Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38.013
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 563-569, 2024 Jun 08.
Article Zh | MEDLINE | ID: mdl-38825901

Objective: To analyze the clinicopathological features and differential diagnosis of large B-cell lymphoma with IRF4 rearrangement, aiming enhance its recognition and prevent misdiagnosis. Methods: The clinicopathological features, immunophenotype, and fluorescence in situ hybridization (FISH) results of six cases diagnosed with IRF4 rearrangement-positive B-cell lymphoma at the Affiliated Hospital of Xuzhou Medical University from 2015 to 2023 were retrospectively analyzed. Additionally, a comprehensive review of the literature was conducted. Results: Six patients with IRF4 rearrangement-positive large B-cell lymphoma were included. Patients 1 to 5 included three males and two females with a median age of 19 years ranging from 11 to 34 years. Four patients presented with head and neck lesions, while the other one had a breast nodule; all were in clinical Ann Arbor stages I to Ⅱ. Morphologically, entirely diffuse pattern was present in two cases, purely follicular pattern in one case, and diffuse and follicular patterns in other two cases. The tumor cells, predominantly centroblasts mixed with some irregular centrocytes, were of medium to large size, with a starry sky appearance observed in two cases. Immunophenotyping revealed all cases were positive for bcl-6 and MUM1, with a Ki-67 index ranging from 70% to 90%, and CD10 was positive in two cases. IRF4 rearrangement was confirmed in all cases by FISH analysis, with dual IRF4/bcl-6 rearrangements identified in two cases, leading to a diagnosis of LBCL-IRF4. Case 6, a 39-year-old female with a tonsillar mass and classified as clinical Ann Arbor stage Ⅳ, displayed predominantly diffuse large B-cell lymphoma (DLBCL) morphology with 20% high-grade follicular lymphoma characteristics. Immunohistochemistry showed negative CD10 and positive bcl-6/MUM1, with a Ki-67 index of approximately 80%. Triple rearrangements of IRF4/bcl-2/bcl-6 were identified by FISH, leading to a diagnosis of DLBCL with 20% follicular lymphoma (FL). All six patients achieved complete remission after treatment, with no progression or relapse during a follow-up period of 31-100 months. Conclusions: Large B-cell lymphoma with IRF4 rearrangement is a rare entity with pathological features that overlap with those of FL and DLBCL. While IRF4 rearrangement is necessary for diagnosing LBCL-IRF4, it is not specific and requires differentiation from other aggressive B-cell lymphomas with IRF4 rearrangement.


Gene Rearrangement , In Situ Hybridization, Fluorescence , Interferon Regulatory Factors , Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-bcl-6 , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Diagnosis, Differential , Female , Male , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/metabolism , Adult , Adolescent , Retrospective Studies , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Child , Young Adult , Immunophenotyping , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
2.
Sci Transl Med ; 16(750): eadk7640, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38838132

Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types. We found that Bcl-xL and Bcl-2 overexpression in CAR T cells bearing a 4-1BB costimulatory domain resulted in increased expansion and antitumor activity, reduced exhaustion, and decreased apoptotic priming. In addition, CAR T cells expressing either Bcl-xL or a venetoclax-resistant Bcl-2 variant led to enhanced antitumor efficacy and survival in murine xenograft models of lymphoma and leukemia in the presence or absence of the BH3 mimetic venetoclax, a clinically approved BH3 mimetic. In this setting, Bcl-xL overexpression had stronger effects than overexpression of Bcl-2 or the Bcl-2(G101V) variant. These findings suggest that CAR T cells could be optimally engineered by overexpressing Bcl-xL to enhance their persistence while opening a therapeutic window for combination with BH3 mimetics to prime tumors for apoptosis.


Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Proto-Oncogene Proteins c-bcl-2 , Receptors, Chimeric Antigen , Sulfonamides , Humans , Animals , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Chimeric Antigen/metabolism , Sulfonamides/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Xenograft Model Antitumor Assays , Mice , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Cell Line, Tumor , Immunotherapy, Adoptive/methods , bcl-X Protein/metabolism , Peptide Fragments , Proto-Oncogene Proteins
3.
PLoS One ; 19(6): e0303134, 2024.
Article En | MEDLINE | ID: mdl-38837975

In recent years, a cancer research trend has shifted towards identifying novel therapeutic compounds from natural assets for the management of cancer. In this study, we aimed to assess the cytotoxic activity of Kigelia Africana (KA) extracts on breast cancer (MDA-MB-231 and MCF-7) and noncancerous kidney cells (HEK-293T) to develop an efficient anticancer medication. We used gas chromatography mass spectrometry (GC-MS to analyze the constituents of EKA and HKA extracts meanwhile the crystal violet and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were used to examine the possible cytotoxic effects of plant extracts on our cancer cell lines along with non-cancerous control. The quantitative real-time PCR (RT-PCR) was run on cell samples to evaluate the differential expression of cell proliferative markers of cancer (BCL-2 and TP53). These phytochemicals have been reported to have binding affinity for some other growth factors and receptors as well which was evaluated by the in-silico molecular docking against Bcl2, EGFR, HER2, and TP53. Our Morphological observation showed a significant difference in the cell morphology and proliferation potential which was decreased under the effect of plant extracts treatment as compared to the control samples. The ethanol extract exhibited a marked antiproliferative activity towards MDA-MB-231 and MCF-7 cell lines with IC50 = 20 and 32 µg/mL, respectively. Quantitative RT-PCR gene expression investigation revealed that the IC50 concentration of ethanolic extract regulated the levels of mRNA expression of apoptotic genes. With the target and active binding site amino acids discovered in the molecular docking investigation, TP53/Propanoic acid, 3-(2, 3, 6-trimethyl-1, 4-dioxaspiro [4.4] non-7-yl)-, methyl ester (-7.1 kcal/mol) is the best-docked ligand. The use of this plant in folk remedies justifies its high in vitro anti-cancer capabilities. This work highlights the role of phytochemicals in the inhibition of cancer proliferation. Based on all these findings, it can be concluded that EKA extract has promising anti-proliferative effect on cancerous cells but more study is required in future to further narrow down the active ingredients of total crude extract with specific targets in cancer cells.


Molecular Docking Simulation , Plant Extracts , Tumor Suppressor Protein p53 , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , MCF-7 Cells , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Female , HEK293 Cells , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
4.
Chem Biol Drug Des ; 103(5): e14536, 2024 May.
Article En | MEDLINE | ID: mdl-38725079

This research was designed to prospect the mechanism and impact of glycyrrhizic acid (GA) on DNA damage repair and cisplatin (CP)-induced apoptosis of melanoma cells. First, human melanoma cell SK-MEL-28 was stimulated using GA for 24, 48, and 72 h. Then, the optimal treatment time and dosage were selected. After that, cell counting kit-8 (CCK-8) was employed for testing the cell viability, flow cytometry for the apoptosis, comet assay for the DNA damage of cells, and western blot for the cleaved-Caspase3, Caspase3, Bcl-2, and γH2AX protein expression levels. The experimental outcomes exhibited that as the GA concentration climbed up, the SK-MEL-28 cell viability dropped largely, while the apoptosis level raised significantly, especially at the concentration of 100 µm. In addition, compared with GA or CPtreatment only, CP combined with GA notably suppressed the viability of melanoma cells and promoted cell apoptosis at the cytological level. At the protein level, the combined treatment notably downregulated the Bcl-2 and Caspase3 expression levels, while significantly upregulated the cleaved-Caspase3 and γH2AX expression levels. Besides, CP + GA treatment promoted DNA damage at the DNA molecular level. Collectively, both GA and CP can inhibit DNA damage repair and enhance the apoptosis of SK-MEL-28 cells, and the synergistic treatment of both exhibits better efficacy.


