Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.396
Filter
1.
Skin Therapy Lett ; 29(4): 5-7, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963912

ABSTRACT

Acne is a common inflammatory condition of the skin worldwide. The skin is an endocrine organ and hormones are a key pathogenic factor in all types of acne with a particularly important role in adult female acne pathogenesis and management. In females, we have the unique opportunity to manipulate hormones systemically to successfully manage acne and, more recently with the approval of clascoterone 1% cream, we can target the hormones topically in both genders. The intent of this paper is to provide physicians with an up-to-date clinically relevant review of the role of hormones in acne, the impact of currently available contraceptives and therapies available to target hormones in acne.


Subject(s)
Acne Vulgaris , Humans , Acne Vulgaris/drug therapy , Female , Adult , Cortodoxone/therapeutic use , Cortodoxone/analogs & derivatives , Propionates
2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38836495

ABSTRACT

The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crop plants and poses a threat to global food production. Given that insects are known to live in a close relationship with microorganisms, our study provides insights into the community composition and function of the N. viridula-associated microbiota and its effect on host-plant interactions. We discovered that N. viridula hosts both vertically and horizontally transmitted microbiota throughout different developmental stages and their salivary glands harbor a thriving microbial community that is transmitted to the plant while feeding. The N. viridula microbiota was shown to aid its host with the detoxification of a plant metabolite, namely 3-nitropropionic acid, and repression of host plant defenses. Our results demonstrate that the N. viridula-associated microbiota plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.


Subject(s)
Microbiota , Animals , Heteroptera/microbiology , Salivary Glands/microbiology , Propionates/metabolism , Plant Defense Against Herbivory , Inactivation, Metabolic , Nitro Compounds/metabolism
3.
Nat Microbiol ; 9(7): 1812-1827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38858593

ABSTRACT

Dietary intake of phytate has various reported health benefits. Previous work showed that the gut microbiota can convert phytate to short-chain fatty acids (SCFAs), but the microbial species and metabolic pathway are unclear. Here we identified Mitsuokella jalaludinii as an efficient phytate degrader, which works synergistically with Anaerostipes rhamnosivorans to produce the SCFA propionate. Analysis of published human gut taxonomic profiles revealed that Mitsuokella spp., in particular M. jalaludinii, are prevalent in human gut microbiomes. NMR spectroscopy using 13C-isotope labelling, metabolomic and transcriptomic analyses identified a complete phytate degradation pathway in M. jalaludinii, including production of the intermediate Ins(2)P/myo-inositol. The major end product, 3-hydroxypropionate, was converted into propionate via a synergistic interaction with Anaerostipes rhamnosivorans both in vitro and in mice. Upon [13C6]phytate administration, various 13C-labelled components were detected in mouse caecum in contrast with the absence of [13C6] InsPs or [13C6]myo-inositol in plasma. Caco-2 cells incubated with co-culture supernatants exhibited improved intestinal barrier integrity. These results suggest that the microbiome plays a major role in the metabolism of this phytochemical and that its fermentation to propionate by M. jalaludinii and A. rhamnosivorans may contribute to phytate-driven health benefits.


Subject(s)
Gastrointestinal Microbiome , Phytic Acid , Phytic Acid/metabolism , Humans , Animals , Mice , Caco-2 Cells , Clostridiales/metabolism , Clostridiales/genetics , Fatty Acids, Volatile/metabolism , Propionates/metabolism , Microbial Interactions , Metabolic Networks and Pathways , Metabolomics/methods , Inositol/metabolism , Inositol/analogs & derivatives
4.
Chem Biol Interact ; 398: 111086, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38825054

ABSTRACT

Oleic acid (OA) is a monounsaturated compound with many health-benefitting properties such as obesity prevention, increased insulin sensitivity, antihypertensive and immune-boosting properties, etc. The aim of this study was to analyze the effect of oleic acid (OA) and some anticancer drugs against oxidative damage induced by nitropropionic acid (NPA) in rat brain. Six groups of Wistar rats were treated as follows: Group 1, (control); group 2, OA; group 3, NPA + OA; group 4, cyclophosphamide (CPP) + OA; group 5, daunorubicin (DRB) + OA; and group 6, dexrazoxane (DXZ) + OA. All compounds were administered intraperitoneally route, every 24 h for 5 days. Their brains were extracted to measure lipoperoxidation (TBARS), H2O2, Ca+2, Mg+2 ATPase activity, glutathione (GSH) and dopamine. Glucose, hemoglobin and triglycerides were measured in blood. In cortex GSH increased in all groups, except in group 2, the group 4 showed the highest increase of this biomarker. TBARS decrease, and dopamine increase in all regions of groups 4, 5 and 6. H2O2 increased only in cerebellum/medulla oblongata of group 5 and 6. ATPase expression decreased in striatum of group 4. Glucose increased in group 6, and hemoglobin increased in groups 4 and 5. These results suggest that the increase of dopamine and the antioxidant effect of oleic acid administration during treatment with oncologic agents could result in less brain injury.


