Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.644
Filter
1.
J Nanobiotechnology ; 22(1): 347, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898529

ABSTRACT

BACKGROUND: Silica nanoparticles (SNPs) have immense potential in biomedical research, particularly in drug delivery and imaging applications, owing to their stability and minimal interactions with biological entities such as tissues or cells. RESULTS: With synthesized and characterized cyanine-dye-doped fluorescent SNPs (CSNPs) using cyanine 3.5, 5.5, and 7 (Cy3.5, Cy5.5, and Cy7). Through systematic analysis, we discerned variations in the surface charge and fluorescence properties of the nanoparticles contingent on the encapsulated dye-(3-aminopropyl)triethoxysilane conjugate, while their size and shape remained constant. The fluorescence emission spectra exhibited a redshift correlated with increasing dye concentration, which was attributed to cascade energy transfer and self-quenching effects. Additionally, the fluorescence signal intensity showed a linear relationship with the particle concentration, particularly at lower dye equivalents, indicating a robust performance suitable for imaging applications. In vitro assessments revealed negligible cytotoxicity and efficient cellular uptake of the nanoparticles, enabling long-term tracking and imaging. Validation through in vivo imaging in mice underscored the versatility and efficacy of CSNPs, showing single-switching imaging capabilities and linear signal enhancement within subcutaneous tissue environment. CONCLUSIONS: This study provides valuable insights for designing fluorescence imaging and optimizing nanoparticle-based applications in biomedical research, with potential implications for targeted drug delivery and in vivo imaging of tissue structures and organs.


Subject(s)
Carbocyanines , Fluorescent Dyes , Nanoparticles , Optical Imaging , Silicon Dioxide , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Carbocyanines/chemistry , Animals , Mice , Optical Imaging/methods , Fluorescent Dyes/chemistry , Humans , Silanes/chemistry , Particle Size , Propylamines , Benzothiazoles
2.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893361

ABSTRACT

A versatile family of quaternary propargylamines was synthesized employing the KA2 multicomponent reaction, through the single-step coupling of a number of amines, ketones, and terminal alkynes. Sustainable synthetic procedures using transition metal catalysts were employed in all cases. The inhibitory activity of these molecules was evaluated against human monoaminoxidase (hMAO)-A and hMAO-B enzymes and was found to be significant. The IC50 values for hMAO-B range from 152.1 to 164.7 nM while the IC50 values for hMAO-A range from 765.6 to 861.6 nM. Furthermore, these compounds comply with Lipinski's rule of five and exhibit no predicted toxicity. To understand their binding properties with the two target enzymes, key interactions were studied using molecular docking, all-atom molecular dynamics (MD) simulations, and MM/GBSA binding free energy calculations. Overall, herein, the reported family of propargylamines exhibits promise as potential treatments for neurodegenerative disorders, such as Parkinson's disease. Interestingly, this is the first time a propargylamine scaffold bearing an internal alkyne has been reported to show activity against monoaminoxidases.


Subject(s)
Alkynes , Molecular Docking Simulation , Molecular Dynamics Simulation , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Pargyline , Alkynes/chemistry , Alkynes/pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemical synthesis , Humans , Pargyline/chemistry , Pargyline/analogs & derivatives , Pargyline/pharmacology , Propylamines/chemistry , Structure-Activity Relationship , Molecular Structure
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124542, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823241

ABSTRACT

Enzyme-induced in-situ fluorescence is crucial for the development of biosensing mechanisms and correlative spectroscopic analysis. Inspired by simple p-aminophenol (AP)-controlled synthesis and the specific catalytic reaction of 4-aminophenyl phosphate (APP) triggered by alkaline phosphatase (ALP), our research proposed a strategy to prepare carbon dots (CDs) as fluorescent signals for ALP detection using AP and 3-aminopropyltrimethoxysilane (APTMS) as the precursors. The further constructed ratiometric fluorescence sensor reduced the detection limit of ALP to 0.075 µU/mL by a significant margin. Considering the need for point-of-care testing (POCT), we chose agarose for the preparation of portable hydrogel sensors so that even untrained personnel can quickly achieve semi-quantitative visual detection of ALP using colorimetric cards. These results demonstrate the practical applicability of ratiometric fluorescence sensing hydrogel pillar arrays, which are important for high-sensitivity, visualization, and portable rapid enzyme activity assays.


