Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 109: 117790, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38906067

ABSTRACT

The immunoproteasome subunit LMP7 (ß5i)/LMP2 (ß1i) dual blockade has been reported to suppress B cell differentiation and activation, suggesting that the dual inhibition of LMP7/LMP2 is a promising approach for treating autoimmune diseases. In contrast, the inhibition of the constitutive proteasome subunit ß5c correlates with cytotoxicity against non-immune cells. Therefore, LMP7/LMP2 dual inhibitors with high selectivity over ß5c may be desirable for treating autoimmune diseases. In this study, we present the optimization and discovery of α-amido boronic acids using cryo-electron microscopy (cryo-EM). The exploitation of structural differences between the proteasome subunits led to the identification of a highly selective LMP7/LMP2 dual inhibitor 19. Molecular dynamics simulation based on cryo-EM structures of the proteasome subunits complexed with 19 explained the inhibitory activity profile. In mice immunized with 4-hydroxy-3-nitrophenylacetyl conjugated to ovalbumin, results indicate that 19 is orally bioavailable and shows promise as potential treatment for autoimmune diseases.


Subject(s)
Boronic Acids , Cryoelectron Microscopy , Proteasome Endopeptidase Complex , Proteasome Inhibitors , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/chemistry , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/chemical synthesis , Mice , Boronic Acids/chemistry , Boronic Acids/pharmacology , Boronic Acids/chemical synthesis , Humans , Structure-Activity Relationship , Cysteine Endopeptidases/metabolism , Molecular Structure , Molecular Dynamics Simulation , Drug Discovery
2.
Bioorg Med Chem ; 108: 117773, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38850999

ABSTRACT

In this study, we have developedsmall molecule drug conjugates (SMDCs)consisting ofa prostate specific membrane antigen (PSMA) ligandand syringolin derivatives, which are potent proteasome inhibitors, to selectively deliver syringolin derivatives to prostate cancer cells. Two parent compounds were used for syringolin derivatives with different linkage sites. These SMDCs exhibited PSMA-expressing cell-selective cytotoxicity and they could potentially be used for safer treatment of cancer.


Subject(s)
Antigens, Surface , Antineoplastic Agents , Glutamate Carboxypeptidase II , Proteasome Inhibitors , Humans , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/chemical synthesis , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antigens, Surface/metabolism , Structure-Activity Relationship , Molecular Structure , Drug Screening Assays, Antitumor , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism
3.
Bioorg Med Chem ; 106: 117733, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38704960

ABSTRACT

Development of selective or dual proteasome subunit inhibitors based on syringolin B as a scaffold is described. We focused our efforts on a structure-activity relationship study of inhibitors with various substituents at the 3-position of the macrolactam moiety of syringolin B analogue to evaluate whether this would be sufficient to confer subunit selectivity by using sets of analogues with hydrophobic, basic and acidic substituents, which were designed to target Met45, Glu53 and Arg45 embedded in the S1 subsite, respectively. The structure-activity relationship study using systematic analogues provided insight into the origin of the subunit-selective inhibitory activity. This strategy would be sufficient to confer subunit selectivity regarding ß5 and ß2 subunits.


Subject(s)
Proteasome Endopeptidase Complex , Proteasome Inhibitors , Structure-Activity Relationship , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/chemical synthesis , Humans , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Protein Subunits/chemistry , Molecular Structure
4.
Bioorg Med Chem Lett ; 55: 128478, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34838650

ABSTRACT

The inhibition of immunoproteasome is considered nowadays a promising strategy for the treatment of hematologic malignancies. In this paper we report the design, synthesis, and biological evaluation as immunoproteasome inhibitors of a new series of isoquinolinone derivatives characterized by a (E)-prop-1-ene fragment that connects the heterocycle to a distal amide functionality. Among all the synthesized compounds, we identified an inhibitor with Ki values in the low micromolar or submicromolar range towards the chymotrypsin-like activities of both proteasome and immunoproteasome (ß5c, ß5i and ß1i subunits). Molecular modeling studies suggest that the most potent compound of the series may act a single-site binder. In particular, through its isopentyl group, it might dock into P1 site in the case of the ß1i catalytic subunit, while in the case of ß5c and ß5i subunits, the P3 site might be the preferred binding site.