Subject(s)
Antineoplastic Agents , Brain , Glutathione , Oleic Acid , Oxidative Stress , Rats, Wistar , Animals , Oxidative Stress/drug effects , Oleic Acid/pharmacology , Brain/drug effects , Brain/metabolism , Rats , Male , Glutathione/metabolism , Antineoplastic Agents/pharmacology , Hydrogen Peroxide/metabolism , Nitro Compounds/pharmacology , Dopamine/metabolism , Propionates/pharmacology , Cyclophosphamide , Lipid Peroxidation/drug effects , Daunorubicin/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism , Adenosine Triphosphatases/metabolism , Antioxidants/pharmacology
5.
Pharmacol Biochem Behav ; 241: 173805, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848976

ABSTRACT

Depression, a prevalent mental health condition, significantly impacts global mental impairment rates. While antidepressants are commonly used, treatment-resistant depression (TRD) poses a challenge. Emerging research highlights the role of the gut microbiota in depression through the gut-brain axis. This study identifies key genes associated with depression influenced by specific gut microbiota, Coprococcus and Subdoligranulum. Using bioinformatics tools, potential targets were elucidated, and molecular docking studies were performed. Furthermore, gene expression analysis identified hub-genes related to depression, intersecting with metabolite targets. Protein-protein interaction analysis revealed pivotal targets such as PTGS2 and MMP9. Molecular docking demonstrated 3-Indolepropionic acid's superior affinity over (R)-3-(4-Hydroxyphenyl)lactate. Physicochemical properties and toxicity profiles were compared, suggesting favorable attributes for 3-Indolepropionic acid. Molecular dynamics simulations confirmed stability and interactions of compounds with target proteins. This comprehensive approach sheds light on the complex interplay between gut microbiota, genes, and depression, emphasizing the potential for microbiota-targeted interventions in mental health management.


Subject(s)
Gastrointestinal Microbiome , Molecular Docking Simulation , Molecular Dynamics Simulation , Gastrointestinal Microbiome/drug effects , Humans , Network Pharmacology , Indoles/pharmacology , Depression/drug therapy , Depression/microbiology , Depression/metabolism , Propionates/pharmacology , Propionates/metabolism , Brain-Gut Axis/drug effects , Antidepressive Agents/pharmacology
6.
Carbohydr Polym ; 339: 122238, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823908

ABSTRACT

The study aimed to develop a novel, transparent and non-toxic coating with antimicrobial, antioxidant, and antifogging properties. The p-coumaric acid-grafted chitosan (CS-PCA) was synthesized via a carbodiimide coupling reaction and then characterized. The CS-PCA coatings were further prepared using the casting method. The CS-PCA coatings obtained exhibited excellent transparency, UV-light barrier ability, and antifogging properties, as confirmed by spectroscopy and antifogging tests. The CS-PCA coatings showed stronger antioxidant capacity and antimicrobial properties against Escherichia coli, Staphylococcus aureus and Botrytis cinerea compared to CS. The multifunctional coatings were further coated on the polyethylene cling film and their effectiveness was confirmed through a strawberry preservation test. The decay of the strawberries was reduced by CS-PCA coated film at room temperature.


Subject(s)
Antioxidants , Chitosan , Coumaric Acids , Escherichia coli , Food Packaging , Fragaria , Fruit , Propionates , Staphylococcus aureus , Chitosan/chemistry , Chitosan/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Fragaria/microbiology , Food Packaging/methods , Fruit/chemistry , Propionates/chemistry , Propionates/pharmacology , Botrytis/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
7.
Nutrients ; 16(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892708