Subject(s)
Alkaline Phosphatase , Biosensing Techniques , Hydrogels , Spectrometry, Fluorescence , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/analysis , Biosensing Techniques/methods , Spectrometry, Fluorescence/methods , Hydrogels/chemistry , Limit of Detection , Silanes/chemistry , Quantum Dots/chemistry , Carbon/chemistry , Propylamines/chemistry , Colorimetry/methods , Humans
4.
Analyst ; 149(13): 3615-3624, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38775016

ABSTRACT

Mycophenolate mofetil (MpM) is a medication used to prevent the rejection of transplanted organs, particularly in kidney, heart, and liver transplant surgeries. It is extremely important to be conscious that MpM can raise the risk of severe infections and some cancers if it exceeds the recommended dose while lower doses will result in organ rejections. So, it is essential to monitor the dosage of MpM in real time in the micromolar range. In this work, we have synthesized 3-aminopropyltriethoxysilane (APTES) functionalized nickel cobaltite (NiCo2O4) and this amino functionalization was chosen to enhance the stability and electrochemical activity of NiCo2O4. The enhanced activity of NiCo2O4 was used for developing an electrochemical sensor for the detection of MpM. APTES functionalized NiCo2O4 was coated on carbon cloth and used as the working electrode. Surface functionalization with APTES on NiCo2O4 was aimed at augmenting the adsorption/interaction of MpM due to its binding properties. The developed sensor showed a very low detection limit of 1.23 nM with linear ranges of 10-100 nM and 1-100 µM and its practical applicability was examined using artificial samples of blood serum and cerebrospinal fluid, validating its potential application in real-life scenarios.


Subject(s)
Carbon , Immunosuppressive Agents , Limit of Detection , Mycophenolic Acid , Nanostructures , Nickel , Sea Urchins , Wearable Electronic Devices , Animals , Nickel/chemistry , Mycophenolic Acid/blood , Mycophenolic Acid/chemistry , Mycophenolic Acid/analysis , Immunosuppressive Agents/blood , Immunosuppressive Agents/analysis , Immunosuppressive Agents/chemistry , Carbon/chemistry , Sea Urchins/chemistry , Nanostructures/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Propylamines/chemistry , Humans , Cobalt/chemistry , Electrodes , Silanes
5.
Analyst ; 149(12): 3317-3324, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38742381

ABSTRACT

In this work, the release of giant liposome (∼100 µm in diameter) content was imaged by shadow electrochemiluminescence (ECL) microscopy. Giant unilamellar liposomes were pre-loaded with a sucrose solution and allowed to sediment at an ITO electrode surface immersed in a solution containing a luminophore ([Ru(bpy)3]2+) and a sacrificial co-reactant (tri-n-propylamine). Upon polarization, the electrode exhibited illumination over its entire surface thanks to the oxidation of ECL reagents. However, as soon as liposomes reached the electrode surface, dark spots appeared and then spread over time on the surface. This observation reflected a blockage of the electrode surface at the contact point between the liposome and the electrode surface, followed by the dilution of ECL reagents after the rupture of the liposome membrane and release of its internal ECL-inactive solution. Interestingly, ECL reappeared in areas where it initially faded, indicating back-diffusion of ECL reagents towards the previously diluted area and thus confirming liposome permeabilization. The whole process was analyzed qualitatively and quantitatively within the defined region of interest. Two mass transport regimes were identified: a gravity-driven spreading process when the liposome releases its content leading to ECL vanishing and a diffusive regime when ECL recovers. The reported shadow ECL microscopy should find promising applications for the imaging of transient events such as molecular species released by artificial or biological vesicles.


