Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 465
Filter
1.
Fish Shellfish Immunol ; 149: 109586, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670410

ABSTRACT

Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.


Subject(s)
Autophagy , Carps , Fish Diseases , MicroRNAs , Proto-Oncogene Proteins c-akt , Reoviridae Infections , Reoviridae , Animals , MicroRNAs/genetics , MicroRNAs/immunology , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Fish Diseases/virology , Reoviridae Infections/immunology , Reoviridae Infections/veterinary , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism , Reoviridae/physiology , High-Throughput Nucleotide Sequencing , Fish Proteins/genetics , Fish Proteins/immunology , Cell Line , Gene Expression Regulation/immunology
2.
J Biol Chem ; 299(11): 105276, 2023 11.
Article in English | MEDLINE | ID: mdl-37739035

ABSTRACT

Imbalanced immune responses are a prominent hallmark of cancer and autoimmunity. Myeloid cells can be overly suppressive, inhibiting protective immune responses or inactive not controlling autoreactive immune cells. Understanding the mechanisms that induce suppressive myeloid cells, such as myeloid-derived suppressor cells (MDSCs) and tolerogenic dendritic cells (TolDCs), can facilitate the development of immune-restoring therapeutic approaches. MDSCs are a major barrier for effective cancer immunotherapy by suppressing antitumor immune responses in cancer patients. TolDCs are administered to patients to promote immune tolerance with the intent to control autoimmune disease. Here, we investigated the development and suppressive/tolerogenic activity of human MDSCs and TolDCs to gain insight into signaling pathways that drive immunosuppression in these different myeloid subsets. Moreover, monocyte-derived MDSCs (M-MDSCs) generated in vitro were compared to M-MDSCs isolated from head-and-neck squamous cell carcinoma patients. PI3K-AKT signaling was identified as being crucial for the induction of human M-MDSCs. PI3K inhibition prevented the downregulation of HLA-DR and the upregulation of reactive oxygen species and MerTK. In addition, we show that the suppressive activity of dexamethasone-induced TolDCs is induced by ß-catenin-dependent Wnt signaling. The identification of PI3K-AKT and Wnt signal transduction pathways as respective inducers of the immunomodulatory capacity of M-MDSCs and TolDCs provides opportunities to overcome suppressive myeloid cells in cancer patients and optimize therapeutic application of TolDCs. Lastly, the observed similarities between generated- and patient-derived M-MDSCs support the use of in vitro-generated M-MDSCs as powerful model to investigate the functionality of human MDSCs.


Subject(s)
Dendritic Cells , Myeloid-Derived Suppressor Cells , Phosphatidylinositol 3-Kinases , Signal Transduction , Wnt Signaling Pathway , Humans , Dendritic Cells/immunology , Immunomodulation/immunology , Immunotherapy , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , Neoplasms/therapy , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction/immunology , Wnt Signaling Pathway/immunology , Tumor Cells, Cultured
3.
Int Immunopharmacol ; 121: 110452, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37302368

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors evoke the immune system, which may cause immune-related adverse effects. The predictors and mechanisms of anti-PD-1-associated thyroid immune injury remain unclear. METHODS: A retrospective analysis is conducted on 518 patients treated with anti PD-1/PD-L1. Firstly, the differences between anti PD-1 and anti PD-L1 are compared on the risk of thyroid immune injury. Then, the predictors of the risk and thyroid function for anti PD-1 related thyroid immune injury are analyzed. Furthermore, the in vitro mechanism of normal thyroid cells (NTHY) is studied. First, the effect of anti PD-1 on the cell viability and immune sensitivity of thyroid cells is observed. Cell viability includes cell proliferation, apoptosis, cell cycle, T4 secretion, while immune sensitivity includes molecular expression and CD8 + T cell aggregation and killing towards NTHY. Then the differentially expressed proteins (DEPs) are screened by protein mass spectrometry. Enrichment of KEGG pathway and annotation of GO function on DEPs are conducted. Human protein-protein interactions are obtained from STRING database. The network is constructed and analyzed using Cytoscape software. In vitro, key proteins and their pathways are validated through overexpression plasmids or inhibitors. The recovery experiment and the immuno-coprecipitation experiment are designed to support the results. In vivo, the key proteins are detected in the thyroid tissue of mice fed with anti PD-1, as well as in the thyroid tissue of patients with Hashimoto's thyroiditis. RESULTS: Thyroid irAE is associated with female, IgG, FT4, TPOAb, TGAb, TSHI, TFQI, and TSH. Peripheral lymphocytes are associated with thyroid function. In vitro, the NIVO group shows prologed G1 phase, decreased FT4, downregulated PD-L1, upregulated IFN-γ, and more CD8 + T cell infiltration and cytotoxicity. AKT1-SKP2 is chosen as the key protein. AKT1 overexpression and SKP2 inhibitor replies to NIVO and AKT1 overexpression, respectively. Immunoprecipitation shows SKP2 and PD-L1 interaction. CONCLUSION: Female, impaired thyroid hormone sensitivity and IgG4 contribute to the risk of thyroid irAE, while peripheral blood lymphocyte characteristics affect thyroid function. Anti-PD-1 induces thyroid irAE by downregulating AKT1-SKP2 to enhance thyroid immunosensitivity.