ABSTRACT

Propionate defects (PDs) mainly include methylmalonic (MMA) and propionic acidemia (PA) defects. Lifelong PD patients progress from the compensated to the decompensated stages, the latter of which are characterized by life-threatening acidemia and hyperammonemia crises. PD patients can suffer immunocompromise, especially during the decompensation stage. There is a significant gap in the research regarding the humoral immune response in PD patients. Here, we analyzed serum immunoglobulin concentrations and hemograms across compensated and decompensated stages in PD patients. Nutritional status and crisis triggers of decompensation were also explored. Twenty patients were studied, and 25 decompensation events (DE) and 8 compensation events (CE) were recorded. Compared with those in the CE group, the IgG levels in the DE group (513.4 ± 244.5 mg/dL) were significantly lower than those in the CE group (860.8 ± 456.5 mg/dL) (p < 0.0087). The mean hemoglobin concentration was significantly lower in the DE group (11.8 g/dL) than in the CE group (13.4 g/dL) (p < 0.05). The most frequent (48%) possible decompensation trigger factor was infection. Most of the events were registered in eutrophic patients (87.9%), despite which 65.2% and 50% of patients who experienced decompensated and compensated events, respectively, presented with hypogammaglobulinemia G. These findings provide evidence of the immunodeficiency of PD patients, independent of their nutritional status. We suggest that PD patients be managed as immunocompromised independently of their nutritional status or metabolic state (compensated or decompensated).


Subject(s)
Agammaglobulinemia , Nutritional Status , Humans , Male , Female , Agammaglobulinemia/blood , Agammaglobulinemia/immunology , Agammaglobulinemia/complications , Middle Aged , Aged , Immunoglobulin G/blood , Adult , Propionates/blood , Propionic Acidemia
8.
Cell Metab ; 36(6): 1394-1410.e12, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838644

ABSTRACT

A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.


Subject(s)
Brain , Glucose , Propionates , Pyruvate Dehydrogenase Complex Deficiency Disease , Animals , Pyruvate Dehydrogenase Complex Deficiency Disease/metabolism , Brain/metabolism , Brain/diagnostic imaging , Glucose/metabolism , Propionates/metabolism , Mice , Diet, Ketogenic , Mice, Inbred C57BL , Disease Models, Animal , Male , Glycolysis
9.
Eur J Gastroenterol Hepatol ; 36(7): 890-896, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38829943

ABSTRACT

OBJECTIVE: Short-chain fatty acids (SCFAs) are produced when the microbiota in the large intestine cause fermentation of dietary carbohydrates and fibers. These fatty acids constitute the primary energy source of colon mucosa cells and have a protective effect in patients suffering from inflammatory bowel disease (IBD). This study aimed to compare the SCFA levels in the stools of patients with IBD and healthy controls. METHOD: Healthy controls and patients with IBD aged 18 and over were included in the study. Stool samples from all patients and healthy controls were collected, and stool acetic acid, propionic acid, and butyric acid levels were measured using a gas chromatography-mass spectrometry measurement method. RESULTS: In this study, 64 participants were divided into two groups: 34 were in IBD (Crohn disease and ulcerative colitis) and 30 were in healthy control group. When fecal SCFA concentrations of IBD and healthy control groups were compared, a statistically significant difference was observed between them. When the fecal SCFA concentrations of Crohn's disease and ulcerative colitis patients in the IBD group were compared, however, no statistically significant difference was observed between them. Furthermore, when the participants' diet type (carbohydrate-based, vegetable-protein-based and mixed diet) and the number of meals were compared with fecal SCFA concentrations, no statistically significant difference was observed between them. CONCLUSION: In general, fecal SCFA levels in patients with IBD were lower than those in healthy controls. Moreover, diet type and the number of meals had no effect on stool SCFA levels in patients with IBD and healthy individuals.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Fatty Acids, Volatile , Feces , Humans , Feces/chemistry , Feces/microbiology , Male , Female , Adult , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Middle Aged , Case-Control Studies , Crohn Disease/metabolism , Young Adult , Gas Chromatography-Mass Spectrometry , Diet , Propionates/metabolism , Propionates/analysis , Acetic Acid/analysis , Acetic Acid/metabolism , Gastrointestinal Microbiome , Butyric Acid/analysis , Butyric Acid/metabolism
10.
J Drugs Dermatol ; 23(6): 433-437, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38834220

