerism , Alkenes/chemistry , Propanols/chemistry , Molecular Structure
9.
J Food Sci ; 89(8): 4914-4925, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980985

ABSTRACT

Phenylpropanoid metabolism plays an important role in cantaloupe ripening and senescence, but the mechanism of ozone regulation on phenylpropanoid metabolism remains unclear. This study investigated how ozone treatment modulates the levels of secondary metabolites associated with phenylpropanoid metabolism, the related enzyme activities, and gene expression in cantaloupe. Treating cantaloupes with 15 mg/m3 of ozone after precooling can help maintain postharvest hardness. This treatment also enhances the production and accumulation of secondary metabolites, such as total phenols, flavonoids, and lignin. These metabolites are essential components of the phenylpropanoid metabolic pathway, activating enzymes like phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4CL, chalcone synthase, and chalcone isomerase. The results of the transcriptional expression patterns showed that differential gene expression related to phenylpropanoid metabolism in the peel of ozone-treated cantaloupes was primarily observed during the middle and late storage stages. In contrast, the pulp exhibited significant differential gene expression mainly during the early storage stage. Furthermore, it was observed that the level of gene expression in the peel was generally higher than that in the pulp. The correlation between the relative amount of gene changes in cantaloupe, activity of selected enzymes, and concentration of secondary metabolites could be accompanied by positive regulation of the phenylpropanoid metabolic pathway. Therefore, ozone stress induction positively enhances the biosynthesis of flavonoids in cantaloupes, leading to an increased accumulation of secondary metabolites. Additionally, it also improves the postharvest storage quality of cantaloupes.


Subject(s)
Cucumis melo , Flavonoids , Fruit , Ozone , Phenylalanine Ammonia-Lyase , Ozone/pharmacology , Cucumis melo/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Fruit/metabolism , Fruit/drug effects , Phenols/metabolism , Lignin/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Propanols/metabolism , Trans-Cinnamate 4-Monooxygenase/metabolism , Trans-Cinnamate 4-Monooxygenase/genetics , Acyltransferases/genetics , Acyltransferases/metabolism
10.
Plant Mol Biol ; 114(4): 85, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995464

ABSTRACT

Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.


Subject(s)
Acyltransferases , F-Box Proteins , Gene Expression Regulation, Plant , Phenylalanine Ammonia-Lyase , Phylogeny , Plant Proteins , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , F-Box Proteins/metabolism , F-Box Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Acyltransferases/metabolism , Acyltransferases/genetics , Flavonoids/metabolism , Flavonoids/biosynthesis , Plants, Genetically Modified , Propanols/metabolism
11.
Animal ; 18(7): 101203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38935983

ABSTRACT

No single enteric CH4 mitigating strategy has been consistently effective or is readily applicable to ruminants in grassland systems. When CH4 mitigating strategies are effective under grazing conditions, mitigation is mild to moderate at best. A study was conducted to evaluate the potential of combining two CH4 mitigation strategies deemed feasible to apply in grazing dairy cows, the methanogenesis inhibitor 3-nitrooxypropanol additive (3-NOP) and cottonseed supplementation (CTS), seeking to enhance their individual CH4 mitigating potential. Forty-eight dairy cows were evaluated in a continuous grazing study and supplemented with either a starch-based concentrate (STA) or one that contained cottonseeds (1.75 kg DM/d; CTS), and with either 19 g/d of 10% 3-NOP (Bovaer®) or the additive's carrier (placebo), in a 2 × 2 factorial arrangement of treatments. Treatments were supplied mixed with a concentrate supplement (5 kg/d as fed) and offered in two equal rations at milking. Methane emissions were measured on weeks 4 and 8 using the sulphur hexafluoride tracer gas technique over a 5-d period. The 3-NOP and CTS treatments tended to interact on absolute CH4 such that 3-NOP decreased CH4 by 13.4% with STA, but there was no mitigation with 3-NOP and CTS. Treatment interactions were also obtained for CH4 yield, where 3-NOP tended to decrease CH4 when supplied with STA, and tended to increase it with CTS. The increase in CH4 yield with the CTS diet was driven by a numerical decrease in DM intake. Methane intensity was not affected by the 3-NOP or CTS treatments. Total volatile fatty acids in ruminal fluid were not affected by 3-NOP supplementation, but a reduction in acetate and an increase in propionate proportion occurred, resulting in decreased acetate: propionate. The 3-NOP additive decreased grass intake; however, energy-corrected milk yield and milk composition were largely unaffected. Milk urea increased with 3-NOP supplementation. Combining twice daily supplementation of 3-NOP and CTS did not enhance their CH4 mitigation potential when fed to grazing dairy cows. The relatively low inhibition of CH4 production by 3-NOP compared to studies with total mixed rations may result from the mode of delivery (pulse dosed twice daily) and time gap caused by experimental handling and moving of animals to pasture after 3-NOP supplementation in the milking parlour, which could have impaired the synchrony between the additive presence in the rumen and grass intake in paddocks.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Lactation , Methane , Milk , Propanols , Animals , Cattle/physiology , Methane/metabolism , Female , Lactation/drug effects , Animal Feed/analysis , Milk/chemistry , Milk/metabolism , Dietary Supplements/analysis , Diet/veterinary , Propanols/administration & dosage , Propanols/metabolism , Eating/drug effects , Dairying , Rumen/metabolism , Rumen/drug effects
12.
Plant Cell Rep ; 43(7): 179, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913159