Subject(s)
Electrodes , Luminescent Measurements , Luminescent Measurements/methods , Liposomes/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Propylamines/chemistry , Unilamellar Liposomes/chemistry , Sucrose/chemistry , Tin Compounds
6.
Sci Rep ; 14(1): 12035, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802518

ABSTRACT

Colonoscopy is the standard procedure for screening, and surveillance of colorectal cancer, including the treatment for colonic lesions. Colonic spasm is an important problem from colonoscopy that affects both surgeons and patients. The spasm also might be the cause of longer cecal intubation time, difficulty of the procedure, and increased pain. Previous reports indicated that antispasmodic agents can decrease such symptoms. Therefore, we conducted this study to investigate the cecal intubation time of antispasmodic agents. A single blinded randomized controlled trial was conducted from 01/11/2020 to 31/08/2021. One hundred four patients were allocated to antispasmodic agent group and control group, in 1:1 ratio. The efficacy of median (range) cecal intubation time showed similar results of 5 (2, 14) and 5 (2, 15) minutes with no statistically significant difference. The mean scores of all domains i.e., pain, spasm, cleanliness, and difficulty were better in the antispasmodic agent group about 2.6 (1.4), 1.8 (0.8), 2.4 (0.9), and 2.0 (0.9), respectively, than control group but there were spasm and cleanliness showed statistically significant difference. Moreover, the satisfaction scores showed better efficacy in decreased spasm, decreased difficulty, and increased cleanliness than control group. Prescribing of antispasmodic drugs before colonoscopy might be the choice of treatment for the patients. The antispasmodic drugs will be beneficial to both of the patient and the doctor.


Subject(s)
Colonoscopy , Parasympatholytics , Simethicone , Humans , Colonoscopy/methods , Male , Female , Middle Aged , Simethicone/administration & dosage , Parasympatholytics/therapeutic use , Aged , Adult , Single-Blind Method , Propylamines
7.
Colloids Surf B Biointerfaces ; 239: 113975, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762934

ABSTRACT

Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.


Subject(s)
Durapatite , Europium , Folic Acid , Nanoparticles , Humans , Folic Acid/chemistry , Europium/chemistry , Nanoparticles/chemistry , HeLa Cells , Durapatite/chemistry , Luminescence , Microscopy, Fluorescence , Propylamines/chemistry , Particle Size , Luminescent Agents/chemistry
8.
Int J Biol Macromol ; 269(Pt 1): 132021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697441

ABSTRACT

Challenges in enzyme and product recovery are currently intriguing in modern biotechnology. Coping enzyme stability, shelf life and efficiency, nanomaterials-based immobilization were epitomized of industrial practice. Herein, a α-amylase from Geobacillus thermoleovorans was purified and bound effectively on to a modified 3-Aminopropyltriethoxysilane (APTES)-Fe3O4 nanoparticle. It was revealed that the carrier-bound enzyme catalysis (pH 8 and 60 °C) was significant in contrast to the free enzyme (pH 7.5 and 55 °C). Furthermore, Zn2+ and Cu2+ were shown to cause inhibitory effects in both enzyme states. Unlike chloroform, toluene, benzene, and butanol, minimal effects were observed with ethanol, acetone, and hexane. The bound enzyme retained 27.4 % of its initial activity after being stored for 36 days. In addition, the reusability of the bound enzyme showed a gradual decline in activity after the first cycle; however, after 13 cycles, its residual activity at 53 % was observed. These data proved significant enough to use this enzyme for industrial starch and analogous substrate bio-processing.


Subject(s)
Enzyme Stability , Enzymes, Immobilized , Propylamines , alpha-Amylases , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Propylamines/chemistry , Silanes/chemistry , Geobacillus/enzymology , Temperature , Hydrogen-Ion Concentration , Biocatalysis , Catalysis , Magnetite Nanoparticles/chemistry , Starch/chemistry
9.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38641433

ABSTRACT

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Subject(s)
Catheters , Coated Materials, Biocompatible , Heparin , Polyphenols , Tannins , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Catheters/microbiology , Polyphenols/chemistry , Polyphenols/pharmacology , Heparin/chemistry , Heparin/pharmacology , Tannins/chemistry , Tannins/pharmacology , Silanes/chemistry , Silanes/pharmacology , Anticoagulants/chemistry , Anticoagulants/pharmacology , Propylamines/chemistry , Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polylysine/chemistry , Polylysine/pharmacology , Surface Properties , Hydrophobic and Hydrophilic Interactions , Human Umbilical Vein Endothelial Cells/drug effects , Silicone Elastomers/chemistry , Adsorption , Escherichia coli/drug effects
10.
J Gastrointest Surg ; 28(4): 451-457, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583895