Subject(s)
B7-H1 Antigen , Hashimoto Disease , Immune Checkpoint Inhibitors , Thyroid Gland , Animals , Female , Humans , Mice , B7-H1 Antigen/genetics , CD8-Positive T-Lymphocytes , Lymphocytes , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/immunology , Retrospective Studies , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , S-Phase Kinase-Associated Proteins/drug effects , S-Phase Kinase-Associated Proteins/immunology , Thyroid Gland/drug effects , Thyroid Gland/pathology
4.
Allergol. immunopatol ; 51(1): 133-139, ene. 2023. graf
Article in English | IBECS | ID: ibc-214028

ABSTRACT

Background: Bone marrow mesenchymal stem cells (BMSCs), with the abilities of multidirectional differentiation and self-renewal, have been widely used in bone repair and regeneration of inflammation-stimulated oral diseases. Galangin is a flavonoid isolated from Alpinia officinarum, exerts anti-obesity, antitumor, and anti-inflammation pharmacological effects. The roles of galangin in lipopolysaccharide-induced inflammation and osteogenic differentiation of BMSCs were investigated. Methods: BMSCs were isolated from rat bone marrow and identified by flow cytometry. The isolated BMSCs were treated with 1 μg/mL lipopolysaccharides or cotreated with lipopolysaccharides and different concentrations of galangin. Cell viability and apoptosis were detected by MTT (tetrazolium component) and flow cytometry. ELISA was used to detect inflammation. Alizarin red staining was used to investigate osteogenic differentiation. Results: The rat BMSCs showed negative rate of CD34, and positive rate of CD29 and CD44. Lipopolysaccharides treatment reduced cell viability of BMSCs, and promoted the cell apoptosis. Incubation with galangin enhanced cell viability of lipopolysaccharide-stimulated BMSCs, and suppressed the cell apoptosis. Galangin decreased levels of TNF-α, IL-1β, and IL-6 in lipopolysaccharide-stimulated BMSCs through down-regulation of NF-κB phosphorylation (p-NF-κB). Galangin up-regulated expression of osteo-specific proteins, collagen type I alpha 1 (COL1A1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2), to promote the osteogenic differentiation of lipopolysaccharide-stimulated BMSCs. Protein expression of p-AKT and p-mTOR in lipopolysaccharide-stimulated BMSCs were increased by galangin treatment. Conclusion: Galangin exerted an anti-inflammatory effect against lipopolysaccharide- stimulated BMSCs and promoted osteogenic differentiation through the activation of AKT/ mTOR signaling (AU)


Subject(s)
Humans , TOR Serine-Threonine Kinases/immunology , Mesenchymal Stem Cells/immunology , Proto-Oncogene Proteins c-akt/immunology , Lipopolysaccharides , Inflammation/immunology , Cell Differentiation , Cell Proliferation , Signal Transduction , Flow Cytometry
5.
J Transl Med ; 20(1): 559, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463188