ABSTRACT

KEY MESSAGE: DzMYB2 functions as an MYB activator, while DzMYB3 acts as an MYB repressor. They bind to promoters, interact with DzbHLH1, and influence phenolic contents, revealing their roles in phenylpropanoid regulation in durian pulps. Durian fruit has a high nutritional value attributed to its enriched bioactive compounds, including phenolics, carotenoids, and vitamins. While various transcription factors (TFs) regulate phenylpropanoid biosynthesis, MYB (v-myb avian myeloblastosis viral oncogene homolog) TFs have emerged as pivotal players in regulating key genes within this pathway. This study aimed to identify additional candidate MYB TFs from the transcriptome database of the Monthong cultivar at five developmental/postharvest ripening stages. Candidate transcriptional activators were discerned among MYBs upregulated during the ripe stage based on the positive correlation observed between flavonoid biosynthetic genes and flavonoid contents in ripe durian pulps. Conversely, MYBs downregulated during the ripe stage were considered candidate repressors. This study focused on a candidate MYB activator (DzMYB2) and a candidate MYB repressor (DzMYB3) for functional characterization. LC-MS/MS analysis using Nicotiana benthamiana leaves transiently expressing DzMYB2 revealed increased phenolic compound contents compared with those in leaves expressing green fluorescence protein controls, while those transiently expressing DzMYB3 showed decreased phenolic compound contents. Furthermore, it was demonstrated that DzMYB2 controls phenylpropanoid biosynthesis in durian by regulating the promoters of various biosynthetic genes, including phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR). Meanwhile, DzMYB3 regulates the promoters of PAL, 4-coumaroyl-CoA ligase (4CL), CHS, and CHI, resulting in the activation and repression of gene expression. Moreover, it was discovered that DzMYB2 and DzMYB3 could bind to another TF, DzbHLH1, in the regulation of flavonoid biosynthesis. These findings enhance our understanding of the pivotal role of MYB proteins in regulating the phenylpropanoid pathway in durian pulps.


Subject(s)
Flavonoids , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Flavonoids/metabolism , Flavonoids/biosynthesis , Acyltransferases/genetics , Acyltransferases/metabolism , Propanols/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism
13.
Plant Physiol Biochem ; 213: 108860, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936070

ABSTRACT

Drought is one of the most common environmental stressors that severely threatens plant growth, development, and productivity. B2 (2,4-dichloroformamide cyclopropane acid), a novel plant growth regulator, plays an essential role in drought adaptation, significantly enhancing the tolerance of Carex breviculmis seedlings. Its beneficial effects include improved ornamental value, sustained chlorophyll content, increased leaf dry weight, elevated relative water content, and enhanced root activity under drought conditions. B2 also directly scavenges hydrogen peroxide and superoxide anion contents while indirectly enhancing the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) to detoxify reactive oxygen species (ROS) oxidative damage. Transcriptome analysis demonstrated that B2 activates drought-responsive transcription factors (AP2/ERF-ERF, WRKY, and mTERF), leading to significant upregulation of genes associated with phenylpropanoid biosynthesis (HCT, POD, and COMT). Additionally, these transcription factors were found to suppress the degradation of starch. B2 regulates phytohormone signaling related-genes, leading to an increase in abscisic acid contents in drought-stressed plants. Collectively, these findings offer new insights into the intricate mechanisms underlying C. breviculmis' resistance to drought damage, highlighting the potential application of B2 for future turfgrass establishment and management with enhanced drought tolerance.