ABSTRACT

PURPOSE: Postoperative serum hyperamylasemia (POH) is a part of the new, increasingly highlighted, definition for postpancreatectomy pancreatitis (PPAP). This study aimed to analyze whether the biochemical changes of PPAP are differently associated with postoperative complications after distal pancreatectomy (DP) compared with pancreatoduodenectomy (PD). The textbook outcome (TO) was used as a summary measure to capture real-world data. METHODS: The data were retrospectively extracted from a prospective clinical database. Patients with POH, defined as levels above our institution's upper limit of normal on postoperative day 1, after DP and the corresponding propensity score-matched cohort after PD were evaluated on postoperative complications by using logistic regression analyses. RESULTS: We analyzed 723 patients who underwent PD and DP over a period of 9 years. After propensity score matching, 384 patients (192 patients in each group) remained. POH was observed in 78 (41.1%) and 74 (39.4%) after PD and DP correspondingly. There was a significant increase of postoperative complications in the PD group: Clavien-Dindo classification system ≥3 (P < .01 vs P = .71), clinically relevant postoperative pancreatic fistula (P < .001 vs P = .2), postpancreatectomy hemorrhage (P < .001 vs P = .11), and length of hospital stay (P < .001 vs P = .69) if POH occurred compared with in the DP group. TO was significantly unlikely in cases with POH after PD compared with DP (P > .001 vs P = .41). Furthermore, POH was found to be an independent predictor for missing TO after PD (odds ratio [OR], 0.29; 95% CI, 0.14-0.60; P < .001), whereas this was not observed in patients after DP (OR, 0.53; 95% CI, 0.21-1.33; P = .18). CONCLUSION: As a part of the definition for PPAP, POH is a predictive indicator associated with postoperative complications after PD but not after DP.


Subject(s)
Hyperamylasemia , Pancreatitis , Propylamines , Humans , Pancreatectomy/adverse effects , Pancreaticoduodenectomy/adverse effects , Hyperamylasemia/complications , Propensity Score , Retrospective Studies , Prospective Studies , Pancreatic Fistula/epidemiology , Pancreatic Fistula/etiology , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Pancreatitis/complications
11.
Int J Biol Macromol ; 268(Pt 2): 131790, 2024 May.
Article in English | MEDLINE | ID: mdl-38677693

ABSTRACT

The demand for paper-based packaging materials as an alternative to incumbent disposable petroleum-derived polymers for food packaging applications is ever-growing. However, typical paper-based formats are not suitable for use in unconventional applications due to inherent limitations (e.g., excessive hydrophilicity, lack antimicrobial ability), and accordingly, enabling new capabilities is necessity. Herein, a simple and environmentally friendly strategy was proposed to introduce antimicrobial and hydrophobic functions to cellulose paper through successive chemical grafting of 3-aminopropyltriethoxysilane (APS) and cinnamaldehyde (CA). The results revealed that cellulose paper not only showed long-term antibacterial effect on different bacteria, but also inhibited a wide range of fungi. Encouragingly, the modified paper, which is fluorine-free, displays a high contact angle of 119.7°. Thus, even in the wet state, the modified paper can still maintain good mechanical strength. Meanwhile, the multifunctional composite papers have excellent biocompatibility and biodegradability. Compared with ordinary cellulose paper, multifunctional composite paper can effectively prolong the shelf life of strawberries. Therefore, the multifunctional composite paper represents good application potential as a fruit packaging material.