Subject(s)
Drug Development , Proteasome Endopeptidase Complex/immunology , Proteasome Inhibitors/pharmacology , Quinolones/pharmacology , Binding Sites/drug effects , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Quinolones/chemical synthesis , Quinolones/chemistry , Structure-Activity Relationship
5.
Bioorg Chem ; 115: 105228, 2021 10.
Article in English | MEDLINE | ID: mdl-34371374

ABSTRACT

The comparative study of new proteasome inhibitors based on salicylic acid-modified pseudo-tripeptides terminated with aldehyde or vinylsulfone is presented. We described the synthesis of 11 pairs of pseudopeptides and their properties related to the proteasome inhibition were determined. The effects of integrated amino acids (combinations of leucine, phenylalanine, tryptophan, proline, cyclohexylalanine or norleucine residues) on the activity of the proteasome were investigated. Compounds preferentially inhibited the chymotrypsin ß5-subunit of the proteasome in cell-based assays compared with the ß1- and ß2-subunits, with IC50 values in mid-nanomolar ranges being obtained for the most active members. Our comparative study demonstrated that aldehydes were able to inhibit the proteasome in cells more effectively than vinylsulfones. These results were corroborated by the accumulation of polyubiquitinated proteins in treated cells, GFP accumulation in a reporter cell line and the ability of new compounds to induce apoptotic cell death.


Subject(s)
Aldehydes/pharmacology , Peptides/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Sulfones/pharmacology , Vinyl Compounds/pharmacology , Aldehydes/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Molecular Structure , Peptides/chemistry , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Structure-Activity Relationship , Sulfones/chemistry , Vinyl Compounds/chemistry
6.
J Med Chem ; 64(14): 10230-10245, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34228444

ABSTRACT

Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (ß1, ß2, and ß5). LMP7 (ß5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.


Subject(s)
Drug Discovery , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Structure-Activity Relationship
7.
J Med Chem ; 64(15): 10934-10950, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34309393

ABSTRACT

Previously, we reported that immunoproteasome (iP)-targeting linear peptide epoxyketones improve cognitive function in mouse models of Alzheimer's disease (AD) in a manner independent of amyloid ß. However, these compounds' clinical prospect for AD is limited due to potential issues, such as poor brain penetration and metabolic instability. Here, we report the development of iP-selective macrocyclic peptide epoxyketones prepared by a ring-closing metathesis reaction between two terminal alkenes attached at the P2 and P3/P4 positions of linear counterparts. We show that a lead macrocyclic compound DB-60 (20) effectively inhibits the catalytic activity of iP in ABCB1-overexpressing cells (IC50: 105 nM) and has metabolic stability superior to its linear counterpart. DB-60 (20) also lowered the serum levels of IL-1α and ameliorated cognitive deficits in Tg2576 mice. The results collectively suggest that macrocyclic peptide epoxyketones have improved CNS drug properties than their linear counterparts and offer promising potential as an AD drug candidate.


Subject(s)
Alzheimer Disease/drug therapy , Macrocyclic Compounds/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Alzheimer Disease/metabolism , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Structure , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Structure-Activity Relationship
8.
Eur J Med Chem ; 221: 113556, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34087498

ABSTRACT

A series of epoxyketone analogues with varying N-caps and P3-configurations were designed, synthesized and evaluated. We found that D-Ala in P3 was crucial for ß5i selectivity over ß5c. Notably, compounds 20j (ß5i IC50 = 26.0 nM, 25-fold selectivity) and 20l (ß5i IC50 = 25.1 nM, 24-fold selectivity) with the D-configuration at P3 were the most selective inhibitors. Although 20j and 20l showed only moderate anti-proliferative activity against RPMI-8226 and MM.1S cell lines, based on our experiments, it indicates that the inhibition of ß5i alone is not sufficient to exert anticancer effects and may rely on the complementary inhibition of ß1i, ß5c and ß5i. These data further increase our understanding of immunoproteasome inhibitors in hematologic malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Development , Epoxy Compounds/pharmacology , Ketones/pharmacology , Peptides/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Epoxy Compounds/chemical synthesis , Epoxy Compounds/chemistry , Humans , Ketones/chemical synthesis , Ketones/chemistry , Molecular Docking Simulation , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
9.
Bioorg Med Chem ; 40: 116182, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33971487