Apoptosis , Cisplatin , DNA Damage , DNA Repair , Glycyrrhizic Acid , Melanoma , Cisplatin/pharmacology , Humans , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Apoptosis/drug effects , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Cell Line, Tumor , DNA Damage/drug effects , DNA Repair/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Drug Synergism , Proto-Oncogene Proteins c-bcl-2/metabolism
5.
Mol Biol Rep ; 51(1): 603, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698270

BACKGROUND: Drug combination studies help to improve new treatment approaches for colon cancer. Tumor spheroids (3D) are better models than traditional 2-dimensional cultures (2D) to evaluate cellular responses to chemotherapy drugs. The cultivation of cancer cells in 2D and 3D cultures affects the apoptotic process, which is a major factor influencing the response of cancer cells to chemotherapeutic drugs. In this study, the antiproliferative effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) were investigated separately and in combination using 2D and 3D cell culture models on two different colon cancer cell lines, HT-29 (apoptosis-resistant cells) and Caco-2 2 (apoptosis-susceptible cells). METHODS: The effect of the drugs on the proliferation of both colon cancer cells was determined by performing an MTT assay in 2D culture. The apoptotic effect of 5-FU and DOX, both as single agents and in combination, was assessed in 2D and 3D cultures through quantitative real-time polymerase chain reaction analysis. The expression of apoptotic genes, such as caspases, p53, Bax, and Bcl-2, was quantified. RESULTS: It was found that the mRNA expression of proapoptotic genes was significantly upregulated, whereas the mRNA expression of the antiapoptotic Bcl-2 gene was significantly downregulated in both colon cancer models treated with 5-FU, DOX, and 5-FU + DOX. CONCLUSION: The results indicated that the 5-FU + DOX combination therapy induces apoptosis and renders 5-FU and DOX more effective at lower concentrations compared to their alone use. This study reveals promising results in reducing the potential side effects of treatment by enabling the use of lower drug doses.


Apoptosis , Cell Proliferation , Colorectal Neoplasms , Doxorubicin , Fluorouracil , Spheroids, Cellular , Humans , Fluorouracil/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Doxorubicin/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HT29 Cells , Cell Proliferation/drug effects , Caco-2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics
6.
BMC Gastroenterol ; 24(1): 151, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698325

BACKGROUND: Acute pancreatitis (AP) is a prevalent exocrine inflammatory disorder of the pancreas characterized by pancreatic inflammation and injury to acinar cells. Vitamin B6 (VB6) is a vital nutrient that plays a significant role in preserving human health and has anti-inflammatory and anti-apoptotic effects. METHODS: This study aimed to explore the potential pancreatic protective effects of VB6 in mitigating pancreatic inflammation and apoptosis induced by taurocholate sodium (TLCS) in an AP model and to assess the underlying mechanism of action. AP was induced in Sprague‒Dawley (SD) rats through TLCS administration and lipopolysaccharide (LPS)-treated AR42J cells, followed by treatment with VB6. RESULTS: Various parameters associated with AP were assessed in both plasma and pancreatic tissues. VB6 has been shown to ameliorate the severity of AP through various mechanisms. It effectively reduces the levels of serum amylase, lipase, and inflammatory factors, thereby mitigating histological injury to the pancreas. Moreover, VB6 inhibited pancreatic apoptosis by downregulating bax expression and up-regulating Bcl2 expression in TLCS-treated rats. Additionally, VB6 suppressed the expression of caspase3. The anti-inflammatory and anti-apoptotic effects of VB6 observed in LPS-treated AR42J cells are consistent with those observed in a rat model of AP. CONCLUSIONS: These results suggest that VB6 exerts anti-inflammatory and anti-apoptotic effects through inhibition of the caspase3 signaling pathway and has a protective effect against AP.