ABSTRACT

BACKGROUND: Clascoterone cream 1% is a topical androgen receptor inhibitor approved to treat acne vulgaris in patients =>12 years of age. This report provides details of patients who developed laboratory signs of hypothalamic-pituitary-adrenal (HPA) axis suppression without clinical signs of adrenal suppression during the clascoterone development program. METHODS: Two open-label, multicenter, Phase 2 trials evaluated HPA axis suppression in patients with moderate-to-severe acne vulgaris. Study 1 (NCT01831960) enrolled cohorts of adults =>18 years of age and adolescents =>12 to <18 years of age. Study 2 (NCT02720627) enrolled adolescents 9 to <12 years of age. Patients applied clascoterone twice daily at maximum-exposure dosages for 14 days. Adrenal suppression was evaluated via cosyntropin stimulation test (CST) at baseline and day 14. Patients with an abnormal CST result (serum cortisol level =<18 µg/dL) had a follow-up CST approximately 4 weeks later. Blood was collected for pharmacokinetic analysis. Other safety assessments included adverse events (AEs), physical examination/vital signs, and electrocardiography. RESULTS: Overall, 5/69 clascoterone-treated patients had an abnormal CST result on day 14, including 1/20 adults, 2/22 patients aged =>12 to <18 years, and 2/27 patients aged 9 to <12 years. All patients had normal cortisol levels at follow-up testing approximately 4 weeks later. No relationship was observed between abnormal CST results and clascoterone plasma concentrations or the amount of study drug applied. No clinically relevant AEs or clinically significant changes in safety measures were observed in patients with adrenal suppression. CONCLUSION: Clascoterone induced laboratory evidence of mild, reversible HPA axis suppression under maximum-use exposure. J Drugs Dermatol. 2024;23(6):433-437.     doi:10.36849/JDD.7997.


Subject(s)
Acne Vulgaris , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Humans , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Acne Vulgaris/drug therapy , Adolescent , Male , Female , Adult , Child , Young Adult , Hydrocortisone/blood , Cortodoxone/administration & dosage , Cortodoxone/analogs & derivatives , Cortodoxone/blood , Administration, Cutaneous , Skin Cream/administration & dosage , Skin Cream/adverse effects , Androgen Receptor Antagonists/administration & dosage , Androgen Receptor Antagonists/adverse effects , Treatment Outcome , Cosyntropin/administration & dosage , Propionates
11.
J Drugs Dermatol ; 23(6): 404-409, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38834219

ABSTRACT

Acne vulgaris is prevalent among adolescents and adults worldwide and can significantly impact patients' quality of life. Steroidal molecules, including oral and intralesional corticosteroids, combined oral contraceptives (COCs), oral spironolactone, and topical clascoterone, are an important part of the acne treatment armamentarium. The recommended use, mechanism of action, and available evidence supporting the use of steroids for acne treatment are reviewed, and differences in acne clinical presentation and treatment approaches based on patient characteristics relevant to the selection of an appropriate steroid are also discussed. Steroid-based approaches target the systemic or local hormones (ie, testosterone and androgens) and inflammation that contribute to acne pathogenesis. Oral corticosteroids are primarily used as a short-term adjunctive therapy early in treatment, whereas intralesional corticosteroid injections are used for individual acne lesions. COCs and oral spironolactone are limited to female patients who wish to avoid pregnancy. Topical clascoterone can be used by female and male patients 12 years of age and older. Patients' characteristics (including age and patients with darker skin color) and preferences for the route of administration can impact treatment response and adherence, respectively. Overall, healthcare providers must be aware of the differences among steroidal acne treatments and use shared decision-making to select the optimal therapy. J Drugs Dermatol. 2024;23(6):404-409.     doi:10.36849/JDD.7846.


Subject(s)
Acne Vulgaris , Spironolactone , Humans , Acne Vulgaris/drug therapy , Spironolactone/administration & dosage , Spironolactone/adverse effects , Treatment Outcome , Female , Male , Dermatologic Agents/adverse effects , Dermatologic Agents/administration & dosage , Dermatologic Agents/therapeutic use , Quality of Life , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/adverse effects , Adrenal Cortex Hormones/therapeutic use , Contraceptives, Oral, Combined/adverse effects , Contraceptives, Oral, Combined/administration & dosage , Contraceptives, Oral, Combined/therapeutic use , Administration, Cutaneous , Administration, Oral , Cortodoxone/analogs & derivatives , Propionates
12.
Ecotoxicol Environ Saf ; 280: 116521, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850708