Subject(s)
Droughts , Plant Growth Regulators , Reactive Oxygen Species , Starch , Reactive Oxygen Species/metabolism , Plant Growth Regulators/metabolism , Starch/metabolism , Starch/biosynthesis , Gene Expression Regulation, Plant , Signal Transduction , Plant Proteins/metabolism , Plant Proteins/genetics , Propanols/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Drought Resistance
14.
J Chromatogr A ; 1730: 465074, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38870581

ABSTRACT

Ion-pairing reversed-phase liquid chromatography was utilized for the analysis of native and phosphorothioated oligonucleotides differing in the length (2-6mers and 21mer) and the number and position of phosphorothioate modifications. We investigated the influence of counterion (acetate vs. hexafluoroisopropanol) on the adsorption of eleven alkylamines on the stationary phases. A stronger adsorption of charged alkylamines on octadecyl- and phenyl-based stationary phases led to greater retention of oligonucleotides, and the adsorption of alkylamines was promoted with greater concentration of hexafluoroisopropanol in the mobile phase. Selected amines (triethylamine, dipropylamine, hexylamine) were used to study the resolution of n and n-x mers (main peak and its impurities shortened at 5´end), and diastereomeric separation of phosphorothioated oligonucleotides. The results confirmed a crucial role of alkylamine and counterion choice on the diastereomeric separation. The increasing hydrophobicity of alkylamine led to diminished diastereomeric selectivity which produced narrower phosphorothioated oligonucleotides peaks and led to improved n/n-x separation. Using hexafluoroisopropanol instead of acetate as counterion further enhances this effect (except for 100 mM concentration of hexafluoroisopropanol in combination with highly hydrophobic hexylamine). The elevated column temperature led to suppression of the diastereomeric resolution and improved resolution of n and n-x mers oligonucleotides. Baseline separation of oligonucleotides with different number of phosphorothioate linkages was achieved; this may be useful for therapeutic oligonucleotide analysis.


Subject(s)
Chromatography, Reverse-Phase , Phosphorothioate Oligonucleotides , Chromatography, Reverse-Phase/methods , Phosphorothioate Oligonucleotides/chemistry , Phosphorothioate Oligonucleotides/isolation & purification , Stereoisomerism , Amines/chemistry , Hydrophobic and Hydrophilic Interactions , Propanols/chemistry , Adsorption , Hydrocarbons, Fluorinated
15.
J Chromatogr A ; 1730: 465056, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878742

ABSTRACT

Chinese bacon is highly esteemed by consumers worldwide due to its unique aroma. The composition of volatile organic compounds (VOCs) varies significantly among different types of Chinese bacon. This study analyzed the VOCs of Chinese bacon from Sichuan, Hunan, Guangxi, and Shaanxi provinces using gas chromatography-mass spectrometry (GC-MS), an electronic nose (E-nose), and gas chromatography-ion mobility spectrometry (GC-IMS). The results demonstrate that the combination of GC-MS and GC-IMS effectively distinguishes Chinese bacon from different regions. Notably, Guangxi bacon lacks a smoky aroma, which sets it apart from the other types. However, it contains many esters that play a crucial role in its flavor profile. In contrast, phenols, including guaiacol, which is typical in smoked bacon, were present in the bacon from Sichuan, Hunan, and Shaanxi but were absent in Guangxi bacon. Furthermore, Hunan bacon exhibited a higher aldehyde content than Sichuan bacon. 2-methyl-propanol and 3-methyl-butanol were identified as characteristic flavor compounds of Zhenba bacon. This study provides a theoretical foundation for understanding and identifying the flavor profiles of Chinese bacon. Using various analytical techniques to investigate the flavor compounds is essential for effectively distinguishing bacon from different regions.