Apoptosis , Caspase 3 , Lipopolysaccharides , Pancreatitis , Rats, Sprague-Dawley , Signal Transduction , Taurocholic Acid , Vitamin B 6 , Animals , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/chemically induced , Signal Transduction/drug effects , Apoptosis/drug effects , Caspase 3/metabolism , Rats , Vitamin B 6/pharmacology , Vitamin B 6/therapeutic use , Male , Amylases/blood , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Acute Disease , bcl-2-Associated X Protein/metabolism , Lipase/metabolism , Lipase/blood , Proto-Oncogene Proteins c-bcl-2/metabolism
7.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Article En | MEDLINE | ID: mdl-38693863

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Carcinoma, Renal Cell , Cell Movement , Drug Resistance, Neoplasm , Kidney Neoplasms , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , Cell Line, Tumor , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Movement/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Axl Receptor Tyrosine Kinase , Pyrroles/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Cell Proliferation/drug effects , Indoles/pharmacology
8.
Zhonghua Yi Xue Za Zhi ; 104(17): 1514-1520, 2024 May 07.
Article Zh | MEDLINE | ID: mdl-38706059

Objective: To explore the effect and investigate the molecular mechanism of different concentrations of total tanshinones alone and in combination with tyrosine kinase inhibitors (TKIs) on the proliferation inhibition and apoptosis of human myeloid leukemia cell lines. Methods: K562 and Kasumi-1 cell lines were purchased from the Shanghai Cell Bank of the Chinese Academy of Sciences, and the TKIs-resistant strain K562/T315I cell line was constructed in Molecular Medicine Research Center, Beijing Lu Daopei Institute of Hematology. Logarithmic growth phase cells were taken and divided into intervention groups with total tanshinone of 0, 2.19, 4.38, 8.75, 17.50 and 35.00 µg/ml intervention groups, which were inoculated in 96-well plates at a density of 1×104 cells/well and exposed to the drug for 24 h, and a control group treated with dimethyl sulfoxide was also set up simultaneously. All experiments were repeated independently 3-5 times. The proliferative activity of the cells was assessed using the CCK-8 assay, the apoptotic rates were measured by flow cytometry, and the expression levels of apoptosis-regulating proteins Bcl-2 and Bax were analyzed by Western blotting. The cell lines treated and untreated with total tanshinone were subjected to transcriptome sequencing and gene set enrichment analysis to identify differentially expressed genes. Results: The half-inhibitory concentration (IC50) values of 8.75 µg/ml total tanshinone at 24 h for K562, K562/T315I and Kasumi-1 cells were (4.11±0.02), (4.95±0.04) and (3.98±0.01) µg/ml, respectively. When combined with 0.25 µmol/L imatinib, 8.75 µg/ml total tanshinone could enhance the induction of apoptosis effects on K562 and K562/T315I cell lines. After being treated with 4.38, 8.75, and 17.50 µg/ml of total tanshinone for 24 h, compared with the control group, total tanshinone upregulated the expression level of Bax protein, downregulated the expression level of Bcl-2 protein, and decreased the Bcl-2/Bax ratio (all P<0.05). Total tanshinone inhibited the proliferation-related signaling pathway and DNA damage repair pathway of myeloid leukemia cell lines, and activated the signaling pathway that induces apoptosis in leukemia cells. Conclusion: Different concentrations of total tanshinoneinhibites proliferation and promote apoptosis in K562, Kasumi-1 and TKIs-resistant K562/T315I cell lines, and further enhance the anti-leukemic effect when combined with TKIs.


Abietanes , Apoptosis , Cell Proliferation , Leukemia, Myeloid , Protein Kinase Inhibitors , Humans , Abietanes/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , K562 Cells , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism
10.
PLoS One ; 19(5): e0303213, 2024.
Article En | MEDLINE | ID: mdl-38753710