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs), one of the major components of the tumor stroma, contribute to an immunosuppressive tumor microenvironment (TME) through the induction and functional polarization of protumoral macrophages. We have herein investigated the contribution of CAFs to monocyte recruitment and macrophage polarization. We also sought to identify a possible paracrine mechanism by which CAF-educated monocytes affect breast cancer (BC) cell progression. METHODS: Monocytes were educated by primary CAFs and normal fibroblast (NF); the phenotypic alterations of CAF- or NF-educated monocytes were measured by flow cytometry. Exosomes isolated from the cultured conditioned media of the educated monocytes were characterized. An in vivo experiment using a subcutaneous transplantation tumor model in athymic nude mice was conducted to uncover the effect of exosomes derived from CAF- or NF-educated monocytes on breast tumor growth. Gain- and loss-of-function experiments were performed to explore the role of miR-181a in BC progression with the involvement of the AKT signaling pathway. Western blotting, enzyme-linked immunosorbent assay, RT-qPCR, flow cytometry staining, migration assay, immunohistochemical staining, and bioinformatics analysis were performed to reveal the underlying mechanisms. RESULTS: We illustrated that primary CAFs recruited monocytes and established pro-tumoral M2 macrophages. CAF may also differentiate human monocyte THP-1 cells into anti-inflammatory M2 macrophages. Besides, we revealed that CAFs increased reactive oxygen species (ROS) generation in THP-1 monocytes, as differentiating into M2 macrophages requires a level of ROS for proper polarization. Importantly, T-cell proliferation was suppressed by CAF-educated monocytes and their exosomes, resulting in an immunosuppressive TME. Interestingly, CAF-activated, polarized monocytes lost their tumoricidal abilities, and their derived exosomes promoted BC cell proliferation and migration. In turn, CAF-educated monocyte exosomes exhibited a significant promoting effect on BC tumorigenicity in vivo. Of clinical significance, we observed that up-regulation of circulating miR-181a in BC was positively correlated with tumor aggressiveness and found a high level of this miRNA in CAF-educated monocytes and their exosomes. We further clarified that the pro-oncogenic effect of CAF-educated monocytes may depend in part on the exosomal transfer of miR-181a through modulating the PTEN/Akt signaling axis in BC cells. CONCLUSIONS: Our findings established a connection between tumor stromal communication and tumor progression and demonstrated an inductive function for CAF-educated monocytes in BC cell progression. We also proposed a supporting model in which exosomal transfer of miR-181a from CAF-educated monocytes activates AKT signaling by regulating PTEN in BC cells.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , MicroRNAs , Monocytes , Tumor Microenvironment , Animals , Humans , Mice , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Cancer-Associated Fibroblasts/immunology , Macrophages/immunology , Mice, Nude , MicroRNAs/genetics , MicroRNAs/immunology , Monocytes/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Reactive Oxygen Species , Signal Transduction , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
6.
J Neuroinflammation ; 19(1): 289, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463233

ABSTRACT

BACKGROUND: Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS: Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS: The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1ß, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS: Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.


Subject(s)
Brain Injuries, Traumatic , Animals , Male , Mice , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/immunology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/immunology , Membrane Glycoproteins/agonists , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Immunologic/agonists , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Disease Models, Animal , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/immunology , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/immunology , Nervous System/drug effects , Nervous System/immunology
7.
Can Respir J ; 2022: 8437348, 2022.
Article in English | MEDLINE | ID: mdl-36091328

ABSTRACT

Introduction: Vascular smooth muscle cells (VSMCs) are highly involved in airway vascular remodeling in asthma. Objectives: This study aimed to investigate the mechanisms underlying the effects of a disintegrin and metalloproteinase-33 (ADAM33) gene on the migration capacity and inflammatory cytokine secretion of VSMCs. Methods: Human aortic smooth muscle cells (HASMCs) were transfected with lentiviral vectors carrying short hairpin RNA (shRNA) targeting ADAM33 or negative control vectors. The migration capacity of HASMCs was evaluated by a transwell assay. The levels of secreted inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA) kits. Reverse transcription-quantitative polymerase chain reaction and Western blot assays were performed to detect mRNA and protein expression levels. Results: Silencing of ADAM33 significantly inhibited the migration of HASMCs. The expression of tumor necrosis factor alpha (TNF-α) in the supernatant of HASMCs was decreased, while that of interferon gamma (IFN-γ) was increased after the transfection of shRNA targeting ADAM33. Insufficient ADAM33 expression also suppressed the expression levels of phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (AKT), phospho-mammalian target of rapamycin (mTOR), Rho-associated protein kinases, phospho-forkhead box protein O1 (FOXO1), and cyclin D1, but it did not affect the levels of AKT, mTOR, or Rho. Conclusion: Silencing of the ADAM33 gene inhibited HASMC migration and regulated inflammatory cytokine secretion via targeting the PI3K/AKT/mTOR pathway and its downstream signaling. These data contribute to a better understanding of the regulatory mechanisms of airway vascular remodeling in asthma.


