Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.895
Filter
1.
Drug Discov Ther ; 18(3): 207-209, 2024.
Article in English | MEDLINE | ID: mdl-38987209

ABSTRACT

Aortic aneurysm and aortic dissection (AAD) are severe life-threatening cardiovascular disorders for which no approved pharmaceutical therapies are currently available. Protein S-nitrosylation (SNO) is a typical redox-dependent posttranslational modification whose role in AAD has yet to be described. Recently, Zhang et al. revealed for the first time that SNO modification of macrophage cytoskeletal protein septin2 promotes vascular inflammation and extracellular matrix degradation in aortic aneurysm. Mechanically, the TIAM1-RAC1(T lymphoma invasion and metastasis-inducing protein 1-Ras-related C3 botulinum toxin substrate 1) axis participates in the progression of AAD induced with S-nitrosylated septin2. More importantly, developing R-ketorolac and NSC23766 compounds that specifically target the TIAM1-RAC1 pathway may be new a potential strategy for alleviating AAD.


Subject(s)
Aortic Dissection , Septins , Animals , Humans , Aortic Aneurysm/drug therapy , Aortic Aneurysm/metabolism , Aortic Dissection/drug therapy , Aortic Dissection/metabolism , Molecular Targeted Therapy , Protein Processing, Post-Translational/drug effects , rac1 GTP-Binding Protein/metabolism , Septins/metabolism , Signal Transduction/drug effects , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
2.
Cell Mol Neurobiol ; 44(1): 53, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960968

ABSTRACT

Parkinsons disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss and alpha-synuclein aggregation. This comprehensive review examines the intricate role of post-translational modifications (PTMs) in PD pathogenesis, focusing on DNA methylation, histone modifications, phosphorylation, SUMOylation, and ubiquitination. Targeted PTM modulation, particularly in key proteins like Parkin, DJ1, and PINK1, emerges as a promising therapeutic strategy for mitigating dopaminergic degeneration in PD. Dysregulated PTMs significantly contribute to the accumulation of toxic protein aggregates and dopaminergic neuronal dysfunction observed in PD. Targeting PTMs, including epigenetic strategies, addressing aberrant phosphorylation events, and modulating SUMOylation processes, provides potential avenues for intervention. The ubiquitin-proteasome system, governed by enzymes like Parkin and Nedd4, offers potential targets for clearing misfolded proteins and developing disease-modifying interventions. Compounds like ginkgolic acid, SUMO E1 enzyme inhibitors, and natural compounds like Indole-3-carbinol illustrate the feasibility of modulating PTMs for therapeutic purposes in PD. This review underscores the therapeutic potential of PTM-targeted interventions in modulating PD-related pathways, emphasizing the need for further research in this promising area of Parkinsons disease therapeutics.


Subject(s)
Parkinson Disease , Protein Processing, Post-Translational , Humans , Protein Processing, Post-Translational/drug effects , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Animals
3.
Pharmacol Res ; 205: 107222, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782147

ABSTRACT

5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , Humans , Animals , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenesis, Genetic/drug effects , Protein Processing, Post-Translational/drug effects , DNA Methylation/drug effects
4.
Ecotoxicol Environ Saf ; 279: 116487, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810285

ABSTRACT

Persistent organic pollutants (POPs), which encompass pesticides and industrial chemicals widely utilized across the globe, pose a covert threat to human health. ß-hexachlorocyclohexane (ß-HCH) is an organochlorine pesticide with striking stability, still illegally dumped in many countries, and recognized as responsible for several pathogenetic mechanisms. This study represents a pioneering exploration into the neurotoxic effects induced by the exposure to ß-HCH specifically targeting neuronal cells (N2a), microglia (BV-2), and C57BL/6 mice. As shown by western blot and qPCR analyses, the administration of ß-HCH triggered a modulation of NF-κB, a key factor influencing both inflammation and pro-inflammatory cytokines expression. We demonstrated by proteomic and western blot techniques epigenetic modifications in H3 histone induced by ß-HCH. Histone acetylation of H3K9 and H3K27 increased in N2a, and in the prefrontal cortex of C57BL/6 mice administered with ß-HCH, whereas it decreased in BV-2 cells and in the hippocampus. We also observed a severe detrimental effect on recognition memory and spatial navigation by the Novel Object Recognition Test (NORT) and the Object Place Recognition Task (OPRT) behavioural tests. Cognitive impairment was linked to decreased expression of the genes BDNF and SNAP-25, which are mediators involved in synaptic function and activity. The obtained results expand our understanding of the harmful impact produced by ß-HCH exposure by highlighting its implication in the pathogenesis of neurological diseases. These findings will support intervention programs to limit the risk induced by exposure to POPs. Regulatory agencies should block further illicit use, causing environmental hazards and endangering human and animal health.