Ischemic stroke causes a lack of oxygen and glucose supply to brain, eventually leads to severe neurological disorders. Retinoic acid is a major metabolic product of vitamin A and has various biological effects. The PI3K-Akt signaling pathway is an important survival pathway in brain. Phosphorylated Akt is important in regulating survival and apoptosis. We examined whether retinoic acid has neuroprotective effects in stroke model by regulating Akt and its downstream protein, Bad. Moreover, we investigated the relationship between retinoic acid and Bcl-2 family protein interactions. Animals were intraperitoneally administered vehicle or retinoic acid (5 mg/kg) for four days before surgery and ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Neurobehavioral tests were performed 24 h after MCAO and cerebral cortical tissues were collected. Cresyl violet staining and TUNEL histochemistry were performed, Western blot and immunoprecipitation analysis were performed to elucidate the expression of various proteins. Retinoic acid reduced neurological deficits and histopathological changes, decreased the number of TUNEL-positive cells, and alleviated reduction of phospho-PDK1, phospho-Akt, and phospho-Bad expression caused by MCAO damage. Immunoprecipitation analysis showed that MCAO damage reduced the interaction between phospho-Bad and 14-3-3, which was attenuated by retinoic acid. Furthermore, retinoic acid mitigated the increase in Bcl-2/Bad and Bcl-xL/Bad binding levels and the reduction in Bcl-2/Bax and Bcl-xL/Bax binding levels caused by MCAO damage. Retinoic acid alleviated MCAO-induced increase of caspase-3 and cleaved caspase-3 expression. We demonstrate that retinoic acid prevented apoptosis against cerebral ischemia through phosphorylation of Akt and Bad, maintenance of phospho-Bad and 14-3-3 binding, and regulation of Bcl-2 family protein interactions. .


Disease Models, Animal , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-bcl-2 , Tretinoin , bcl-Associated Death Protein , Animals , bcl-Associated Death Protein/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Tretinoin/pharmacology , Male , Proto-Oncogene Proteins c-bcl-2/metabolism , Neuroprotective Agents/pharmacology , Ischemic Stroke/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/pathology , Apoptosis/drug effects , Rats , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Protein Binding/drug effects
12.
Cell Commun Signal ; 22(1): 277, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755629

INTRODUCTION: Bcl-2 and Bcl-xL are the most studied anti-apoptotic members of Bcl-2 family proteins. We previously characterized both of them, not only for their role in regulating apoptosis and resistance to therapy in cancer cells, but also for their non-canonical functions, mainly including promotion of cancer progression, metastatization, angiogenesis, and involvement in the crosstalk among cancer cells and components of the tumor microenvironment. Our goal was to identify transcriptional signature and novel cellular pathways specifically modulated by Bcl-2. METHODS: We performed RNAseq analysis of siRNA-mediated transient knockdown of Bcl-2 or Bcl-xL in human melanoma cells and gene ontology analysis to identify a specific Bcl-2 transcriptional signature. Expression of genes modulated by Bcl-2 and associated to Hippo pathway were validated in human melanoma, breast adenocarcinoma and non-small cell lung cancer cell lines by qRT-PCR. Western blotting analysis were performed to analyse protein expression of upstream regulators of YAP and in relation to different level of Bcl-2 protein. The effects of YAP silencing in Bcl-2 overexpressing cancer cells were evaluated in migration and cell viability assays in relation to different stiffness conditions. In vitro wound healing assays and co-cultures were used to evaluate cancer-specific Bcl-2 ability to activate fibroblasts. RESULTS: We demonstrated the Bcl-2-dependent modulation of Hippo Pathway in cancer cell lines from different tumor types by acting on upstream YAP regulators. YAP inhibition abolished the ability of Bcl-2 to increase tumor cell migration and proliferation on high stiffness condition of culture, to stimulate in vitro fibroblasts migration and to induce fibroblasts activation. CONCLUSIONS: We discovered that Bcl-2 regulates the Hippo pathway in different tumor types, promoting cell migration, adaptation to higher stiffness culture condition and fibroblast activation. Our data indicate that Bcl-2 inhibitors should be further investigated to counteract cancer-promoting mechanisms.