Subject(s)
ADAM Proteins , Airway Remodeling , Asthma , Gene Silencing , Muscle, Smooth, Vascular , Vascular Remodeling , ADAM Proteins/genetics , ADAM Proteins/immunology , Airway Remodeling/genetics , Airway Remodeling/immunology , Asthma/genetics , Asthma/immunology , Cell Movement/genetics , Cell Movement/immunology , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Gene Silencing/physiology , Humans , Muscle, Smooth, Vascular/immunology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , RNA, Small Interfering/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Vascular Remodeling/genetics , Vascular Remodeling/immunology
8.
Cell Rep ; 39(13): 111019, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767961

ABSTRACT

Binding of BAFF to BAFFR activates in mature B cells PI3K/AKT signaling regulating protein synthesis, metabolic fitness, and survival. In humans, naive and memory B cells express the same levels of BAFFR, but only memory B cells seem to survive without BAFF. Here, we show that BAFF activates PI3K/AKT only in naive B cells and changes the expression of genes regulating migration, proliferation, growth, and survival. BAFF-induced PI3K/AKT activation requires direct interactions between BAFFR and the B cell antigen receptor (BCR) components CD79A and CD79B and is enhanced by the AKT coactivator TCL1A. Compared to memory B cells, naive B cells express more surface BCRs, which interact better with BAFFR than IgG or IgA, thus allowing stronger responses to BAFF. As ablation of BAFFR in naive and memory B cells causes cell death independent of BAFF-induced signaling, BAFFR seems to act also as an intrinsic factor for B cell survival.


Subject(s)
B-Cell Activation Factor Receptor , Memory B Cells , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, Antigen, B-Cell , B-Cell Activating Factor/immunology , B-Cell Activating Factor/metabolism , B-Cell Activation Factor Receptor/immunology , B-Cell Activation Factor Receptor/metabolism , Humans , Memory B Cells/immunology , Memory B Cells/metabolism , Phosphatidylinositol 3-Kinases/immunology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/metabolism
9.
J Immunol ; 208(8): 1912-1923, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35379745

ABSTRACT

The mechanism regulating the life span of short-lived plasma cells (SLPCs) remains poorly understood. Here we demonstrated that the EP4-mediated activation of AKT by PGE2 was required for the proper control of inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) hyperactivation and hence the endoplasmic reticulum (ER) homeostasis in IgM-producing SLPCs. Disruption of the PGE2-EP4-AKT signaling pathway resulted in IRE1α-induced activation of JNK, leading to accelerated death of SLPCs. Consequently, Ptger4-deficient mice (C57BL/6) exhibited a markedly impaired IgM response to T-independent Ags and increased susceptibility to Streptococcus pneumoniae infection. This study reveals a highly selective impact of the PGE2-EP4 signal on the humoral immunity and provides a link between ER stress response and the life span of SLPCs.


Subject(s)
Cell Survival , Dinoprostone , Endoplasmic Reticulum Stress , Endoribonucleases , Plasma Cells , Protein Serine-Threonine Kinases , Animals , Cell Survival/immunology , Dinoprostone/immunology , Endoplasmic Reticulum Stress/immunology , Endoribonucleases/immunology , Immunoglobulin M/immunology , Mice , Mice, Inbred C57BL , Plasma Cells/immunology , Prostaglandins/immunology , Prostaglandins E/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology
10.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163412