Subject(s)
Acrolein , Cellulose , Food Packaging , Fragaria , Hydrophobic and Hydrophilic Interactions , Paper , Cellulose/chemistry , Cellulose/analogs & derivatives , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Fragaria/microbiology , Food Packaging/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Silanes/chemistry , Food Preservation/methods , Propylamines/chemistry , Microbial Sensitivity Tests
12.
Environ Res ; 252(Pt 2): 118927, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631467

ABSTRACT

Effective drug delivery for is the foremost requirement for the complete recovery of the disease. Nanomedicine and nanoengineering has provided so many spaces and ideas for the drug delivery design, whether controlled, targeted, or sustained. Different types of nanocarriers or nanoparticles are aggressively designed for the drug delivery applications. Clay minerals are identified as a one of the potential nanocarrier for the drug delivery. Owing to their biocompatibility and very low cytotoxicity, clay minerals showing effective therapeutic applications. In the present investigation, clay mineral, i.e., Halloysite nano tubes are utilized as a nanocarrier for the delivery of antibiotic cefixime (CFX), a third-generation cephalosporin. The HNT was first functionalized with the sulfuric acid and then further treated with the 3-(aminopropyl)triethoxysilane (APTES). The drug is loaded on three different classifications of HNTs, i.e., Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT and their comparative analysis is established. Different characterization techniques such as X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), Transmission electron microscopy TEM), Brunauer-Emmett-Teller (BET), adsorption studies, and Thermogravimetric analysis (TGA) were performed to evaluate their chemical, structural, morphological, and thermal properties. TGA confirmed the encapsulation efficiency of Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT as 42.65, 52.19, and 53.43%, respectively. Disk diffusion and MTT assay confirmed that the drug loaded HNTs have potential antibacterial activities and less cytotoxicity. The adsorption capacity of CFX with different HNTs are evaluated and Different adsorption and kinetic models have been discussed. Drug release studies shows that APTES-CFX-HNT showing sustained release of cefixime as compared to Bare-CFX-HNT and Acid-CFX-HNT.


Subject(s)
Anti-Bacterial Agents , Cefixime , Clay , Cefixime/chemistry , Anti-Bacterial Agents/chemistry , Clay/chemistry , Drug Carriers/chemistry , Aluminum Silicates/chemistry , Nanoparticles/chemistry , Silanes/chemistry , Spectroscopy, Fourier Transform Infrared , Propylamines
13.
Bioprocess Biosyst Eng ; 47(4): 533-547, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485804

ABSTRACT

The calorific value of post-fermentation biogas is a way down below standard and quite low due to the presence of high amount level of carbon dioxide (CO2) biogas mixture. Therefore, it raises the need to process the biogas, separating it from CO2 in order to obtain high-purity biogas as well as to maximize its calorific value. One widely available material that can be used as a sustainable carbon capture adsorbent is silica extracted from bamboo leaves. However, so that silica can act as CO2 adsorber, it is necessary to modify the surface of silica with CTAB and APTES (3-aminopropyl triethoxysilane). In this study, 2-stage method was carried out, namely preparation of mesoporous silica and surface modification using APTES on the mesoporous silica. Experiments in synthesizing APTES-modified silica were obtained by varying its composition: CTAB (1.5-5%w), (HCl 1.5-5 N), and APTES (10-30%). A central composite design (CCD) was employed in exploring the interaction between all variables and also performed for the optimization. Through analysis of variance, it shows that optimum CO2 adsorption capacity reaches 47.02 mg g-1, by applying 4.98% of CTAB, 4.28 N of HCl and 10.08% of APTES. Pseudo-second-order kinetic and Redlich-Peterson isotherm models are more representative to show the adsorption behavior of CO2 into the modified silica. The results show that the modified silica with APTES shows a prospective application of silica for CO2 removal from biogas.