Cell Movement , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-bcl-2 , Humans , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Movement/genetics , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , bcl-X Protein/metabolism , bcl-X Protein/genetics , Cell Proliferation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fibroblasts/metabolism
13.
Clin Transl Sci ; 17(5): e13807, 2024 May.
Article En | MEDLINE | ID: mdl-38778732

Venetoclax, a highly potent BCL-2 inhibitor, is indicated for treatment of some hematologic malignancies as monotherapy, and/or in combination with other agents. Venetoclax pharmacokinetics has been extensively characterized in patients and healthy participants. After oral dosing, the median time to reach maximum plasma concentration ranged from 5 to 8 h and harmonic mean half-life ranged from 14 to 18 h. Food increases venetoclax bioavailability by 3-5-fold and venetoclax should be administered with food to ensure adequate and consistent bioavailability. Venetoclax is eliminated via cytochrome P450 (CYP)3A metabolism, and a negligible amount of unchanged drug is excreted in urine. Strong CYP3A/P-glycoprotein inhibitors increased venetoclax exposures (AUC) by 1.44- to 6.90-fold while a significant decrease (71%) has been observed when dosed with strong CYP3 inducers. Venetoclax does not inhibit or induce CYP enzymes or transporters. Venetoclax pharmacokinetics is not appreciably altered by age, weight, sex, but the exposure is up to twofold higher in participants from Asian countries. Mild-to-severe renal impairment or end-stage renal disease do not alter venetoclax exposures, and venetoclax is not cleared by dialysis. Although mild-to-moderate hepatic impairment does not affect venetoclax exposures, twofold higher exposure was observed in subjects with severe hepatic impairment. Venetoclax exposure is comparable across patients with different hematologic malignancies and healthy participants. Overall, venetoclax exposure is only affected by food and CYP3A modulators and is only higher in Asian subjects and subjects with severe hepatic impairment. Venetoclax exposure-response relationships are malignancy-dependent and can be different between monotherapy and combination therapy.


Bridged Bicyclo Compounds, Heterocyclic , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Humans , Sulfonamides/pharmacokinetics , Sulfonamides/administration & dosage , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Hematologic Neoplasms/drug therapy , Food-Drug Interactions , Drug Interactions , Biological Availability
14.
Biomolecules ; 14(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38785951

This study aimed to identify potential BCL-2 small molecule inhibitors using deep neural networks (DNN) and random forest (RF), algorithms as well as molecular docking and molecular dynamics (MD) simulations to screen a library of small molecules. The RF model classified 61% (2355/3867) of molecules as 'Active'. Further analysis through molecular docking with Vina identified CHEMBL3940231, CHEMBL3938023, and CHEMBL3947358 as top-scored small molecules with docking scores of -11, -10.9, and 10.8 kcal/mol, respectively. MD simulations validated these compounds' stability and binding affinity to the BCL2 protein.


Machine Learning , Molecular Docking Simulation , Molecular Dynamics Simulation , Proto-Oncogene Proteins c-bcl-2 , Small Molecule Libraries , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Humans , Protein Binding
15.
Cell Death Dis ; 15(5): 323, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724507

Richter's syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade B-cell malignancy. Molecular and functional studies have pointed out that CLL cells are close to the apoptotic threshold and dependent on BCL-2 for survival. However, it remains undefined how evasion from apoptosis evolves during disease transformation. Here, we employed functional and static approaches to compare the regulation of mitochondrial apoptosis in CLL and RS. BH3 profiling of 17 CLL and 9 RS samples demonstrated that RS cells had reduced apoptotic priming and lower BCL-2 dependence than CLL cells. While a subset of RS was dependent on alternative anti-apoptotic proteins and was sensitive to specific BH3 mimetics, other RS cases harbored no specific anti-apoptotic addiction. Transcriptomics of paired CLL/RS samples revealed downregulation of pro-apoptotic sensitizers during disease transformation. Albeit expressed, effector and activator members were less likely to colocalize with mitochondria in RS compared to CLL. Electron microscopy highlighted reduced cristae width in RS mitochondria, a condition further promoting apoptosis resistance. Collectively, our data suggest that RS cells evolve multiple mechanisms that lower the apoptotic priming and shift the anti-apoptotic dependencies away from BCL-2, making direct targeting of mitochondrial apoptosis more challenging after disease transformation.