Subject(s)
Cognitive Dysfunction , Epigenesis, Genetic , Hexachlorocyclohexane , Histones , Mice, Inbred C57BL , Animals , Hexachlorocyclohexane/toxicity , Cognitive Dysfunction/chemically induced , Mice , Histones/metabolism , Epigenesis, Genetic/drug effects , Male , Protein Processing, Post-Translational/drug effects , Neuroinflammatory Diseases/chemically induced , Microglia/drug effects , Neurons/drug effects , Neurons/pathology , Environmental Pollutants/toxicity
5.
Cell Rep ; 43(6): 114272, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38795348

ABSTRACT

Lysine deacetylase inhibitors (KDACis) are approved drugs for cutaneous T cell lymphoma (CTCL), peripheral T cell lymphoma (PTCL), and multiple myeloma, but many aspects of their cellular mechanism of action (MoA) and substantial toxicity are not well understood. To shed more light on how KDACis elicit cellular responses, we systematically measured dose-dependent changes in acetylation, phosphorylation, and protein expression in response to 21 clinical and pre-clinical KDACis. The resulting 862,000 dose-response curves revealed, for instance, limited cellular specificity of histone deacetylase (HDAC) 1, 2, 3, and 6 inhibitors; strong cross-talk between acetylation and phosphorylation pathways; localization of most drug-responsive acetylation sites to intrinsically disordered regions (IDRs); an underappreciated role of acetylation in protein structure; and a shift in EP300 protein abundance between the cytoplasm and the nucleus. This comprehensive dataset serves as a resource for the investigation of the molecular mechanisms underlying KDACi action in cells and can be interactively explored online in ProteomicsDB.


Subject(s)
Histone Deacetylase Inhibitors , Proteomics , Humans , Histone Deacetylase Inhibitors/pharmacology , Proteomics/methods , Acetylation/drug effects , Phosphorylation/drug effects , Lysine/metabolism , Protein Processing, Post-Translational/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , E1A-Associated p300 Protein/metabolism , Histone Deacetylases/metabolism
6.
Mol Neurobiol ; 61(8): 5129-5141, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38167971

ABSTRACT

Metabolic diseases derived from an unhealthy lifestyle have been linked with an increased risk for developing cognitive impairment and even Alzheimer's disease (AD). Although high consumption of saturated fatty acids such as palmitic acid (PA) has been associated with the development of obesity and type II diabetes, the mechanisms connecting elevated neuronal PA levels and increased AD marker expression remain unclear. Among other effects, PA induces insulin resistance, increases intracellular calcium and reactive oxygen species (ROS) production, and reduces the NAD+/NADH ratio, resulting in decreased activity of the deacetylase Sirtuin1 (SIRT1) in neurons. These mechanisms may affect signaling pathways that impact the posttranslational modifications (PTMs) of the tau protein. To analyze the role played by PA in inducing the phosphorylation and acetylation of tau, we examined PTM changes in human tau in differentiated neurons from human neuroblastoma cells. We found changes in the phosphorylation state of several AD-related sites, namely, S199/202 and S214, that were mediated by a mechanism associated with the dysregulated activity of the kinases GSK3ß and mTOR. PA also increased the acetylation of residue K280 and elevated total tau level after long exposure time. These findings provide information about the mechanisms by which saturated fatty acids cause tau PTMs that are similar to those observed in association with AD biochemical changes.


Subject(s)
Alzheimer Disease , Neurons , Palmitic Acid , Protein Processing, Post-Translational , tau Proteins , Humans , tau Proteins/metabolism , Palmitic Acid/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Protein Processing, Post-Translational/drug effects , Neurons/metabolism , Neurons/drug effects , Phosphorylation/drug effects , Acetylation/drug effects , Cell Line, Tumor , Glycogen Synthase Kinase 3 beta/metabolism , TOR Serine-Threonine Kinases/metabolism
7.
Science ; 380(6640): 93-101, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36926954

ABSTRACT

Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.