ABSTRACT

The aim of this study is to investigate the role of estrogen receptor ß (ERß) in nonylphenol (NP) - induced depression - like behavior in rats and its impact on the regulation of the TPH2/5-HT pathway. In the in vitro experiment, rat basophilic leukaemia cells (RBL-2H3) cells were divided into the four groups: blank group, NP group (20 µM), ERß agonist group (0.01 µM), and NP+ERß agonist group (20 µM+0.01 µM). For the in vivo experiment, 72 adult male Sprague-Dawley rats were randomly divided into following six groups: the Control, NP (40 mg/kg) group, ERß agonist (2 mg/kg, Diarylpropionitrile (DPN)) group, ERß inhibitor (0.1 mg/kg, 4-(2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl) phenol (PHTPP)) group, NP+ERß agonist (40 mg/kg NP + 2 mg/kg DPN) group, and NP+ERß inhibitor (40 mg/kg NP + 0.1 mg/kg PHTPP) group, with 12 rats in each group. Each rat in drug group were given NP by gavage and/or received a single intraperitoneal injection of DPN 2 mg/kg or PHTPP 0.1 mg/kg. Both in vivo and in vitro, NP group showed a decrease in the expression levels of ERß, tryptophan hydroxylase (TPH1), and tryptophan hydroxylase-2 (TPH2) genes and proteins, and reduced levels of DA, NE, and 5-hydroxytryptophan (5-HT) neurotransmitters. RBL-2H3 cells showed signs of cell shrinkage, with rounded cells, increased suspension and more loosely arranged cells. The effectiveness of the ERß agonist stimulation exhibited an increase exceeding 60% in RBL-2H3 cells. The application of ERß agonist resulted in an alleviation the aforementioned alterations. ERß agonist activated the TPH2/5-HT signaling pathways. Compared to the control group, the NP content in the brain tissue of the NP group was significantly increased. The latency to eat for the rats was longer and the amount of food consumed was lower, and the rats had prolonged immobility time in the behavioral experiment of rats. The expression levels of ERß, TPH1, TPH2, 5-HT and 5-HITT proteins were decreased in the NP group, suggesting NP-induced depression-like behaviours as well as disturbances in the secretion of serum hormones and monoamine neurotransmitters. In the NP group, the midline raphe nucleus showed an elongated nucleus with a dark purplish-blue colour, nuclear atrophy, displacement and pale cytoplasm. ERß might ameliorate NP-induced depression-like behaviors, and secretion disorders of serum hormones and monoamine neurotransmitters via activating TPH2/5-HT signaling pathways.


Subject(s)
Depression , Estrogen Receptor beta , Phenols , Rats, Sprague-Dawley , Serotonin , Tryptophan Hydroxylase , Animals , Tryptophan Hydroxylase/metabolism , Estrogen Receptor beta/metabolism , Phenols/toxicity , Male , Rats , Serotonin/metabolism , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Neurotransmitter Agents/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Nitriles/toxicity , Nitriles/pharmacology , Propionates/toxicity , Propionates/pharmacology , Pyrazoles , Pyrimidines
13.
Nutrients ; 16(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892659

ABSTRACT

CONTEXT: Short-chain fatty acids (SCFAs) have been reported to be associated with the pathogenesis of irritable bowel syndrome (IBS), but the results are conflicting. OBJECTIVE: Here, a systematic review of case-control studies detecting fecal SCFAs in IBS patients compared with healthy controls (HCs) and self-controlled studies or randomized controlled trials (RCTs) investigating fecal SCFA alterations after interventions were identified from several databases. DATA SOURCES: A systematic search of databases (PubMed, Web of Science, and Embase) identified 21 studies published before 24 February 2023. Data extractions: Three independent reviewers completed the relevant data extraction. DATA ANALYSIS: It was found that the fecal propionate concentration in IBS patients was significantly higher than that in HCs, while the acetate proportion was significantly lower. Low-FODMAP diets significantly reduced the fecal propionate concentration in the IBS patients while fecal microbiota transplantation and probiotic administration did not significantly change the fecal propionate concentration or acetate proportion. CONCLUSIONS: The results suggested that the fecal propionate concentration and acetate proportion could be used as biomarkers for IBS diagnosis. A low-FODMAP diet intervention could potentially serve as a treatment for IBS while FMT and probiotic administration need more robust trials.