Apoptosis , Leukemia, Lymphocytic, Chronic, B-Cell , Mitochondria , Proto-Oncogene Proteins c-bcl-2 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Mitochondria/metabolism , Male , Female , Middle Aged
17.
BMC Cardiovasc Disord ; 24(1): 287, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816768

BACKGROUND: The activation of G protein-coupled receptors (GPCR) signaling by external stimuli has been implicated in inducing cardiac stress and stress responses. GPR22 is an orphan GPCR expressed in brains and hearts, while its expression level is associated with cardiovascular damage in diabetes. Previous studies have suggested a protective role of GPR22 in mechanical cardiac stress, as loss of its expression increases susceptibility to heart failure post-ventricular pressure overload. However, the involvement and underlying signaling of GPR22 in cardiac stress response to ischemic stress remains unexplored. METHODS: In this study, we used cultured cells and a transgenic mouse model with cardiomyocyte-specific GPR22 overexpression to investigate the impact of ischemic stress on GPR22 expression and to elucidate its role in myocardial ischemic injury. Acute myocardial infarction (AMI) was induced by left coronary artery ligation in eight-week-old male GPR22 transgenic mice, followed by histopathological and biochemical examination four weeks post-AMI induction. RESULTS: GPR22 expression in H9C2 and RL-14 cells, two cardiomyocyte cell lines, was decreased by cobalt chloride (CoCl2) treatment. Similarly, reduced expression of myocardial GPR22 was observed in mice with AMI. Histopathological examinations revealed a protective effect of GPR22 overexpression in attenuating myocardial infarction in mice with AMI. Furthermore, myocardial levels of Bcl-2 and activation of PI3K-Akt signaling were downregulated by ischemic stress and upregulated by GPR22 overexpression. Conversely, the expression levels of caspase-3 and phosphorylated ERK1/2 in the infarcted myocardium were downregulated with GPR22 overexpression. CONCLUSION: Myocardial ischemic stress downregulates cardiac expression of GPR22, whereas overexpression of GPR22 in cardiomyocytes upregulates Akt signaling, downregulates ERK activation, and mitigates ischemia-induced myocardial injury.


Disease Models, Animal , Mice, Transgenic , Myocardial Infarction , Myocytes, Cardiac , Proto-Oncogene Proteins c-akt , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Male , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis , Cell Line , Mice, Inbred C57BL , Rats , Up-Regulation , Phosphorylation , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Caspase 3/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 1
18.
Biomed Pharmacother ; 175: 116719, 2024 Jun.
Article En | MEDLINE | ID: mdl-38749173

INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC) is a common cancer with a five-year survival rate around 60%, indicating a need for new treatments. BH3 mimetics are small molecules that inhibit anti-apoptotic Bcl-2 family proteins, resulting in apoptosis induction. METHODS: We performed a high-throughput screen using a Myogel matrix to identify the synergy between irradiation and the novel BH3 mimetics A-1155463, A-1331852, and navitoclax in 12 HNSCC cell lines, normal (NOF) and cancer-associated fibroblasts (CAF), and dysplastic keratinocytes (ODA). Next, we examined synergy in an apoptosis assay, followed by a clonogenic assay and a Myogel spheroid on selected HNSCC cell lines. Finally, we applied zebrafish larvae xenograft to validate the effects of navitoclax and A-1331852. RESULTS: All three BH3 mimetics exhibited a strong synergy with irradiation in eight HNSCC cell lines and ODAs, but not in NOFs and CAFs. A-1155463 and A-1331852 induced apoptosis and reduced proliferation, and together with irradiation, significantly increased apoptosis and arrested proliferation. A-1331852 and navitoclax significantly decreased the clonogenicity compared with the control, and combination treatment led to a decreased clonogenicity compared with monotherapy or irradiation. However, unlike navitoclax or A-1155463, only A-1331852 significantly reduced cancer cell invasion. Furthermore, in spheroid and zebrafish, irradiation appeared ineffective and failed to significantly increase the drug effect. In the zebrafish, A-1331852 and navitoclax significantly reduced the tumor area and metastasis. CONCLUSIONS: Our findings encourage the further preclinical investigation of BH3 mimetics, particularly A-1331852, as a single agent or combined with irradiation as a treatment for HNSCC.