Subject(s)
Biofuels , Propylamines , Silanes , Silicon Dioxide , Cetrimonium , Carbon Dioxide
14.
Int J Biol Macromol ; 265(Pt 2): 131053, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521299

ABSTRACT

How to efficiently produce high performance plywood is of particular interest, while its sensitivity to moisture is overcome. This paper presents a simple and scalable strategy for the preparation of high-performance plywood based on the chemical bonding theory; a wood interfacial functionalized platform (WIFP) based on (3-aminopropyl) triethoxysilane (APTES) was established. Interestingly, the APTES-enhanced dialdehyde cellulose-based adhesive (DAC-APTES) was able to effectively establish chemically active adhesive interfaces; the dry/wet shear strength of WIFP/DAC-APTES adhesive was 3.15/1.31 MPa, which was much higher than 0.7 MPa (GB/T 9846-2015). The prepared plywood showed excellent wood-polymer interface adhesion, which exceeded the force that the wood itself could withstand. In addition, the DAC-APTES adhesive exhibits moisture evaporation-induced curing behavior at room temperature and can easily support the weight of an adult weighing 65.7 Kg. This research provides a novel approach for functionalized interface design of wood products, an effective means to prepare high-performance plywood.


Subject(s)
Cellulose , Silanes , Wood , Adult , Humans , Polymers , Propylamines
15.
Transl Psychiatry ; 14(1): 151, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504095

ABSTRACT

Integrating CYP2D6 genotyping and therapeutic drug monitoring (TDM) is crucial for guiding individualized atomoxetine therapy in children with attention-deficit/hyperactivity disorder (ADHD). The aim of this retrospective study was (1) to investigate the link between the efficacy and tolerability of atomoxetine in children with ADHD and plasma atomoxetine concentrations based on their CYP2D6 genotypes; (2) to offer TDM reference range recommendations for atomoxetine based on the CYP2D6 genotypes of children receiving different dosage regimens. This retrospective study covered children and adolescents with ADHD between the ages of 6 and <18, who visited the psychological and behavioral clinic of Children's Hospital of Nanjing Medical University from June 1, 2021, to January 31, 2023. The demographic information and laboratory examination data, including CYP2D6 genotype tests and routine TDM of atomoxetine were obtained from the hospital information system. We used univariate analysis, Mann-Whitney U nonparametric test, Kruskal-Wallis test, and the receiver operating characteristic (ROC) curve to investigate outcomes of interest. 515 plasma atomoxetine concentrations of 385 children (325 boys and 60 girls) with ADHD between 6 and 16 years of age were included for statistical analysis in this study. Based on genotyping results, >60% of enrolled children belonged to the CYP2D6 extensive metabolizer (EM), while <40% fell into the intermediate metabolizer (IM). CYP2D6 IMs exhibited higher dose-corrected plasma atomoxetine concentrations by 1.4-2.2 folds than those CYP2D6 EMs. Moreover, CYP2D6 IMs exhibited a higher response rate compare to EMs (93.55% vs 85.71%, P = 0.0132), with higher peak plasma atomoxetine concentrations by 1.67 times than those of EMs. Further ROC analysis revealed that individuals under once daily in the morning (q.m.) dosing regimen exhibited a more effective response to atomoxetine when their levels were ≥ 268 ng/mL (AUC = 0.710, P < 0.001). In addition, CYP2D6 IMs receiving q.m. dosing of atomoxetine were more likely to experience adverse reactions in the central nervous system and gastrointestinal system when plasma atomoxetine concentrations reach 465 and 509 ng/mL, respectively. The findings in this study provided promising treatment strategy for Chinese children with ADHD based on their CYP2D6 genotypes and plasma atomoxetine concentration monitoring. A peak plasma atomoxetine concentration higher than 268 ng/mL might be requisite for q.m. dosing. Assuredly, to validate and reinforce these initial findings, it is necessary to collect further data in controlled studies with a larger sample size.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Adolescent , Child , Female , Humans , Male , Adrenergic Uptake Inhibitors/adverse effects , Atomoxetine Hydrochloride/adverse effects , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/genetics , Cytochrome P-450 CYP2D6/genetics , Drug Monitoring , Genotype , Propylamines/adverse effects , Retrospective Studies , Infant , Child, Preschool
16.
Biosensors (Basel) ; 14(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38534248