Subject(s)
Fatty Acids, Volatile , Feces , Irritable Bowel Syndrome , Irritable Bowel Syndrome/diet therapy , Irritable Bowel Syndrome/therapy , Humans , Feces/chemistry , Feces/microbiology , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Fecal Microbiota Transplantation , Probiotics , Propionates/metabolism , Propionates/analysis , Randomized Controlled Trials as Topic , Acetates/analysis , Female , Gastrointestinal Microbiome , Biomarkers/analysis , Male , Adult , Case-Control Studies
14.
Behav Brain Res ; 470: 115094, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38844057

ABSTRACT

Estrogen receptor (ER) activation by 17-ß estradiol (E2) can attenuate neuronal injury and behavioral impairments following global cerebral ischemia (GCI) in rodents. This study sought to further examine the discrete roles of ERs through characterization of the effects of selective ER activation on post-ischemic pro-inflammatory microglial activation, hippocampal neuronal injury, and anxiety-like behaviors. Forty-six ovariectomized (OVX) adult female Wistar rats received daily s.c injections (100 µg/kg/day) of propylpyrazole triol (PPT; ERα agonist), diarylpropionitrile (DPN; ERß agonist), G-1 (G-protein coupled ER agonist; GPER), E2 (activating all receptors), or vehicle solution (VEH) for 21 days. After final injection, rats underwent GCI via 4-vessel occlusion (n=8 per group) or sham surgery (n=6, vehicle injections). The Open Field Test (OFT), Elevated Plus Maze (EPM), and Hole Board Test (HBT) assessed anxiety-like behaviors. Microglial activation (Iba1, CD68, CD86) in the basolateral amygdala (BLA), CA1 of the hippocampus, and paraventricular nucleus of the hypothalamus (PVN) was determined 8 days post-ischemia. Compared to sham rats, Iba1 activation and CA1 neuronal injury were increased in all ischemic groups except DPN-treated rats, with PPT-treated ischemic rats also showing increased PVN Iba1-ir expression. Behaviorally, VEH ischemic rats showed slightly elevated anxiety in the EPM compared to sham counterparts, with no significant effects of agonists. While no changes were observed in the OFT, emotion regulation via grooming in the HBT was increased in G-1 rats compared to E2 rats. Our findings support selective ER activation to regulate post-ischemic microglial activation and coping strategies in the HBT, despite minimal impact on hippocampal injury.


Subject(s)
Anxiety , Brain Ischemia , CA1 Region, Hippocampal , Microglia , Phenols , Pyrazoles , Rats, Wistar , Animals , Female , Microglia/metabolism , Microglia/drug effects , Rats , Anxiety/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects , Brain Ischemia/metabolism , Pyrazoles/pharmacology , Phenols/pharmacology , Ovariectomy , Neurons/metabolism , Neurons/drug effects , Propionates/pharmacology , Propionates/administration & dosage , Behavior, Animal/drug effects , Behavior, Animal/physiology , Estradiol/pharmacology , Disease Models, Animal , Receptors, Estrogen/metabolism , Nitriles/pharmacology
15.
Cell Biochem Funct ; 42(4): e4076, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895919

ABSTRACT

Potassium bromate (KBrO3) is a common dietary additive, pharmaceutical ingredient, and significant by-product of water disinfection. p-coumaric acid (PCA) is a naturally occurring nutritional polyphenolic molecule with anti-inflammatory and antioxidant activities. The goal of the current investigation was to examine the protective effects of p-coumaric acid against the liver damage caused by KBrO3. The five groups of animals-control, KBrO3 (100 mg/kg bw), treatment with KBrO3 along with Silymarin (100 mg/kg bw), KBrO3, followed by PCA (100 mg/bw, and 200 mg/kg bw) were randomly assigned to the animals. Mice were slaughtered, and blood and liver tissues were taken for assessment of the serum biochemical analysis for markers of liver function (alanine transaminase, aspartate transaminase, alkaline phosphatase, albumin, and protein), lipid markers and antioxidant markers (TBARS), glutathione peroxidase [GSH-Px], glutathione (GSH), and markers of hepatic oxidative stress (CAT), (SOD), as well as histological H&E stain, immunohistochemical stain iNOS, and COX-2 as markers of inflammatory cytokines. PCA protects against acute liver failure by preventing the augmentation of blood biochemical markers and lipid profiles. In mice liver tissues, KBrO3 increases lipid indicators and depletes antioxidants, leading to an increase in JNK, ERK, and p38 phosphorylation. Additionally, PCA inhibited the production of pro-inflammatory cytokines and reduced the histological alterations in KBrO3-induced hepatotoxicity. Notably, PCA effectively mitigated KBrO3-induced hepatic damage by obstructing the TNF-α/NF-kB-mediated inflammatory process signaling system. Additionally, in KBrO3-induced mice, PCA increased the intensities of hepatic glutathione (GSH), SOD, GSH-Px, catalase, and GSH activities. Collectively, we demonstrate the molecular evidence that PCA eliminated cellular inflammatory conditions, mitochondrial oxidative stress, and the TNF-α/NF-κB signaling process, thereby preventing KBrO3-induced hepatocyte damage.