ABSTRACT

Protein kinase B2 (AKT2) is involved in various cardiomyocyte signaling processes, including those important for survival and metabolism. Coxsackievirus B3 (CVB3) is one of the most common pathogens that cause myocarditis in humans. The role of AKT2 in CVB3 infection is not yet well understood. We used a cardiac-specific AKT2 knockout (KO) mouse to determine the role of AKT2 in CVB3-mediated myocarditis. CVB3 was injected intraperitoneally into wild-type (WT) and KO mice. The mice's survival rate was recorded: survival in KO mice was significantly decreased compared with WT mice (WT vs. KO: 73.3 vs. 27.1%). Myocardial damage and inflammation were significantly increased in the hearts of KO mice compared with those of WT mice. Moreover, from surface ECG, AKT2 KO mice showed a prolonged atria and ventricle conduction time (PR interval, WT vs. KO: 47.27 ± 1.17 vs. 64.79 ± 7.17 ms). AKT2 deletion induced severe myocarditis and cardiac dysfunction due to CVB3 infection. According to real-time PCR, the mRNA level of IL-1, IL-6, and TNF-α decreased significantly in KO mice compared with WT mice on Days 5 after infection. In addition, innate immune response antiviral effectors, Type I interferon (interferon-α and ß), and p62, were dramatically suppressed in the heart of KO mice. In particular, the adult cardiac myocytes isolated from the heart showed high induction of TLR4 protein in KO mice in comparison with WT. AKT2 deletion suppressed the activation of Type I interferon and p62 transcription in CVB3 infection. In cardiac myocytes, AKT2 is a key signaling molecule for the heart from damage through the activation of innate immunity during acute myocarditis.


Subject(s)
Enterovirus B, Human/immunology , Enterovirus Infections/immunology , Immunity, Innate , Myocarditis/immunology , Myocardium/immunology , Proto-Oncogene Proteins c-akt/immunology , Acute Disease , Animals , Enterovirus B, Human/genetics , Enterovirus Infections/genetics , HeLa Cells , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/virology , Mice , Mice, Knockout , Myocarditis/genetics , Myocarditis/virology , Proto-Oncogene Proteins c-akt/genetics
11.
Acta Haematol ; 145(1): 9-17, 2022.
Article in English | MEDLINE | ID: mdl-34515042

ABSTRACT

Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by persistent thrombocytopenia resulting from increased platelet destruction and a loss of autoimmune tolerance. The pathogenesis of ITP is highly complex. Although ITP may be effectively controlled with currently available medications in some patients, a subset of cases remain refractory. The application of mesenchymal stem cells (MSCs) for human hematopoietic stem cell transplantation has increasingly demonstrated that MSCs modulate innate or adaptive immunity, thus resulting in a tolerant microenvironment. Functional defects and immunomodulatory disorders have been observed after the use of bone marrow mesenchymal stem cells (BM-MSCs) from patients with ITP. Here, we summarize the underlying mechanisms and clinical applications of various derived MSCs for ITP treatment, focusing on the main mechanisms underlying the functional defects and immune dysfunction of BM-MSCs from patients with ITP. Functional effects associated with the activation of the p53 pathway include decreased activity of the phosphatidylinositol 3 kinase/Akt pathway and activation of the TNFAIP3/NF-κB/SMAD7 pathway. Immune dysfunction appears to be associated with an impaired ability of BM-MSCs to induce various types of immune cells in ITP. At present, research focusing on MSCs in ITP remains in preliminary stages. The application of autologous or exogenous MSCs in the clinical treatment of ITP has been attempted in only a small case study and must be validated in larger-scale clinical trials.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/therapy , Signal Transduction/immunology , Humans , NF-kappa B/immunology , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Tumor Suppressor Protein p53/immunology
12.
Pathol Res Pract ; 229: 153684, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34839095