ABSTRACT

The ubiquitin proteasome pathway (UPP) plays a critical role in the maintenance of cell homeostasis and the development of diseases, such as cancer and neurodegenerative disease. A series of novel tripeptide propylene oxide compounds as proteasome inhibitors were designed, synthesized and biologically investigated in this manuscript. The enzymatic activities of final compounds against 20S human proteasome were investigated and structure-activity relationship (SAR) was summarized. Some potent compounds were further evaluated to inhibit the proliferation of multiple myeloma (MM) cancer cell lines RPMI8226 and U266B. The results showed that some compounds were active against MM cancer cell lines with IC50 values of less than 50 nM. The microsomal metabolic stabilities in human, rat and mice species were carried out and the results showed that compounds 30 and 31 were stable enough to be in vivo investigated. The in vivo pharmacokinetic results showed that compounds 30 and 31 had acceptable biological parameters for both ig and iv administrations. In vivo antitumor activities of compounds 30 and 31 with the doses of 100 mg/kg and 50 mg/kg BIW were performed by using RPMI8226 xenograft nude mouse model. Toxicities of compounds 30 and 31 were not observed during the experiment and dose dependent effect was obvious and the tumor volume was greatly inhibited.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Epoxy Compounds/pharmacology , Multiple Myeloma/drug therapy , Oligopeptides/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Epoxy Compounds/chemical synthesis , Epoxy Compounds/chemistry , Humans , Male , Mice , Mice, Nude , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tumor Cells, Cultured
10.
J Inorg Biochem ; 220: 111453, 2021 07.
Article in English | MEDLINE | ID: mdl-33895694

ABSTRACT

The cobalt(II), copper(II) and zinc(II) complexes of 1,10-phenanthroline (phen) and maltol (mal) (complexes 1, 2, 3 respectively) were prepared from their respective metal(II) chlorides and were characterized by FT-IR, elemental analysis, UV spectroscopy, molar conductivity, p-nitrosodimethylaniline assay and mass spectrometry. The X-ray structure of a single crystal of the zinc(II) analogue reveals a square pyramidal structure with distinctly shorter apical chloride bond. All complexes were evaluated for their anticancer property on breast cancer cell lines MCF-7 and MDA-MB-231, and normal cell line MCF-10A, using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and morphological studies. Complex 2 was most potent for 24, 48 and 72 h treatment of cancer cells but it was not selective towards cancer over normal cells. The mechanistic studies of the cobalt(II) complex 1 involved apoptosis assay, cell cycle analysis, dichloro-dihydro-fluorescein diacetate assay, intracellular reactive oxygen species assay and proteasome inhibition assay. Complex 1 induced low apoptosis, generated low level of ROS and did not inhibit proteasome in normal cells. The study of the DNA binding and nucleolytic properties of complexes 1-3 in the absence or presence of H2O2 or sodium ascorbate revealed that only complex 1 was not nucleolytic.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Phenanthrolines/pharmacology , Pyrones/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cobalt/chemistry , Coordination Complexes/chemical synthesis , Copper/chemistry , DNA/drug effects , DNA Damage/drug effects , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Phenanthrolines/chemical synthesis , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/pharmacology , Pyrones/chemical synthesis , Reactive Oxygen Species/metabolism , Zinc/chemistry
11.
Eur J Med Chem ; 215: 113267, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33639344

ABSTRACT

Inhibitors of the proteasome have been extensively studied for their applications in the treatment of human diseases such as hematologic malignancies, autoimmune disorders, and viral infections. Many of the proteasome inhibitors reported in the literature target the non-primed site of proteasome's substrate binding pocket. In this study, we designed, synthesized and characterized a series of novel α-keto phenylamide derivatives aimed at both the primed and non-primed sites of the proteasome. In these derivatives, different substituted phenyl groups at the head group targeting the primed site were incorporated in order to investigate their structure-activity relationship and optimize the potency of α-keto phenylamides. In addition, the biological effects of modifications at the cap moiety, P1, P2 and P3 side chain positions were explored. Many derivatives displayed highly potent biological activities in proteasome inhibition and anticancer activity against a panel of six cancer cell lines, which were further rationalized by molecular modeling analyses. Furthermore, a representative α-ketoamide derivative was tested and found to be active in inhibiting the cellular infection of SARS-CoV-2 which causes the COVID-19 pandemic. These results demonstrate that this new class of α-ketoamide derivatives are potent anticancer agents and provide experimental evidence of the anti-SARS-CoV-2 effect by one of them, thus suggesting a possible new lead to develop antiviral therapeutics for COVID-19.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Ketones/pharmacology , Proteasome Inhibitors/pharmacology , SARS-CoV-2/drug effects , Amides/chemical synthesis , Amides/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Calpain/chemistry , Calpain/metabolism , Cell Line, Tumor , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Screening Assays, Antitumor , Humans , Ketones/chemical synthesis , Ketones/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/metabolism , Protein Binding , Structure-Activity Relationship
12.
Angew Chem Int Ed Engl ; 60(17): 9279-9283, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33433953

ABSTRACT

Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the ß5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.


Subject(s)
Antimalarials/pharmacology , Drug Development , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Malaria, Falciparum/metabolism , Mice , Models, Molecular , Molecular Conformation , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry
13.
Molecules ; 26(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445542

ABSTRACT

The immunoproteasome is a multicatalytic protease that is predominantly expressed in cells of hematopoietic origin. Its elevated expression has been associated with autoimmune diseases, various types of cancer, and inflammatory diseases. Selective inhibition of its catalytic activities is therefore a viable approach for the treatment of these diseases. However, the development of immunoproteasome-selective inhibitors with non-peptidic scaffolds remains a challenging task. We previously reported 7H-furo[3,2-g]chromen-7-one (psoralen)-based compounds with an oxathiazolone warhead as selective inhibitors of the chymotrypsin-like (ß5i) subunit of immunoproteasome. Here, we describe the influence of the electrophilic warhead variations at position 3 of the psoralen core on the inhibitory potencies. Despite mapping the chemical space with different warheads, all compounds showed decreased inhibition of the ß5i subunit of immunoproteasome in comparison to the parent oxathiazolone-based compound. Although suboptimal, these results provide crucial information about structure-activity relationships that will serve as guidance for the further design of (immuno)proteasome inhibitors.


Subject(s)
Furocoumarins/chemical synthesis , Furocoumarins/pharmacology , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/pharmacology , Furocoumarins/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Peptides/chemistry , Peptides/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry
14.
Bioorg Med Chem ; 29: 115867, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33223460

ABSTRACT

A series of non-covalent piperidine-containing peptidyl derivatives with various substituents at side chains of different residues were designed, synthesized and evaluated as proteasome inhibitors. After proteasome inhibitory evaluations of all the synthesized target compounds, selected ones were tested for their anti-proliferation activities against three multiple myeloma (MM) cell lines. 8 analogues displayed more potent activities than carfilzomib, and the most promising compound 24 showed IC50 values of 0.8 ± 0.2 nM against 20S proteasome and 8.42 ± 0.74 nM, 7.14 ± 0.52 nM, 14.20 ± 1.08 nM for RPMI 8226, NCI-H929 and MM.1S cell lines, respectively. Additionally, mechanisms of anti-cancer activity of representative compound 24 were further investigated. Apoptosis of RPMI-8226 cells were achieved through accumulating polyubiquitin and inducing the cleavage of caspase and PARP. Besides, half-life in rat plasma of compound 24 was prolonged after optimization, which would be helpful for increasing in vivo activities of this series of derivatives. All the studies confirmed that piperidine-containing non-covalent proteasome inhibitors can be potential leads for anti-MM drug development.


Subject(s)
Antineoplastic Agents/pharmacology , Piperidines/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
15.
Eur J Med Chem ; 209: 112890, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33039723

ABSTRACT

A series of novel 4-aminobenzensulfonamide/carboxamide derivatives bearing naphthoquinone pharmacophore were designed, sythesized and evaluated for their proteasome inhibitory and antiproliferative activities against human breast cancer cell line (MCF-7). The structures of the synthesized compounds were confirmed by spectral and elemental analyses. The proteasome inhibitory activity studies were carried out using cell-based assay. The antiproteasomal activity results revealed that most of the compounds exhibited inhibitory activity with different percentages against the caspase-like (C-L, ß1 subunit), trypsin-like (T-L, ß2 subunit) and chymotrypsin-like (ChT-L, ß5 subunit) activities of proteasome. Among the tested compounds, compound 14 bearing 5-chloro-2-pyridyl ring on the nitrogen atom of sulfonamide group is the most active compound in the series and displayed higher inhibition with IC50 values of 9.90 ± 0.61, 44.83 ± 4.23 and 22.27 ± 0.15 µM against ChT-L, C-L and T-L activities of proteasome compared to the lead compound PI-083 (IC50 = 12.47 ± 0.21, 53.12 ± 2.56 and 26.37 ± 0.5 µM), respectively. The antiproliferative activity was also determined by MTT (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay in vitro. According to the antiproliferative activity results, all of the compounds exhibited cell growth inhibitory activity in a range of IC50 = 1.72 ± 0.14-20.8 ± 0.5 µM and compounds 13 and 28 were found to be the most active compounds with IC50 values of 1.79 ± 0.21 and 1.72 ± 0.14 µM, respectively. Furthermore, molecular modeling studies were carried out for the compounds 13, 14 and 28 to investigate the ligand-enzyme binding interactions.


Subject(s)
Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Benzene Derivatives/chemical synthesis , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Cell Proliferation/drug effects , Drug Design , Humans , MCF-7 Cells , Molecular Docking Simulation , Naphthoquinones/chemical synthesis , Proteasome Inhibitors/chemical synthesis , Sulfonamides/chemical synthesis
16.
Inorg Chem ; 59(20): 15004-15018, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32997499

ABSTRACT

In this paper, a series of new ruthenium complexes of the general formula [Ru(NS)(dpphpy)(dppb)]PF6 (Ru1-Ru3), where dpphpy = diphenyl-2-pyridylphosphine, NS ligands = 2-thiazoline-2-thiol (tzdt, Ru1), 2-mercaptopyrimidine (pySm, Ru2), and 4,6-diamino-2-mercaptopyrimidine (damp, Ru3), and dppb = 1,4-bis(diphenylphosphino)butane, were synthesized and characterized by elemental analysis, spectroscopic techniques (IR, UV/visible, and 1D and 2D NMR), and X-ray diffraction. In the characterization, the correlation between the phosphorus atoms and their respective aromatic hydrogen atoms of the compounds in the assignment stands outs, by 1H-31P HMBC experiments. The compounds show anticancer activities against A549 (lung) and MDA-MB-231 (breast) cancer cell lines, higher than the clinical drug cisplatin. All of the complexes are more cytotoxic against the cancer cell lines than against the MRC-5 (lung) and MCF-10A (breast) nontumorigenic human cell lines. For A549 tumor cells, cell cycle analysis upon treatment with Ru2 showed that it inhibits the mitotic phase because arrest was observed in the Sub-G1 phase. Additionally, the compound induces cell death by an apoptotic pathway in a dose-dependent manner, according to annexin V-PE assay. The multitargeted character of the compounds was investigated, and the biomolecules were DNA, topoisomerase IB, and proteasome, as well as the fundamental biomolecule in the pharmacokinetics of drugs, human serum albumin. The experimental results indicate that the complexes do not target DNA in the cells. At low concentrations, the compounds showed the ability to partially inhibit the catalytic activity of topoisomerase IB in the process of relaxation of the DNA plasmid. Among the complexes assayed in cultured cells, complex Ru3 was able to diminish the proteasomal chymotrypsin-like activity to a greater extent.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA Topoisomerases, Type I/metabolism , Proteasome Inhibitors/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Phosphines/chemical synthesis , Phosphines/pharmacology , Proteasome Inhibitors/chemical synthesis , Ruthenium/chemistry , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/pharmacology , Topoisomerase I Inhibitors/chemical synthesis
17.
Bioorg Med Chem Lett ; 30(21): 127508, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32853683

ABSTRACT

Thirty novel triaryl compounds were designed and synthesized based on the known proteasome inhibitor PI-1840. Most of them showed significant inhibition against the ß5c subunit of human 20S proteasome, and five of them exhibited IC50 values at the sub-micromolar level, which were comparable to or even more potent than PI-1840. The most active two (1c and 1d) showed IC50 values of 0.12 and 0.18 µM against the ß5c subunit, respectively, while they displayed no obvious inhibition against the ß2c, ß1c and ß5i subunits. Molecular docking provided informative clues for the subunit selectivity. The potent and subunit selective proteasome inhibitors identified herein represent new chemical templates for further molecular optimization.


Subject(s)
Amides/pharmacology , Drug Design , Oxadiazoles/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Amides/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Oxadiazoles/chemistry , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Structure-Activity Relationship
18.
Cell Chem Biol ; 27(10): 1318-1326.e18, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32763140

ABSTRACT

The natural product cepafungin I was recently reported to be one of the most potent covalent inhibitors of the 20S proteasome core particle through a series of in vitro activity assays. Here, we report a short chemoenzymatic total synthesis of cepafungin I featuring the use of a regioselective enzymatic oxidation to prepare a key hydroxylated amino acid building block in a scalable fashion. The strategy developed herein enabled access to a chemoproteomic probe, which in turn revealed the exceptional selectivity and potency of cepafungin I toward the ß2 and ß5 subunits of the proteasome. Further structure-activity relationship studies suggest the key role of the hydroxyl group in the macrocycle and the identity of the lipid tail in modulating the potency of this natural product family. This study lays the groundwork for further medicinal chemistry exploration to fully realize the anticancer potential of cepafungin I.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Cells, Cultured , Humans , Molecular Structure , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Stereoisomerism , Structure-Activity Relationship
19.
Chembiochem ; 21(22): 3220-3224, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32598532

ABSTRACT

Proteasomes are established therapeutic targets for hematological cancers and promising targets for autoimmune diseases. In the past, we have designed and synthesized mechanism-based proteasome inhibitors that are selective for the individual catalytic activities of human constitutive proteasomes and immunoproteasomes: ß1c, ß1i, ß2c, ß2i, ß5c and ß5i. We show here that by taking the oligopeptide recognition element and substituting the electrophile for a fluorogenic leaving group, fluorogenic substrates are obtained that report on the proteasome catalytic activity also targeted by the parent inhibitor. Though not generally applicable (ß5c and ß2i substrates showing low activity), effective fluorogenic substrates reporting on the individual activity of ß1c, ß1i, ß2c and ß5i subunits in Raji (human B cell) lysates and purified 20S proteasome were identified in this manner. Our work thus adds to the expanding proteasome research toolbox through the identification of new and/or more effective subunit-selective fluorogenic substrates.


Subject(s)
Fluorescent Dyes/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Hydrolysis , Molecular Structure , Proteasome Endopeptidase Complex/isolation & purification , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Protein Subunits , Substrate Specificity
20.
J Med Chem ; 63(9): 4701-4715, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32267687

ABSTRACT

While proteasome inhibitors such as bortezomib showed satisfactory clinical benefits in the initial treatment of multiple myeloma (MM), drug resistance and relapse are unavoidable. Recent studies suggested inhibition of histone deacetylases (HDACs) restored sensitivity of bortezomib-resistant MM. Hence, we designed dual inhibitors targeting both HDACs and proteasomes to address the resistance of bortezomib. The most potent inhibitors, ZY-2 and ZY-13 showed excellent inhibition against proteasome and good selectivity against HDACs. In particular, ZY-2 not only exhibited good antiproliferative activities on the MM cell lines RPMI-8226, U266, and KM3 (IC50 values of 6.66, 4.31, and 10.1 nM, respectively) but also showed more potent antiproliferative activities against the bortezomib-resistant MM cell line KM3/BTZ compared with bortezomib (IC50 values of 8.98 vs. 226 nM, P < 0.01) and even better than the combination of the HDAC inhibitor MS-275 and bortezomib (1:1) (IC50 values of 8.98 vs. 98.0 nM, P < 0.01).


Subject(s)
Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Drug Resistance, Neoplasm/drug effects , Histone Deacetylase Inhibitors/pharmacology , Peptides/pharmacology , Proteasome Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Boronic Acids/chemical synthesis , Boronic Acids/metabolism , Boronic Acids/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , Histone Deacetylase 1/chemistry , Histone Deacetylase 1/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/toxicity , Humans , Molecular Docking Simulation , Multiple Myeloma/drug therapy , Peptides/chemical synthesis , Peptides/metabolism , Peptides/toxicity , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/toxicity , Protein Binding , Protein Subunits/chemistry , Protein Subunits/metabolism , S Phase Cell Cycle Checkpoints/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...