Subject(s)
Bromates , Coumaric Acids , Liver , Propionates , Animals , Mice , Coumaric Acids/pharmacology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Oxidative Stress/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Antioxidants/pharmacology , Antioxidants/metabolism , Protective Agents/pharmacology
16.
Pestic Biochem Physiol ; 202: 105952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879306

ABSTRACT

The citrus red mite, Panonychus citri, is one of the most notorious and devastating citrus pests around the world that has developed resistance to multiple chemical acaricides. In previous research, we found that spirodiclofen-resistant is related to overexpression of P450, CCE, and ABC transporter genes in P. citri. However, the regulatory mechanisms of these detoxification genes are still elusive. This study identified all hormone receptor 96 genes of P. citri. 8 PcHR96 genes contained highly conserved domains. The expression profiles showed that PcHR96h was significantly upregulated in spirodiclofen resistant strain and after exposure to spirodiclofen. RNA interference of PcHR96h decreased expression of detoxification genes and increased spirodiclofen susceptibility in P. citri. Furthermore, molecular docking, heterologous expression, and drug affinity responsive target stability demonstrated that PcHR96h can interact with spirodiclofen in vitro. Our research results indicate that PcHR96h plays an important role in regulating spirodiclofen susceptibility and provides theoretical support for the resistance management of P. citri.


Subject(s)
Spiro Compounds , Animals , Spiro Compounds/pharmacology , Spiro Compounds/metabolism , Acaricides/pharmacology , Propionates/pharmacology , Propionates/metabolism , Tetranychidae/drug effects , Tetranychidae/genetics , Tetranychidae/metabolism , Molecular Docking Simulation , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Drug Resistance/genetics , 4-Butyrolactone/analogs & derivatives
17.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928337

ABSTRACT

3-(4-Hydroxy-3-methoxyphenyl)propionic acid (HMPA), also known as dihydroferulic acid, is a hydroxycinnamic acid derivative that can be derived from the microbial transformation of dietary polyphenols or naturally obtained from fermented foods. Although numerous studies have documented its antioxidant and anti-obesity effects, the effect of HMPA on muscle function remains unknown. This study investigated the effects of HMPA on muscle strength and exercise endurance capacity. Mice were orally administered low and high doses of HMPA for 14 days and subjected to grip force and treadmill exhaustion tests to evaluate muscle function. Our results showed that HMPA-administered groups significantly enhanced absolute grip strength (p = 0.0256) and relative grip strength (p = 0.0209), and low-dose HMPA decreased the plasma level of blood urea nitrogen after exercise (p = 0.0183), but HMPA did not affect endurance performance. Low-dose HMPA administration increased Myf5 expression in sedentary mice (p = 0.0106), suggesting that low-dose HMPA may promote muscle development. Additionally, HMPA improved hepatic glucose and lipid metabolism, and inhibited muscular lipid metabolism and protein catabolism, as indicated by changes in mRNA expression levels of related genes. These findings suggest that HMPA may be a promising dietary supplement for muscle health and performance.


Subject(s)
Muscle, Skeletal , Physical Conditioning, Animal , Animals , Mice , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Coumaric Acids/pharmacology , Lipid Metabolism/drug effects , Propionates/pharmacology , Hand Strength , Muscle Strength/drug effects , Liver/metabolism , Liver/drug effects
18.
Microbiome ; 12(1): 114, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915127