ABSTRACT

Bovine serum albumin (BSA) is commonly incorporated in vaccines to improve stability. However, owing to potential allergic reactions in humans, the World Health Organization (WHO) mandates strict adherence to a BSA limit (≤50 ng/vaccine). BSA detection with conventional techniques is time-consuming and requires specialized equipment. Efficient alternatives such as the ion-sensitive field-effect transistor (ISFET), despite rapid detection, affordability, and portability, do not detect BSA at low concentrations because of inherent sensitivity limitations. This study proposes a silicon-on-insulator (SOI) substrate-based dual-gate (DG) ISFET platform to overcome these limitations. The capacitive coupling DG structure significantly enhances sensitivity without requiring external circuits, owing to its inherent amplification effect. The extended-gate (EG) structure separates the transducer unit for electrical signal processing from the sensing unit for biological detection, preventing chemical damage to the transducer, accommodating a variety of biological analytes, and affording easy replaceability. Vapor-phase surface treatment with (3-Aminopropyl) triethoxysilane (APTES) and the incorporation of a SnO2 sensing membrane ensure high BSA detection efficiency and sensitivity (144.19 mV/log [BSA]). This DG-FET-based biosensor possesses a simple structure and detects BSA at low concentrations rapidly. Envisioned as an effective on-site diagnostic tool for various analytes including BSA, this platform addresses prior limitations in biosensing and shows promise for practical applications.


Subject(s)
Biosensing Techniques , Propylamines , Serum Albumin, Bovine , Humans , Ions , Silanes , Silicon , Biosensing Techniques/methods , Transistors, Electronic
17.
Biomed Phys Eng Express ; 10(4)2024 May 24.
Article in English | MEDLINE | ID: mdl-38479000

ABSTRACT

Diagnosis of diseases with low facilities, speed, accuracy and sensitivity is an important matter in treatment. Bioprobes based on iron oxide nanoparticles are a good candidate for early detection of deadly and infectious diseases such as tetanus due to their high reactivity, biocompatibility, low production cost and sample separation under a magnetic field. In this study, silane groups were coated on surface of iron oxide nanoparticles using tetraethoxysilane (TEOS) hydrolysis. Also, NH2groups were generated on the surface of silanized nanoparticles using 3-aminopropyl triethoxy silane (APTES). Antibody was immobilized on the surface of silanized nanoparticles using TCT trichlorothriazine as activator. Silanization and stabilized antibody were investigated by using of FT-IR, EDX, VSM, SRB technique. UV/vis spectroscopy, fluorescence, agglutination test and ELISA were used for biosensor performance and specificity. The results of FT-IR spectroscopy showed that Si-O-Si and Si-O-Fe bonds and TCT chlorine and amine groups of tetanus anti-toxoid antibodies were formed on the surface of iron oxide nanoparticles. The presence of Si, N and C elements in EDX analysis confirms the silanization of iron oxide nanoparticles. VSM results showed that the amount of magnetic nanoparticles after conjugation is sufficient for biological applications. Antibody stabilization on nanoparticles increased the adsorption intensity in the uv/vis spectrometer. The fluorescence intensity of nano bioprobe increased in the presence of 10 ng ml-1. Nanobio probes were observed as agglomerates in the presence of tetanus toxoid antigen. The presence of tetanus antigen caused the formation of antigen-nanobioprobe antigen complex. Identification of this complex by HRP-bound antibody confirmed the specificity of nanobioprobe. Tetanus magnetic nanobioprobe with a diagnostic limit of 10 ng ml-1of tetanus antigen in a short time can be a good tool in LOC devices and microfluidic chips.


Subject(s)
Biosensing Techniques , Propylamines , Silanes , Tetanus Toxoid , Tetanus Toxoid/chemistry , Tetanus Toxoid/immunology , Silanes/chemistry , Spectroscopy, Fourier Transform Infrared , Biosensing Techniques/methods , Propylamines/chemistry , Humans , Enzyme-Linked Immunosorbent Assay , Magnetic Iron Oxide Nanoparticles/chemistry , Tetanus/diagnosis , Tetanus/prevention & control , Magnetite Nanoparticles/chemistry , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Limit of Detection , Iron/chemistry , Agglutination Tests/methods
18.
Chem Commun (Camb) ; 60(20): 2716-2731, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38353179