ABSTRACT

BACKGROUND: The prognosis of squamous cell carcinoma of head and neck (HNSCC) patients remains relatively poor over the last years. Tobacco, alcohol and active human papillomavirus (HPV) infection are involved in HNSCC development. Akt is a serine-threonine protein kinase with main phosphorylation sites at Thr308 and Ser473, which are critical to generate a high level of Akt activity. MATERIALS AND METHODS: The aim of the study was to compare the expression and prognostic potential of total Akt and its 2 phosphorylated forms - pAkt(Ser473) and pAkt(Thr308) in relation to HPV status in HNSCC patients. The expression levels of proteins were assessed immunohistochemically. To select independent prognostic factors univariate and multivariate analyses with Cox proportional regression model were performed. RESULTS: Among HNSCC with active HPV16 infection significantly more tumors with high Akt (67.86%, p = 0.026) and low pAkt(Ser473) (64.29%, p = 0.000) expressions were found as compared to those with HPV negativity, while there was no significant difference in the pAkt(Thr308) expression level between HPV positive and negative tumors (p = 0.359). In the whole group of HNSCC patients independent favorable prognostic factors were low T stage, low pAkt(Thr308) expression, HPV16 active infection presence (for OS and DFS) and female gender (for OS only). CONCLUSIONS: Our results indicate an important role of pAkt(Thr308) as prognostic biomarker for HNSCC patients. There is a high probability that using Akt inhibitors would improve therapeutical benefits and treatment effectiveness, especially in HNSCC patients with high expression of pAkt.


Subject(s)
Papillomaviridae/isolation & purification , Proto-Oncogene Proteins c-akt/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/virology , Female , Humans , Male , Middle Aged , Phosphorylation , Prognosis , Proto-Oncogene Proteins c-akt/metabolism
13.
Nat Immunol ; 23(2): 303-317, 2022 02.
Article in English | MEDLINE | ID: mdl-34949833

ABSTRACT

Antigen-specific memory CD4+ T cells can persist and confer rapid and efficient protection from microbial reinfection. However, the mechanisms underlying the long-term maintenance of the memory CD4+ T cell pool remain largely unknown. Here, using a mouse model of acute infection with lymphocytic choriomeningitis virus (LCMV), we found that the serine/threonine kinase complex mammalian target of rapamycin complex 2 (mTORC2) is critical for the long-term persistence of virus-specific memory CD4+ T cells. The perturbation of mTORC2 signaling at memory phase led to an enormous loss of virus-specific memory CD4+ T cells by a unique form of regulated cell death (RCD), ferroptosis. Mechanistically, mTORC2 inactivation resulted in the impaired phosphorylation of downstream AKT and GSK3ß kinases, which induced aberrant mitochondrial reactive oxygen species (ROS) accumulation and ensuing ferroptosis-causative lipid peroxidation in virus-specific memory CD4+ T cells; furthermore, the disruption of this signaling cascade also inhibited glutathione peroxidase 4 (GPX4), a major scavenger of lipid peroxidation. Thus, the mTORC2-AKT-GSK3ß axis functions as a key signaling hub to promote the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Ferroptosis/immunology , Immunologic Memory/immunology , Longevity/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Mechanistic Target of Rapamycin Complex 2/immunology , Animals , Glycogen Synthase Kinase 3 beta/immunology , Lipid Peroxidation/immunology , Lymphocyte Activation/immunology , Lymphocyte Count/methods , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/immunology
14.
Int Immunopharmacol ; 102: 108389, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34920312

ABSTRACT

The G protein-coupled receptor MrgprX2 in mast cells is known to be a crucial receptor for pseudo-allergic reactions. MrgprX2 activation leads to elevated intracellular calcium levels and mast cell degranulation, but the underlying mechanism remains to be elucidated. Herein, we investigated the role of the phosphatidylinositol 3 kinase (PI3K)/serum-threonine kinase (AKT) signaling pathway and phospholipase C gamma (PLCγ) in mast cell degranulation mediated by MrgprX2 in LAD2 human-derived mast cells. The results showed that phosphorylated AKT (p-AKT) and PLCγ up-regulation were accompanied by an increase in intracellular calcium following activation of MrgprX2 by Compound 48/80, an inducer of mast cell degranulation. In contrast, p-AKT and PLCγ were down-regulated and intracellular calcium levels decreased after MrgprX2 knockdown. Mast cell degranulation was clearly suppressed; however, inhibiting PI3K and PLCγ phosphorylation did not influence MrgprX2 expression. The increase in calcium concentration was suppressed and mast cell degranulation was weakened. Furthermore, by inhibiting PI3K and PLCγ phosphorylation in animals, the allergic symptoms caused by C48/80 were obviously reduced. We deduced that during the mast cell degranulation observed in pseudoallergic reactions, MrgprX2 regulated intracellular calcium levels via the PI3K/AKT and PLCγ pathways.