Apoptosis , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Zebrafish , Humans , Animals , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Cell Line, Tumor , Apoptosis/drug effects , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Xenograft Model Antitumor Assays , Aniline Compounds/pharmacology , Sulfonamides/pharmacology , Cell Proliferation/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/radiotherapy , Antineoplastic Agents/pharmacology , Combined Modality Therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Peptide Fragments , Proto-Oncogene Proteins
19.
Biomed Pharmacother ; 175: 116797, 2024 Jun.
Article En | MEDLINE | ID: mdl-38776675

Cisplatin (CIS) stands as one of the most effective chemotherapy drugs currently available. Despite its anticancer properties, the clinical application of CIS is restricted due to nephrotoxicity. Our research aimed to specify the impact of ketotifen fumarate (KET) against nephrotoxicity induced by CIS in mice. Male NMRI mice were treated with KET (0.4, 0.8, and 1.6 mg/kg, ip) for seven days. On the fourth day of the study, a single dose of CIS (13 mg/kg, ip) was administered, and the mice were sacrificed on the eighth day. The results indicated that administration of KET attenuated CIS-induced elevation of BUN and Cr in the serum, as well as renal KIM-1 levels. This improvement was accompanied by a significant reduction in kidney tissue damage, which was supported by histopathological examinations. Likewise, the decrease in the ratio of GSH to GSSG and antioxidant enzyme activities (CAT, SOD, and GPx), and the increase in lipid peroxidation marker (TBARS) were reversed in KET-treated mice. The ELISA results revealed that KET-treated mice ameliorated CIS-induced elevation in the renal levels of TNF-α, IL-1ß, and IL-18. Western blot analysis exhibited that KET suppressed the activation of the transcription factor NF-κB and the NLRP3 inflammasome in the kidney of CIS-treated mice. Moreover, KET treatment reversed the changes in the protein expression of markers related to apoptosis (Bax, Bcl2, Caspase-3, and p53). Interestingly, KET significantly enhanced the cytotoxicity of CIS in HeLa cells. In conclusion, this study provides valuable insights into the promising effects of KET in mitigating CIS-induced nephrotoxicity.


Acute Kidney Injury , Caspase 1 , Caspase 3 , Cisplatin , Ketotifen , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , bcl-2-Associated X Protein , Animals , Cisplatin/toxicity , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Mice , NF-kappa B/metabolism , Caspase 1/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Caspase 3/metabolism , Humans , Ketotifen/pharmacology , bcl-2-Associated X Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , HeLa Cells , Oxidative Stress/drug effects
20.
Phytochemistry ; 223: 114144, 2024 Jul.
Article En | MEDLINE | ID: mdl-38754799

Nine previously undescribed iridoids, ptehosides A-I (1-9), together with 12 known ones (10-21), were isolated from Pterocephalus hookeri (C.B. Clarke) Höeck. Their structures were elucidated using various spectroscopic methods including HR-ESI-MS, NMR, UV, IR and CD, etc. The cytotoxic activities of all isolates were evaluated using MTT method in three human cancer cell lines (Caco2, Huh-7, and SW982). As result, compound 9 exhibited substantial inhibitory activity on Caco2, Huh-7, and SW982 cells with IC50 values of 1.17 ± 0.05, 1.15 ± 0.05 and 1.14 ± 0.04 µM, respectively. A preliminary mechanism study showed that 9 arrested the cell cycle of SW982 cells in the G0/G1 phase and induced apoptosis by upregulating Bax expression and downregulating Bcl-2 expression.


Antineoplastic Agents, Phytogenic , Apoptosis , Drug Screening Assays, Antitumor , Iridoids , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Iridoids/chemistry , Iridoids/pharmacology , Iridoids/isolation & purification , Molecular Structure , Cell Proliferation/drug effects , Structure-Activity Relationship , Dose-Response Relationship, Drug , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism
...