ABSTRACT

BACKGROUND: Mediterranean diet rich in polyphenolic compounds holds great promise to prevent and alleviate multiple sclerosis (MS), a central nervous system autoimmune disease associated with gut microbiome dysbiosis. Health-promoting effects of natural polyphenols with low bioavailability could be attributed to gut microbiota reconstruction. However, its underlying mechanism of action remains elusive, resulting in rare therapies have proposed for polyphenol-targeted modulation of gut microbiota for the treatment of MS. RESULTS: We found that oral ellagic acid (EA), a natural polyphenol rich in the Mediterranean diet, effectively halted the progression of experimental autoimmune encephalomyelitis (EAE), the animal model of MS, via regulating a microbiota-metabolites-immunity axis. EA remodeled the gut microbiome composition and particularly increased the relative abundances of short-chain fatty acids -producing bacteria like Alloprevotella. Propionate (C3) was most significantly up-regulated by EA, and integrative modeling revealed a strong negative correlation between Alloprevotella or C3 and the pathological symptoms of EAE. Gut microbiota depletion negated the alleviating effects of EA on EAE, whereas oral administration of Alloprevotella rava mimicked the beneficial effects of EA on EAE. Moreover, EA directly promoted Alloprevotella rava (DSM 22548) growth and C3 production in vitro. The cell-free supernatants of Alloprevotella rava co-culture with EA suppressed Th17 differentiation by modulating acetylation in cell models. C3 can alleviate EAE development, and the mechanism may be through inhibiting HDAC activity and up-regulating acetylation thereby reducing inflammatory cytokines secreted by pathogenic Th17 cells. CONCLUSIONS: Our study identifies EA as a novel and potentially effective prebiotic for improving MS and other autoimmune diseases via the microbiota-metabolites-immunity axis. Video Abstract.


Subject(s)
Ellagic Acid , Encephalomyelitis, Autoimmune, Experimental , Gastrointestinal Microbiome , Multiple Sclerosis , Propionates , Ellagic Acid/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/microbiology , Propionates/metabolism , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/microbiology , Mice, Inbred C57BL , Disease Models, Animal , Female , Autoimmunity/drug effects , Dysbiosis/microbiology , Central Nervous System/drug effects , Central Nervous System/immunology , Humans , Administration, Oral
19.
Nat Microbiol ; 9(6): 1607-1618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740932

ABSTRACT

Phthiocerol dimycocerosate (PDIM) is an essential virulence lipid of Mycobacterium tuberculosis. In vitro culturing rapidly selects for spontaneous PDIM-negative mutants that have attenuated virulence and increased cell wall permeability, thus impacting the relevance of experimental findings. PDIM loss can also reduce the efficacy of the BCG Pasteur vaccine. Here we show that vancomycin susceptibility can rapidly screen for M. tuberculosis PDIM production. We find that metabolic deficiency of methylmalonyl-CoA impedes the growth of PDIM-producing bacilli, selecting for PDIM-negative variants. Supplementation with odd-chain fatty acids, cholesterol or vitamin B12 restores PDIM-positive bacterial growth. Specifically, we show that propionate supplementation enhances PDIM-producing bacterial growth and selects against PDIM-negative mutants, analogous to in vivo conditions. Our study provides a simple approach to screen for and maintain PDIM production, and reveals how discrepancies between the host and in vitro nutrient environments can attenuate bacterial pathogenicity.


Subject(s)
Mycobacterium tuberculosis , Propionates , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Propionates/pharmacology , Propionates/metabolism , Virulence , Lipids/chemistry , Cholesterol Esters/metabolism , Tuberculosis/microbiology , Tuberculosis/prevention & control , Fatty Acids/metabolism , Vitamin B 12/pharmacology , Vitamin B 12/metabolism , Humans , Mutation , Virulence Factors/metabolism , Virulence Factors/genetics , Cholesterol/metabolism , Acyl Coenzyme A
20.
Food Chem ; 454: 139786, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38820640

ABSTRACT

This study aims to investigate the potential of using advanced spectroscopies for cheese quality monitoring. For this purpose, six semi-hard cheeses manufactured using lactic acid bacteria (LAB) and/or propionic acid bacteria (PAB) were explored using near-infrared spectroscopy (NIRS) and Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. The spectral data were analyzed using principal component analysis for extraction of possible discriminative patterns in quality parameters. The results show that the green analytical, but primarily bulk-sensitive, NIRS method was able to discriminate the cheese varieties primarily due to differences in the first overtone CH stretching region between 1650 and 1720 nm, in particular by the lactate methylene absorption at 1674 nm. A total of 25 metabolites were identified in the 1H NMR spectra of the cheese extracts, several of which were associated with the LAB and PAB metabolic pathways. PAB-associated metabolites include propionate, acetate, and glutamate, while LAB-associated metabolites include lactate and acetoin among others.


Subject(s)
Cheese , Spectroscopy, Near-Infrared , Cheese/analysis , Spectroscopy, Near-Infrared/methods , Propionates/analysis , Propionates/metabolism , Proton Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Spectroscopy/methods , Lactobacillales/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...