Subject(s)
Hypersensitivity/immunology , Mast Cells/immunology , Nerve Tissue Proteins/immunology , Receptors, G-Protein-Coupled/immunology , Receptors, Neuropeptide/immunology , Animals , Calcium/metabolism , Cell Degranulation , Cell Line , Humans , Hypersensitivity/metabolism , Mast Cells/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Phosphatidylinositol 3-Kinase/immunology , Phospholipase C gamma/immunology , Proto-Oncogene Proteins c-akt/immunology , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/genetics , Signal Transduction
15.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Article in English | MEDLINE | ID: mdl-34931923

ABSTRACT

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Genistein/therapeutic use , Phytoestrogens/therapeutic use , Atlases as Topic , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/virology , Cyclin D1/genetics , Cyclin D1/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , Multigene Family , Network Pharmacology/methods , PPAR gamma/genetics , PPAR gamma/immunology , Pharmacogenetics/methods , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction
16.
Front Immunol ; 12: 743354, 2021.
Article in English | MEDLINE | ID: mdl-34764959

ABSTRACT

Macrophages are functionally plastic and can thus play different roles in various microenvironments. Testis is an immune privileged organ, and testicular macrophages (TMs) show special immunosuppressive phenotype and low response to various inflammatory stimuli. However, the underlying mechanism to maintain the immunosuppressive function of TMs remains unclear. S100A9, a small molecular Ca2+ binding protein, is associated with the immunosuppressive function of macrophages. However, no related research is available about S100A9 in mouse testis. In the present study, we explored the role of S100A9 in TMs. We found that S100A9 was expressed in TMs from postnatal to adulthood and contributed to maintaining the immunosuppressive phenotype of TMs, which is associated with the activation of PI3K/Akt pathway. S100A9 treatment promotes the polarization of bone marrow-derived macrophages from M0 to M2 in vitro. S100A9 was significantly increased in TMs following UPEC-infection and elevated S100A9 contributed to maintain the M2 polarization of TMs. Treatment with S100A9 and PI3K inhibitor decreased the proportion of M2-type TMs in control and UPEC-infected mouse. Our findings reveal a crucial role of S100A9 in maintaining the immunosuppressive function of TMs through the activation of PI3K/Akt pathway, and provide a reference for further understanding the mechanism of immunosuppressive function of TMs.


Subject(s)
Calgranulin B/immunology , Immune Privilege/immunology , Macrophages/immunology , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology , Testis/immunology , Animals , Male , Mice , Mice, Inbred C57BL , Signal Transduction/immunology
17.
Inflamm Res ; 70(10-12): 1027-1042, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34652489

ABSTRACT

INTRODUCTION: Mitochondrial dysfunction is a common denominator of neuroinflammation recognized by neuronal oxidative stress-mediated apoptosis that is well recognized by common intracellular molecular pathway-interlinked neuroinflammation and mitochondrial oxidative stress, a feature of epileptogenesis. In addition, the neuronal damage in the epileptic brain corroborated the concept of brain injury-mediated neuroinflammation, further providing an interlink between inflammation, mitochondrial dysfunction, and oxidative stress in epilepsy. MATERIALS AND METHODS: A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to provide evidence of preclinical and clinically used drugs targeting such nuclear, cytosolic, and mitochondrial proteins suggesting that the correlation of mechanisms linked to neuroinflammation has been elucidated in the current review. Despite that, the evidence of elevated levels of inflammatory mediators and pro-apoptotic protein levels can provide the correlation of inflammatory responses often concerned with hyperexcitability attributing to the fact that mitochondrial redox mechanisms and higher susceptibilities to neuroinflammation result from repetitive recurring epileptic seizures. Therefore, providing an understanding of seizure-induced pathological changes read by activating neuroinflammatory cascades like NF-kB, RIPK, MAPK, ERK, JNK, and JAK-STAT signaling further related to mitochondrial damage promoting hyperexcitability. CONCLUSION: The current review highlights the further opportunity for establishing therapeutic interventions underlying the apparent correlation of neuroinflammation mediated mitochondrial oxidative stress might contribute to common intracellular mechanisms underlying a future prospective of drug treatment targeting mitochondrial dysfunction linked to the neuroinflammation in epilepsy.


Subject(s)
Epilepsy/immunology , Mitochondria/immunology , Neuroinflammatory Diseases/immunology , Animals , Cell Death , Humans , Inflammasomes/immunology , Neurons/immunology , PPAR gamma/immunology , Phosphatidylinositol 3-Kinase/immunology , Protein Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-bcl-2/immunology , STAT Transcription Factors/immunology , Uncoupling Protein 2/immunology
18.
Hum Immunol ; 82(12): 960-967, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34538530

ABSTRACT

OBJECTIVE: To explore the effect of LINC00323 on the polarization of M1 macrophages in diabetic nephropathy. To study the effect and biological mechanism of LINC00323 on the occurrence and development of diabetic nephropathy. METHODS: We used clinical samples to analyze the correlation between macrophage polarization and the occurrence and development of diabetic nephropathy. In addition, we used bioinformatics to analyze the key molecules of macrophage polarization. We then verified the key pathways that promote the M1 polarization of macrophages at the level of cell biology. And we verify the effectiveness of treatment against this target in animal experiments. RESULTS: We analyzed in clinical samples that the expression of inflammatory factors (TNF-α and IL-6) increased in patients with diabetic nephropathy. In addition, we found that the expression of M1 marker protein CD86 increased through PCR and western blot analysis. We found a key target (LINC00323) through bioinformatics. The expression of LINC00323 in patients' blood samples is also at a high level. We further explored the mechanism of LINC00323 involved in the polarization of M1 macrophages at the level of cellular molecular biology, and found that it is closely related to the PI3K/AKT signaling pathway. In animal models, we found that inhibiting the expression of LINC00323 can reduce the damage of diabetic nephropathy. CONCLUSION: We found that LINC00323 mediates the polarization of M1 macrophages through the PI3K/AKT signaling pathway. LINC00323 plays an important role in the occurrence and development of diabetic nephropathy.


Subject(s)
Diabetic Nephropathies/immunology , Macrophages/immunology , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology , RNA, Long Noncoding/immunology , Signal Transduction/immunology , Animals , Mice
19.
Eur J Immunol ; 51(11): 2576-2589, 2021 11.
Article in English | MEDLINE | ID: mdl-34363211

ABSTRACT

Regulatory T cells (Tregs) play a critical role in maintaining self-tolerance and controlling inflammation. However, physiologically relevant conditions that alter Treg function and drive disease pathogenesis are poorly understood and few have been defined. We have previously shown that induction of hyperlipidemia in mice results in changes in Tregs that reduce their function. Here, we set out to examine mechanisms by which hyperlipidemia alters Tregs. Using live-cell metabolic assays, we observed that induction of hyperlipidemia increases metabolism in Tregs but not conventional T cells. Increased metabolism resulted from preferential activation of the serine/threonine kinase Akt2 (PKB-ß). Expression of a constitutively activated form of Akt2 in CD4 T cells was sufficient to increase glycolysis in Tregs and drive changes in Treg subsets. Induction of hyperlipidemia did not alter Treg metabolism in mice lacking Akt2. Activation of Akt2 was sufficient to drive the production of inflammatory cytokines by Tregs. We suggest that hyperlipidemia alters Treg function through effects on metabolism via Akt2 activation thereby promoting plasticity and decreased function of FoxP3+ T cells.


Subject(s)
Hyperlipidemias/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Mice , Proto-Oncogene Proteins c-akt/immunology
20.
Front Immunol ; 12: 650808, 2021.
Article in English | MEDLINE | ID: mdl-34234773

ABSTRACT

The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation.


Subject(s)
Lectins, C-Type/immunology , Neutrophil Activation/immunology , Neutrophils/immunology , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology , Receptors, Mitogen/immunology , Signal Transduction/immunology , Adult , Cells, Cultured , Cytokines/immunology , Cytokines/metabolism , HEK293 Cells , HeLa Cells , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Microscopy, Confocal , Neutrophils/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Mitogen/genetics , Receptors, Mitogen/metabolism , p38 Mitogen-Activated Protein Kinases/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...