Subject(s)
Electronic Nose , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Ion Mobility Spectrometry/methods , Odorants/analysis , Meat Products/analysis , China , Flavoring Agents/analysis , Flavoring Agents/chemistry , Propanols/analysis , Aldehydes/analysis , Pentanols
16.
Mol Biol Rep ; 51(1): 757, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874856

ABSTRACT

BACKGROUND: The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS: We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION: The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.


Subject(s)
Biosynthetic Pathways , Gene Expression Profiling , Gene Expression Regulation, Plant , Phylogeny , Salvia , Transcriptome , Transcriptome/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Biosynthetic Pathways/genetics , Salvia/genetics , Salvia/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Molecular Sequence Annotation , Gene Ontology , High-Throughput Nucleotide Sequencing/methods , Propanols/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Secondary Metabolism/genetics
17.
Biomacromolecules ; 25(6): 3583-3595, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703359

ABSTRACT

Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (bcPG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of bcPG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate in vitro biocompatibility, endothelial permeability, and formation of branched linear PG (blPG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for bcPG and the mixture bc+blPG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between bcPG, bc+blPG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. bcPG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.


Subject(s)
Biocompatible Materials , Blood-Brain Barrier , Humans , Blood-Brain Barrier/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polymerization , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Polymers/chemistry , Polymers/pharmacology , Glycerol/chemistry , Epoxy Compounds/chemistry , Cell Line , Permeability , Propylene Glycols/chemistry , Propanols/chemistry
18.
Article in English | MEDLINE | ID: mdl-38805241

ABSTRACT

This study presents a method based on acid transesterification and the purification by solid-phase extraction (SPE) coupled with gas chromatography-tandem mass spectrometry for quantifying 3- and 2-monochloropropanediol esters (3-MCPDE, 2-MCPDE) and glycidyl esters (GE) in nutritional foods. The fat was extracted by liquid-liquid extraction with petroleum ether and diethyl ether after the sample was hydrolysed with ammonia. Then the extract was purified by a SPE cartridge filled with the aminopropyl sorbents. It was demonstrated that the optimal elution volume for 3-MCPDE, 2-MCPDE and GE greatly depended on the sample matrix and varied from 6 to 12 mL for four different kinds of food matrices. All three analytes in the sample solution could be fully collected in the first 10-12 mL of eluate. By this way, monoacylglycerols commonly present in the samples were fully removed. Therefore, the overestimation of GE quantification was effectively eliminated. The modified analytical procedure was fully validated in a single laboratory and has been recommended as a Chinese Food Safety National Standard. In addition, two derivatisation agents, heptafluorobutyrylimidazole and phenylboronic acid, were proved to be equivalent in method accuracy and precision for the quantification of three analytes.


Subject(s)
Esters , Food Analysis , Food Contamination , Gas Chromatography-Mass Spectrometry , Propanols , Solid Phase Extraction , Tandem Mass Spectrometry , Esters/analysis , Hydrolysis , Food Contamination/analysis , Propanols/analysis , Propanols/chemistry , Epoxy Compounds/analysis , Epoxy Compounds/chemistry , alpha-Chlorohydrin/analysis , Acids/analysis , Acids/chemistry
19.
J Dairy Sci ; 107(9): 6817-6833, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38762115