ABSTRACT

Real-time monitoring of biocatalytic-based processes is significantly improved and simplified when they can be visualized. Visual monitoring can be achieved by integrating a fluorescent unit with the biocatalyst. Herein, we outline the design strategies of fluorescent probes for monitoring biocatalysis: (1) probes for monitoring biocatalytic transfer: γ-glutamine is linked to the fluorophore as both a recognition group and for intramolecular charge transfer (ICT) inhibition; the probe is initially in an off state and is activated via the transfer of the γ-glutamine group and the release of the free amino group, which results in restoration of the "Donor-π-Acceptor" (D-π-A) system and fluorescence recovery. (2) Probes for monitoring biocatalytic oxidation: a propylamine is connected to the fluorophore as a recognition group, which cages the hydroxyl group, leading to the inhibition of ICT; propylamine is oxidized and subsequently ß-elimination occurs, resulting in exposure of the hydroxyl group and fluorescence recovery. (3) Probes for monitoring biocatalytic reduction: a nitro group attached to a fluorophore as a fluorescence quenching group, this is converted to an amino group by catalytic reduction, resulting in fluorescence recovery. (4) Probes for monitoring biocatalytic hydrolysis: ß-D-galactopyranoside or phosphate acts as a recognition group attached to hydroxyl groups of the fluorophore; the subsequent biocatalytic hydrolysis reaction releases the hydroxyl group resulting in fluorescence recovery. Following these 4 mechanisms, fluorophores including cyanine, coumarin, rhodamine, and Nile-red, have been used to develop systems for monitoring biocatalytic reactions. We anticipate that these strategies will result in systems able to rapidly diagnose and facilitate the treatment of serious diseases.


Subject(s)
Fluorescent Dyes , Glutamine , Biocatalysis , Rhodamines , Propylamines
19.
Fitoterapia ; 174: 105852, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325587

ABSTRACT

Phytochemical studies on the leaves and twigs of Hypericum ascyron Linn. led to the isolation of two previously undescribed rearranged polycyclic polyprenylated acylphloroglucinols (PPAP) with a 4,5-seco-3(2H)-furanone skeleton, named hyperascone A and B (1-2). Additionally, a known PPAP tomoeone A (3) and two known xanthones 1,3,5 -trihydroxy-6-O-prenylxanthone (4) and 3,7-dihydroxy-1,6-dimethoxyxanthone (5) were also isolated. The structures of the compounds were determined by the analysis of their spectroscopic data including HRMS, NMR and ECD. All of the five isolated compounds exhibited neuroprotective effects against MPP+ and microglia activation induced damage of SH-SY5Y cells.


Subject(s)
Hypericum , Neuroblastoma , Neuroprotective Agents , Propylamines , Humans , Hypericum/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Molecular Structure , Phloroglucinol/pharmacology , Phloroglucinol/chemistry
20.
Health Promot Int ; 39(1)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38305640

ABSTRACT

The cost of physical inactivity is alarming, and calls for whole-of-system approaches to population physical activity promotion (PPAP) are increasing. One innovative approach to PPAP is to use a framework of interdependent attributes and associated dimensions of effective systems for chronic disease prevention. Describing system boundaries can be an elusive task, and this article reports on using an attribute framework as a first step in describing and then assessing and strengthening a provincial system for PPAP in British Columbia, Canada. Interviews were conducted with provincial stakeholders to gather perspectives regarding attributes of the system. Following this, two workshops were facilitated to document important stories about the current system for PPAP and link story themes with attributes. Results from interviews and workshops were summarized into key findings and a set of descriptive statements. One hundred and twenty-one statements provide depth, breadth and scope to descriptions of the system through the lens of an adapted framework including four attributes: (i) implementation of desired actions, (ii) resources, (iii) leadership and (iv) collaborative capacity. The attribute framework was a useful tool to guide a whole-of-system approach and turn elusive boundaries into rich descriptors of a provincial system for PPAP. Immediate implications for our research are to translate descriptive statements into variables, then assess the system through group model building and identify leverage points from a causal loop diagram to strengthen the system. Future application of this approach in other contexts, settings and health promotion and disease prevention topics is recommended.


Subject(s)
Delivery of Health Care , Exercise , Propylamines , Humans , Canada , Health Promotion/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...