Subject(s)
Antineoplastic Agents , Apoptosis , Protein Processing, Post-Translational , Proteomics , Antigens, CD20/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , B-Lymphocytes/drug effects , Cell Line, Tumor , DNA Damage , Protein Processing, Post-Translational/drug effects , Proteomics/methods , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Humans
8.
Biomolecules ; 12(12)2022 12 08.
Article in English | MEDLINE | ID: mdl-36551260

ABSTRACT

The number of patients with type 2 diabetes mellitus (T2DM), which is mainly characterized by insulin resistance and insulin secretion deficiency, has been soaring in recent years. Accompanied by many other metabolic syndromes, such as cardiovascular diseases, T2DM represents a big challenge to public health and economic development. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that is critical in regulating glucose and lipid metabolism, has been developed as a powerful drug target for T2DM, such as thiazolidinediones (TZDs). Despite thiazolidinediones (TZDs), a class of PPARγ agonists, having been proven to be potent insulin sensitizers, their use is restricted in the treatment of diabetes for their adverse effects. Post-translational modifications (PTMs) have shed light on the selective activation of PPARγ, which shows great potential to circumvent TZDs' side effects while maintaining insulin sensitization. In this review, we will focus on the potential effects of PTMs of PPARγ on treating T2DM in terms of phosphorylation, acetylation, ubiquitination, SUMOylation, O-GlcNAcylation, and S-nitrosylation. A better understanding of PTMs of PPARγ will help to design a new generation of safer compounds targeting PPARγ to treat type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , PPAR gamma , Protein Processing, Post-Translational , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , PPAR gamma/metabolism , Protein Processing, Post-Translational/drug effects , Thiazolidinediones/adverse effects , Thiazolidinediones/therapeutic use , Insulin Resistance , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Drug Design , Molecular Targeted Therapy
9.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858407

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Host-Pathogen Interactions , Molecular Targeted Therapy , Protein Processing, Post-Translational , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Exoribonucleases/metabolism , Host-Pathogen Interactions/drug effects , Humans , Protein Processing, Post-Translational/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sirtuins/metabolism , Succinates/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
10.
Oxid Med Cell Longev ; 2022: 4592170, 2022.
Article in English | MEDLINE | ID: mdl-35251473

ABSTRACT

Lysine ß-hydroxybutyrylation (Kbhb) is a newly identified protein posttranslational modification (PTM) derived from ß-hydroxybutyrate (BHB), a product of ketone body metabolism in liver. BHB could serve as an energy source and play a role in the suppression of oxidative stress. The plasma concentration of BHB could increase up to 20 mM during starvation and in pathological conditions. Despite the progress, how the cells derived from extrahepatic tissues respond to elevated environmental BHB remains largely unknown. Given that BHB can significantly drive Kbhb, we characterized the BHB-induced lysine ß-hydroxybutyrylome and acetylome by quantitative proteomics. A total of 840 unique Kbhb sites on 429 proteins were identified, with 42 sites on 39 proteins increased by more than 50% in response to BHB. The results showed that the upregulated Kbhb induced by BHB was involved in aminoacyl-tRNA biosynthesis, 2-oxocarboxylic acid metabolism, citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism pathways. Moreover, some BHB-induced Kbhb substrates were significantly involved in diseases such as cancer. Taken together, we investigate the dynamics of lysine ß-hydroxybutyrylome and acetylome induced by environmental BHB, which reveals the roles of Kbhb in regulating various biological processes and expands the biological functions of BHB.


Subject(s)
3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Lysine/metabolism , Protein Processing, Post-Translational/drug effects , Proteome/drug effects , Proteomics/methods , Signal Transduction/drug effects , Acetylation/drug effects , Animals , Cells, Cultured , Mice , Protein Binding/drug effects , Proteome/metabolism , Up-Regulation/drug effects
11.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35101976

ABSTRACT

Blood-brain barrier (BBB) breakdown and inflammation occurring at the BBB have a key, mainly a deleterious role in the pathophysiology of ischemic stroke. Neddylation is a ubiquitylation-like pathway that is critical in various cellular functions by conjugating neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) to target proteins. However, the roles of neddylation pathway in ischemic stroke remain elusive. Here, we report that NEDD8 conjugation increased during acute phase after ischemic stroke and was present in intravascular and intraparenchymal neutrophils. Inhibition of neddylation by MLN4924, also known as pevonedistat, inactivated cullin-RING E3 ligase (CRL), and reduced brain infarction and improved functional outcomes. MLN4924 treatment induced the accumulation of the CRL substrate neurofibromatosis 1 (NF1). By using virus-mediated NF1 silencing, we show that NF1 knockdown abolished MLN4924-dependent inhibition of neutrophil trafficking. These effects were mediated through activation of endothelial P-selectin and intercellular adhesion molecule-1 (ICAM-1), and blocking antibodies against P-selectin or anti-ICAM-1 antibodies reversed NF1 silencing-induced increase in neutrophil infiltration in MLN4924-treated mice. Furthermore, we found that NF1 silencing blocked MLN4924-afforded BBB protection and neuroprotection through activation of protein kinase C δ (PKCδ), myristoylated alanine-rich C-kinase substrate (MARCKS), and myosin light chain (MLC) in cerebral microvessels after ischemic stroke, and treatment of mice with the PKCδ inhibitor rottlerin reduced this increased BBB permeability. Our study demonstrated that increased neddylation promoted neutrophil trafficking and thus exacerbated injury of the BBB and stroke outcomes. We suggest that the neddylation inhibition may be beneficial in ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Cyclopentanes/pharmacology , NEDD8 Protein/metabolism , Nerve Tissue Proteins , Protein Processing, Post-Translational/drug effects , Pyrimidines/pharmacology , Ubiquitin-Protein Ligases , Animals , Brain Injuries/drug therapy , Brain Injuries/enzymology , Brain Ischemia/drug therapy , Brain Ischemia/enzymology , Male , Mice , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism
12.
Oxid Med Cell Longev ; 2022: 4571319, 2022.
Article in English | MEDLINE | ID: mdl-35178156

ABSTRACT

Lysine 2-hydroxyisobutyrylation (Khib) is a new type of posttranslational modifications (PTMs) extensively reported on eukaryotic cell histones. It is evolutionarily conserved and participates in diverse important biological processes, such as transcription and cell metabolism. Recently, it has been demonstrated that Khib can be regulated by p300 and Tip60. Although the specific Khib substrates mediated by p300 have been revealed, how Tip60 regulates diverse cellular processes through the Khib pathway and the different roles between Tip60 and p300 in regulating Khib remain largely unknown, which prevents us from understanding how this modification executes its biological functions. In this study, we report the first Khib proteome mediated by Tip60. In total, 3502 unique Khib sites from 1050 proteins were identified. Among them, 536 Khib sites from 406 proteins were present only in Tip60 overexpressing cells and 13 Khib sites increased more than 2-fold in response to Tip60 overexpression, indicating that Tip60 significantly affected global Khib. Notably, only 5 of the 549 Tip60-targeted Khib sites overlapped with the 149 known Khib sites targeted by p300, indicating the different Khib substrate preferences of Tip60 and p300. In addition, the Khib substrates regulated by Tip60 are deeply involved in processes such as nucleic acid metabolism and translation, and some are associated with Parkinson's and Prion diseases. In summary, our research reveals the Khib substrates targeted by Tip60, which elucidates the effect of Tip60 in regulating various cellular processes through the Khib pathway, and proposes novel views into the functional mechanism of Tip60.


Subject(s)
Hydroxybutyrates/therapeutic use , Lysine Acetyltransferase 5/metabolism , Protein Processing, Post-Translational/drug effects , Proteomics/methods , Humans , Transfection
13.
Biomolecules ; 12(2)2022 02 12.
Article in English | MEDLINE | ID: mdl-35204803

ABSTRACT

Ubiquitylation and ISGylation are protein post-translational modifications (PTMs) and two of the main events involved in the activation of pattern recognition receptor (PRRs) signals allowing the host defense response to viruses. As with similar viruses, SARS-CoV-2, the virus causing COVID-19, hijacks these pathways by removing ubiquitin and/or ISG15 from proteins using a protease called PLpro, but also by interacting with enzymes involved in ubiquitin/ISG15 machinery. These enable viral replication and avoidance of the host immune system. In this review, we highlight potential points of therapeutic intervention in ubiquitin/ISG15 pathways involved in key host-pathogen interactions, such as PLpro, USP18, TRIM25, CYLD, A20, and others that could be targeted for the treatment of COVID-19, and which may prove effective in combatting current and future vaccine-resistant variants of the disease.


Subject(s)
COVID-19 Drug Treatment , COVID-19/metabolism , Cytokines/metabolism , Ubiquitin/metabolism , Ubiquitination , Ubiquitins/metabolism , Animals , Humans , Protein Processing, Post-Translational/drug effects , SARS-CoV-2/drug effects
14.
Cancer Control ; 29: 10732748221074051, 2022.
Article in English | MEDLINE | ID: mdl-35067084

ABSTRACT

INTRODUCTION: The prototype DNA hypomethylating agents 5-azacytidine (5AC) and decitabine (DAC) are currently FDA-approved for treatment of blood and bone marrow disorders like myelodysplastic syndrome. 5AC and DAC are considered similar drugs and were shown to induce histone modifications that modulate gene expression. The aim of this study is to compare the effect of both drugs on histone acetylation and methylation at multiple histone amino acids residues. METHODS: Mass spectrometry was used to compare the effect of both drugs on 95 different histone posttranslational modifications (PTMs) in leukemia cells. ChIP-Seq analysis was used to compare the impact of both drugs on the genome-wide acetylation of the H3K9 mark using primary leukemia cells from six de-identified AML patients. RESULTS: Both DAC and 5AC induced histone PTMs in different histone isoforms like H1.4, H2A, H3, H3.1, and H4. Changes in both histone methylation and acetylation were observed with both drugs; however, there were distinct differences in the histone modifications induced by the two drugs. Since both drugs were shown to increase the activity of the HDAC SIRT6 previously, we tested the effect of 5AC on the acetylation of H3K9, the physiological substrate SIRT6, using ChIP-Seq analysis and compared it to the previously published DAC-induced changes. Significant H3K9 acetylation changes (P< .05) were detected at 925 genes after 5AC treatment vs only 182 genes after DAC treatment. Nevertheless, the gene set modified by 5AC was different from that modified by DAC with only ten similar genes modulated by both drugs. CONCLUSION: Despite similarity in chemical structure and DNA hypomethylating activity, 5AC and DAC induced widely different histone PTMs and considering them interchangeable should be carefully evaluated. The mechanism of these histone PTM changes is not clear and may involve modulation of the activity or the expression of the enzymes inducing histone PTMs.


Subject(s)
Acetylation/drug effects , Azacitidine/pharmacology , DNA Methylation/drug effects , Decitabine/pharmacology , Histones/drug effects , Cell Line, Tumor , Humans , Leukemia/drug therapy , Protein Processing, Post-Translational/drug effects
15.
Nutrients ; 14(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011092

ABSTRACT

Obesity is a global health issue linked to the heightened risk of several chronic diseases. Rhus verniciflua (RV) is a traditional food supplement used for a range of pharmacological effects such as antitumor, antioxidant, α-glucosidase inhibitory effects, hepatitis, and arthritis. Despite the traditional medicinal values, scientific evidence for its application in obesity is inadequate and unclear. Thus, this investigation was designed to evaluate the anti-obesity effects of IBF-R, an RV extract, using a high-fat diet (HFD) model. The study has six groups: chow diet group; chow diet with 80 mg/kg IBF-R; HFD group; IBF-R group with 20, 40, and 80 mg/kg. IBF-R supplementation significantly regulated the weight gain than the HFD fed mice. Further, IBF-R supplementation lowered the expressions of adipogenic transcription factors such as SREBP-1c, C/EBPα, FAS, and PPAR-γ in white adipose tissue (WAT) of diet-induced obese mice. In addition, IBF-R supplementation reduced the lipogenic gene expression while enhancing genes was related to fatty acid oxidation. Obesity is linked to redox-based post-translational modifications (PTMs) of IRE1α such as S-nitrosylation, endoplasmic reticulum (ER) stress, and chronic metabolic inflammation. The administration of IBF-R inhibits these PTMs. Notably, IBF-R administration significantly enhanced the expression of AMPK and sirtuin 1 in WAT of HFD-fed mice. Together, these findings reveal the IRE1α S-nitrosylation-inflammation axis as a novel mechanism behind the positive implications of IBF-R on obesity. In addition, it lays a firm foundation for the development of Rhus verniciflua extract as a functional ingredient in the food and pharmaceutical industries.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Obesity/metabolism , Plant Extracts/administration & dosage , Protein Processing, Post-Translational/drug effects , Protein Serine-Threonine Kinases/metabolism , Rhus/chemistry , Adipogenesis/drug effects , Animals , Anti-Obesity Agents , Diet, High-Fat , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/etiology , Weight Gain/drug effects
16.
Biochem Pharmacol ; 197: 114907, 2022 03.
Article in English | MEDLINE | ID: mdl-35007523

ABSTRACT

Phosphorylation of proteins is one of the most extensively investigated post-translational protein modifications. Threonine, serine and tyrosine in proteins are the most commonly phosphorylated amino acids. Dysregulated cancer-related signaling pathways due to aberrant phosphorylation status of the key protein(s) in these pathways exist in most malignancies. Intensive studies in the recent decade have implicated long non-coding RNAs (lncRNAs) in the precise regulation of protein phosphorylation in cancers. In this review, we systematically delve into recent advance that underlines the multidimensional role of lncRNAs in modulating protein phosphorylation, regulating cancerous signaling and impacting prognosis of gastrointestinal (GI) cancers including hepatocellular carcinoma, colorectal cancer, gastric cancer, esophageal cancer, and pancreatic cancer. LncRNAs regulate protein phosphorylation via directly binding to the target protein(s), interacting with the partner protein(s) of the target protein(s) or lncRNAs-encoded small peptides. Although there are still extensive studies on disclosing the intricate interactions between lncRNAs and proteins and their impacts on protein phosphorylation, we believe that targeting lncRNAs controlling phosphorylation of key protein(s) in cancerous signaling pathways might provide novel paths for precision therapeutics of GI cancers in the future.


Subject(s)
Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Protein Processing, Post-Translational/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gastrointestinal Neoplasms/drug therapy , Humans , Phosphorylation/drug effects , Phosphorylation/physiology , Protein Processing, Post-Translational/drug effects
17.
Toxicol Appl Pharmacol ; 435: 115848, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34958783

ABSTRACT

Organic anion transporting polypeptide 1B1 (OATP1B1), which is specifically expressed at the basolateral membrane of human hepatocytes, is well recognized as the key determinant in the pharmacokinetics of a wide variety of drugs and considered as an important drug-drug interaction (DDI) site. Triptergium wilfordii Hook. f. (TWHF) is a traditional Chinese medicine that has a long history in treating diseases and more pharmacological effects were demonstrated recently. Components of TWHF mainly belong to the groups of alkaloids, diterpenoids, and triterpenoids. However, whether TWHF constituents are involved in herb-drug interaction (HDI) remains largely unknown. In the present study, we investigated the effect of four major components of TWHF, i.e. Triptolide (TPL), Celastrol (CL), and two alkaloids Wilforine (WFR) and Wilforgine (WFG) on the function of OATP1B1. It was found that co-incubation of these compounds greatly inhibited the uptake function of OATP1B1, with WFG (IC50 = 3.63 ± 0.61 µM) and WFR (IC50 = 3.91 ± 0.30 µM) showing higher inhibitory potency than TPL (IC50 = 184 ± 36 µM) and CL (IC50 = 448 ± 81 µM). Kinetic analysis revealed that co-incubation of WFG or WFR led to the reduction of both Km and Vmax of the DCF uptake. On the other hand, pre-incubation of WFG or WFR increased Km value of OATP1B1; while CL affected both Km and Vmax. In conclusion, co- and pre-incubation of the tested TWHF components inhibited OATP1B1 activity in different manners. Although co-incubation of WFG and WFR did not seem to directly compete with the substrates, pre-incubation of these alkaloids may alter the substrate-transporter interaction.


Subject(s)
Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Plant Extracts/pharmacology , Tripterygium/chemistry , Alkaloids/pharmacology , HEK293 Cells , Humans , Kinetics , Lactones/pharmacology , Liver-Specific Organic Anion Transporter 1/metabolism , Medicine, Chinese Traditional , Protein Processing, Post-Translational/drug effects , Pyridines/pharmacology , Terpenes/pharmacology
18.
Biomed Pharmacother ; 145: 112382, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34864307

ABSTRACT

Platinum-based antineoplastic drugs, such as cisplatin, are commonly used to induce tumor cell death. Cisplatin is believed to induce apoptosis as a result of cisplatin-DNA adducts that inhibit DNA and RNA synthesis. Although idea that DNA damage underlines anti-proliferative effects of cisplatin is dominant in cancer research, there is a poor correlation between the degree of the cell sensitivity to cisplatin and the extent of DNA platination. Here, we examined possible effects of cisplatin on post-transcriptional gene regulation that may contribute to cisplatin-mediated cytotoxicity. We show that cisplatin suppresses formation of stress granules (SGs), pro-survival RNA granules with multiple roles in cellular metabolism. Mechanistically, cisplatin inhibits cellular translation to promote disassembly of polysomes and aggregation of ribosomal subunits. As SGs are in equilibrium with polysomes, cisplatin-induced shift towards ribosomal aggregation suppresses SG formation. Our data uncover previously unknown effects of cisplatin on RNA metabolism.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Cytoplasmic Ribonucleoprotein Granules/drug effects , Protein Processing, Post-Translational/drug effects , Animals , Cell Line, Tumor , Cells, Cultured , Cytoplasmic Ribonucleoprotein Granules/metabolism , Humans , Mice , Stress Granules/drug effects
19.
Mol Pharmacol ; 101(1): 24-32, 2022 01.
Article in English | MEDLINE | ID: mdl-34689119

ABSTRACT

DNA topoisomerases regulate the topological state of DNA, relaxing DNA supercoils and resolving catenanes and knots that result from biologic processes, such as transcription and replication. DNA topoisomerase II (TOP2) enzymes achieve this by binding DNA and introducing an enzyme-bridged DNA double-strand break (DSB) where each protomer of the dimeric enzyme is covalently attached to the 5' end of the cleaved DNA via an active site tyrosine phosphodiester linkage. The enzyme then passes a second DNA duplex through the DNA break, before religation and release of the enzyme. However, this activity is potentially hazardous to the cell, as failure to complete religation leads to persistent TOP2 protein-DNA covalent complexes, which are cytotoxic. Indeed, this property of topoisomerase has been exploited in cancer therapy in the form of topoisomerase poisons which block the religation stage of the reaction cycle, leading to an accumulation of topoisomerase-DNA adducts. A number of parallel cellular processes have been identified that lead to removal of these covalent TOP2-DNA complexes, facilitating repair of the resulting protein-free DSB by standard DNA repair pathways. These pathways presumably arose to repair spontaneous stalled or poisoned TOP2-DNA complexes, but understanding their mechanisms also has implications for cancer therapy, particularly resistance to anti-cancer TOP2 poisons and the genotoxic side effects of these drugs. Here, we review recent progress in the understanding of the processing of TOP2 DNA covalent complexes, the basic components and mechanisms, as well as the additional layer of complexity posed by the post-translational modifications that modulate these pathways. SIGNIFICANCE STATEMENT: Multiple pathways have been reported for removal and repair of TOP2-DNA covalent complexes to ensure the timely and efficient repair of TOP2-DNA covalent adducts to protect the genome. Post-translational modifications, such as ubiquitination and SUMOylation, are involved in the regulation of TOP2-DNA complex repair. Small molecule inhibitors of these post-translational modifications may help to improve outcomes of TOP2 poison chemotherapy, for example by increasing TOP2 poison cytotoxicity and reducing genotoxicity, but this remains to be determined.


Subject(s)
DNA Repair/physiology , DNA Topoisomerases, Type II/metabolism , Topoisomerase II Inhibitors/pharmacology , DNA Breaks/drug effects , DNA Damage/drug effects , DNA Damage/physiology , DNA Repair/drug effects , DNA Topoisomerases, Type II/genetics , Humans , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...