ABSTRACT

The objective of this study was to determine the potential effect and interaction of 3-nitrooxypropanol (3-NOP; Bovaer, DSM-Firmenich Nutrition Products Ltd.) and whole cottonseed (WCS) on lactational performance and enteric methane (CH4) emission of dairy cows. A total of 16 multiparous cows, including 8 Holstein Friesian (HF) and 8 Brown Swiss (BS; 224 ± 36 DIM, 26 ± 3.7 kg milk yield, mean ± SD), were used in a split-plot design, where the main plot was the breed of cows. Within each subplot, cows were randomly assigned to a treatment sequence in a replicated 4 × 4 Latin square design with 2 × 2 factorial arrangements of treatments with four 24-d periods. The experimental treatments were as follows: (1) control (basal TMR), (2) 3-NOP (60 mg/kg TMR DM), (3) WCS (5% TMR DM), and (4) 3-NOP + WCS. The treatment diets were balanced for ether extract, crude protein, and NDF contents (4%, 16%, and 43% of TMR DM, respectively). The basal diets were fed twice daily at 0800 and 1800 h. Dry matter intake and milk yield were measured daily, and enteric gas emissions were measured (using the GreenFeed System, C-Lock Inc.) during the last 3 d of each 24-d experimental period when animals were housed in tiestalls. There was no difference in DMI on treatment level, whereas the WCS treatment increased ECM yield and milk fat yield. No interaction of 3-NOP and WCS occurred for any of the enteric gas emission parameters, but 3-NOP decreased CH4 production (g/d), CH4 yield (g/kg DMI), and CH4 intensity (g/kg ECM) by 13%, 14%, and 13%, respectively. Further, an unexpected interaction of breed by 3-NOP was observed for different enteric CH4 emission metrics: HF cows had a greater CH4 mitigation effect compared with BS cows for CH4 production (g/d; 18% vs. 8%), CH4 intensity (g/kg milk yield; 19% vs. 3%), and CH4 intensity (g/kg ECM; 19% vs. 4%). Hydrogen production was increased by 2.85-fold in HF and 1.53-fold in BS cows receiving 3-NOP. Further, a 3-NOP × time interaction occurred for both breeds. In BS cows, 3-NOP tended to reduce CH4 production by 18% at approximately 4 h after morning feeding, but no effect was observed at other time points. In HF cows, the greatest mitigation effect of 3-NOP (29.6%) was observed immediately after morning feeding, and it persisted at around 23% to 26% for 10 h until the second feed provision, and 3 h thereafter, in the evening. In conclusion, supplementing 3-NOP at 60 mg/kg DM to a high-fiber diet resulted in 18% to 19% reduction in enteric CH4 emission in Swiss HF cows. The lower response to 3-NOP by BS cows was unexpected and has not been observed in other studies. These results should be interpreted with caution due to the low number of cows per breed. Finally, supplementing WCS at 5% of DM improved ECM and milk fat yield but did not enhance the CH4 inhibition effect of 3-NOP of dairy cows.


Subject(s)
Animal Feed , Diet , Lactation , Methane , Milk , Animals , Cattle , Lactation/drug effects , Milk/chemistry , Milk/metabolism , Methane/biosynthesis , Methane/metabolism , Female , Diet/veterinary , Propanols/metabolism , Gossypium
20.
J Appl Toxicol ; 44(9): 1317-1328, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38715282

ABSTRACT

The prevalence of fragrances in various hygiene products contributes to their sensorial allure. However, fragrances can induce sensitization in the skin or respiratory system, and the mechanisms involved in this process are incompletely understood. This study investigated the intricate mechanisms underlying the fragrance's effects on sensitization response, focusing on the interplay between CYP450 enzymes, a class of drug-metabolizing enzymes, and the adaptive immune system. Specifically, we assessed the expression of CYP450 enzymes and cytokine profiles in culture of BEAS-2B and mature dendritic cells (mDC) alone or in co-culture stimulated with 2 mM of a common fragrance, cinnamyl alcohol (CA) for 20 h. CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2A13 were analyzed by RT-PCR and IL-10, IL-12p70, IL-18, IL-33, and thymic stromal lymphopoietin (TSLP) by Cytometric Bead Array (CBA). Through RT-PCR analysis, we observed that CA increased CYP1A2 and CYP1B1 expression in BEAS-2B, with a further increased in BEAS-2B-mDC co-culture. Additionally, exposure to CA increased IL-12p70 levels in mDC rather than in BEAS-2B-mDC co-culture. In regards to IL-18, level was higher in BEAS-2B than in BEAS-2B-mDC co-culture. A positive correlation between the levels of IL-10 and CYP1B1 was found in mDC-CA-exposed and between IL-12p70 and CYP1A1 was found in BEAS-2B after CA exposure. However, IL-12p70 and CYP1A2 as well as IL-18, IL-33, and CYP1A1 levels were negative, correlated mainly in co-culture control. These correlations highlight potential immunomodulatory interactions and complex regulatory relationships. Overall, exposure to CA enhances CYP450 expression, suggesting that CA can influence immune responses by degrading ligands on xenosensitive transcription factors.


Subject(s)
Coculture Techniques , Cytochrome P-450 Enzyme System , Cytokines , Dendritic Cells , Propanols , Humans , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Propanols/toxicity , Propanols/metabolism , Cell Line , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Perfume/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL