Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.775
Filter
1.
Parasit Vectors ; 17(1): 277, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943202

ABSTRACT

BACKGROUND: Chicken coccidiosis is a protozoan disease that leads to considerable economic losses in the poultry industry. Live oocyst vaccination is currently the most effective measure for the prevention of coccidiosis. However, it provides limited protection with several drawbacks, such as poor immunological protection and potential reversion to virulence. Therefore, the development of effective and safe vaccines against chicken coccidiosis is still urgently needed. METHODS: In this study, a novel oral vaccine against Eimeria tenella was developed by constructing a recombinant Lactobacillus plantarum (NC8) strain expressing the E. tenella RON2 protein. We administered recombinant L. plantarum orally at 3, 4 and 5 days of age and again at 17, 18 and 19 days of age. Meanwhile, each chick in the commercial vaccine group was immunized with 3 × 102 live oocysts of coccidia. A total of 5 × 104 sporulated oocysts of E. tenella were inoculated in each chicken at 30 days. Then, the immunoprotection effect was evaluated after E. tenella infection. RESULTS: The results showed that the proportion of CD4+ and CD8+ T cells, the proliferative ability of spleen lymphocytes, inflammatory cytokine levels and specific antibody titers of chicks immunized with recombinant L. plantarum were significantly increased (P < 0.05). The relative body weight gains were increased and the number of oocysts per gram (OPG) was decreased after E. tenella challenge. Moreover, the lesion scores and histopathological cecum sections showed that recombinant L. plantarum can significantly relieve pathological damage in the cecum. The ACI was 170.89 in the recombinant L. plantarum group, which was higher than the 150.14 in the commercial vaccine group. CONCLUSIONS: These above results indicate that L. plantarum expressing RON2 improved humoral and cellular immunity and enhanced immunoprotection against E. tenella. The protective efficacy was superior to that of vaccination with the commercial live oocyst vaccine. This study suggests that recombinant L. plantarum expressing the RON2 protein provides a promising strategy for vaccine development against coccidiosis.


Subject(s)
Chickens , Coccidiosis , Eimeria tenella , Lactobacillus plantarum , Poultry Diseases , Protozoan Proteins , Protozoan Vaccines , Vaccination , Animals , Eimeria tenella/immunology , Eimeria tenella/genetics , Coccidiosis/prevention & control , Coccidiosis/veterinary , Coccidiosis/immunology , Poultry Diseases/prevention & control , Poultry Diseases/parasitology , Protozoan Vaccines/immunology , Protozoan Vaccines/genetics , Protozoan Vaccines/administration & dosage , Lactobacillus plantarum/genetics , Lactobacillus plantarum/immunology , Administration, Oral , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Vaccination/veterinary , Antibodies, Protozoan/blood , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics
2.
Front Immunol ; 15: 1413893, 2024.
Article in English | MEDLINE | ID: mdl-38915396

ABSTRACT

Introduction: Trypanosoma cruzi is a protozoan parasite that causes the tropical ailment known as Chagas disease, which has its origins in South America. Globally, it has a major impact on health and is transported by insect vector that serves as a parasite. Given the scarcity of vaccines and the limited treatment choices, we conducted a comprehensive investigation of core proteomics to explore a potential reverse vaccine candidate with high antigenicity. Methods: To identify the immunodominant epitopes, T. cruzi core proteomics was initially explored. Consequently, the vaccine sequence was engineered to possess characteristics of non-allergenicity, antigenicity, immunogenicity, and enhanced solubility. After modeling the tertiary structure of the human TLR4 receptor, the binding affinities were assessed employing molecular docking and molecular dynamics simulations (MDS). Results: Docking of the final vaccine design with TLR4 receptors revealed substantial hydrogen bond interactions. A server-based methodology for immunological simulation was developed to forecast the effectiveness against antibodies (IgM + IgG) and interferons (IFN-g). The MDS analysis revealed notable levels of structural compactness and binding stability with average RMSD of 5.03 Aring;, beta-factor 1.09e+5 Å, Rg is 44.7 Aring; and RMSF of 49.50 Aring;. This is followed by binding free energies calculation. The system stability was compromised by the complexes, as evidenced by their corresponding Gibbs free energies of -54.6 kcal/mol. Discussion: Subtractive proteomics approach was applied to determine the antigenic regions of the T cruzi. Our study utilized computational techniques to identify B- and T-cell epitopes in the T. cruzi core proteome. In current study the developed vaccine candidate exhibits immunodominant features. Our findings suggest that formulating a vaccine targeting the causative agent of Chagas disease should be the initial step in its development.


Subject(s)
Chagas Disease , Molecular Docking Simulation , Molecular Dynamics Simulation , Proteome , Protozoan Vaccines , Toll-Like Receptor 4 , Trypanosoma cruzi , Trypanosoma cruzi/immunology , Chagas Disease/immunology , Chagas Disease/prevention & control , Humans , Proteome/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Protozoan Vaccines/immunology , Animals , Immunodominant Epitopes/immunology , Proteomics/methods , Antigens, Protozoan/immunology , Antigens, Protozoan/chemistry , Antibodies, Protozoan/immunology , Protozoan Proteins/immunology , Protozoan Proteins/chemistry , Vaccine Development , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry
3.
J Biomed Sci ; 31(1): 58, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824576

ABSTRACT

BACKGROUND: A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. METHODS: We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires. RESULTS: RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. CONCLUSIONS: These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.


Subject(s)
Chagas Disease , Macaca mulatta , Protozoan Vaccines , Receptors, Antigen, T-Cell , Animals , Chagas Disease/immunology , Chagas Disease/prevention & control , Receptors, Antigen, T-Cell/immunology , Protozoan Vaccines/immunology , Trypanosoma cruzi/immunology , Immunoglobulins/immunology
4.
Adv Parasitol ; 124: 91-154, 2024.
Article in English | MEDLINE | ID: mdl-38754928

ABSTRACT

Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.


Subject(s)
Coccidiosis , Neospora , Protozoan Vaccines , Animals , Coccidiosis/prevention & control , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/drug therapy , Coccidiosis/immunology , Neospora/immunology , Protozoan Vaccines/immunology , Cattle , Cattle Diseases/prevention & control , Cattle Diseases/parasitology , Vaccine Development
5.
Front Immunol ; 15: 1380660, 2024.
Article in English | MEDLINE | ID: mdl-38720894

ABSTRACT

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Subject(s)
Antigens, Protozoan , Babesia bovis , Babesiosis , Protozoan Proteins , Animals , Cattle , Amino Acid Motifs , Amino Acid Sequence , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Babesia bovis/immunology , Babesiosis/immunology , Babesiosis/parasitology , Babesiosis/prevention & control , Cattle Diseases/immunology , Cattle Diseases/parasitology , Cattle Diseases/prevention & control , Conserved Sequence , Epitopes, B-Lymphocyte/immunology , Protozoan Proteins/immunology , Protozoan Vaccines/immunology
6.
Infect Immun ; 92(6): e0006524, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38722167

ABSTRACT

Giardia lamblia is an important protozoan cause of diarrheal disease worldwide, delayed development and cognitive impairment in children in low- and middle-income countries, and protracted post-infectious syndromes in developed regions. G. lamblia resides in the lumen and at the epithelial surface of the proximal small intestine but is not mucosa invasive. The protozoan parasite is genetically diverse with significant genome differences across strains and assemblages. Animal models, particularly murine models, have been instrumental in defining mechanisms of host defense against G. lamblia, but mice cannot be readily infected with most human pathogenic strains. Antibiotic pretreatment can increase susceptibility, suggesting that the normal microbiota plays a role in controlling G. lamblia infection in mice, but the broader implications on susceptibility to diverse strains are not known. Here, we have used gnotobiotic mice to demonstrate that robust intestinal infection can be achieved for a broad set of human-pathogenic strains of the genetic assemblages A and B. Furthermore, gnotobiotic mice were able to eradicate infection with a similar kinetics to conventional mice after trophozoite challenge. Germ-free mice could also be effectively immunized by the mucosal route with a protective antigen, α1-giardin, in a manner dependent on CD4 T cells. These results indicate that the gnotobiotic mouse model is powerful for investigating acquired host defenses in giardiasis, as the mice are broadly susceptible to diverse G. lamblia strains yet display no apparent defects in mucosal immunity needed for controlling and eradicating this lumen-dwelling pathogen.


Subject(s)
Disease Models, Animal , Germ-Free Life , Giardia lamblia , Giardiasis , Animals , Giardiasis/immunology , Giardiasis/parasitology , Giardia lamblia/immunology , Giardia lamblia/genetics , Mice , Protozoan Vaccines/immunology , Vaccination , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/parasitology , Humans , Female
7.
Mol Biochem Parasitol ; 259: 111630, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38795969

ABSTRACT

Toxoplasma gondii is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in Toxoplasma gondii control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with Toxoplasma gondii SRS29C as the target gene. We explored the nucleic acid vaccine with Toxoplasma surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against Toxoplasma gondii. To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4+ and CD8+ T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66 kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4+/CD8+ T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed Toxoplasma gondii nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to develop certain humoral and cellular immune responses, and enhance their ability to resist Toxoplasma gondii infection.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Protozoan Proteins , Protozoan Vaccines , Toxoplasma , Vaccines, DNA , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Protozoan Vaccines/immunology , Protozoan Vaccines/genetics , Mice , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Toxoplasmosis, Animal/prevention & control , Toxoplasmosis, Animal/immunology , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes/immunology , Spleen/immunology , Spleen/parasitology , Cell Proliferation , Plasmids/genetics , Plasmids/immunology , Cytokines/metabolism
8.
Poult Sci ; 103(7): 103865, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810564

ABSTRACT

Chicken coccidiosis has inflicted significant economic losses upon the poultry industry. The primary strategies for preventing and controlling chicken coccidiosis include anticoccidial drugs and vaccination. However, these approaches face limitations, such as drug residues and resistance associated with anticoccidial drugs, and safety concerns related to live vaccines. Consequently, the urgent development of innovative vaccines, such as subunit vaccines, is imperative. In previous study, we screened 2 candidate antigens: Eimeria maxima lysophospholipase (EmLPL) and E. maxima regulatory T cell inducing molecule 1 (EmTregIM-1). To investigate the immune protective effect of the 2 candidate antigens against Eimeria maxima (E. maxima) infection, we constructed recombinant plasmids, namely pET-28a-EmLPL and pET-28a-EmTregIM-1, proceeded to induce the expression of recombinant proteins of EmLPL (rEmLPL) and EmTregIM-1 (rEmTregIM-1). The immunogenic properties of these proteins were confirmed through western blot analysis. Targeting EmLPL and EmTregIM-1, we developed subunit vaccines and encapsulated them in PLGA nanoparticles, resulting in nano-vaccines: PLGA-rEmLPL and PLGA-rEmTregIM-1. The efficacy of these vaccines was assessed through animal protection experiments. The results demonstrated that rEmLPL and rEmTregIM-1 were successfully recognized by anti-E. maxima chicken sera and His-conjugated mouse monoclonal antibodies. Immunization with both subunit and nano-vaccines containing EmLPL and EmTregIM-1 markedly mitigated weight loss and reduced oocyst shedding in chickens infected with E. maxima. Furthermore, the anticoccidial indexes (ACI) for both rEmLPL and PLGA-rEmLPL exceeded 160, whereas those for rEmTregIM-1 and PLGA-rEmTregIM-1 were above 120 but did not reach 160, indicating superior protective efficacy of the rEmLPL and PLGA-rEmLPL formulations. By contrast, the protection afforded by rEmTregIM-1 and PLGA-rEmTregIM-1 was comparatively lower. Thus, EmLPL is identified as a promising candidate antigen for vaccine development against E. maxima infection.


Subject(s)
Chickens , Coccidiosis , Eimeria , Poultry Diseases , Protozoan Vaccines , Animals , Eimeria/immunology , Coccidiosis/veterinary , Coccidiosis/prevention & control , Coccidiosis/immunology , Coccidiosis/parasitology , Poultry Diseases/prevention & control , Poultry Diseases/parasitology , Poultry Diseases/immunology , Protozoan Vaccines/immunology , Protozoan Vaccines/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Antigens, Protozoan/immunology
9.
J Biomed Semantics ; 15(1): 4, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664818

ABSTRACT

BACKGROUND: Pathogenic parasites are responsible for multiple diseases, such as malaria and Chagas disease, in humans and livestock. Traditionally, pathogenic parasites have been largely an evasive topic for vaccine design, with most successful vaccines only emerging recently. To aid vaccine design, the VIOLIN vaccine knowledgebase has collected vaccines from all sources to serve as a comprehensive vaccine knowledgebase. VIOLIN utilizes the Vaccine Ontology (VO) to standardize the modeling of vaccine data. VO did not model complex life cycles as seen in parasites. With the inclusion of successful parasite vaccines, an update in parasite vaccine modeling was needed. RESULTS: VIOLIN was expanded to include 258 parasite vaccines against 23 protozoan species, and 607 new parasite vaccine-related terms were added to VO since 2022. The updated VO design for parasite vaccines accounts for parasite life stages and for transmission-blocking vaccines. A total of 356 terms from the Ontology of Parasite Lifecycle (OPL) were imported to VO to help represent the effect of different parasite life stages. A new VO class term, 'transmission-blocking vaccine,' was added to represent vaccines able to block infectious transmission, and one new VO object property, 'blocks transmission of pathogen via vaccine,' was added to link vaccine and pathogen in which the vaccine blocks the transmission of the pathogen. Additionally, our Gene Set Enrichment Analysis (GSEA) of 140 parasite antigens used in the parasitic vaccines identified enriched features. For example, significant patterns, such as signal, plasma membrane, and entry into host, were found in the antigens of the vaccines against two parasite species: Plasmodium falciparum and Toxoplasma gondii. The analysis found 18 out of the 140 parasite antigens involved with the malaria disease process. Moreover, a majority (15 out of 54) of P. falciparum parasite antigens are localized in the cell membrane. T. gondii antigens, in contrast, have a majority (19/24) of their proteins related to signaling pathways. The antigen-enriched patterns align with the life cycle stage patterns identified in our ontological parasite vaccine modeling. CONCLUSIONS: The updated VO modeling and GSEA analysis capture the influence of the complex parasite life cycles and their associated antigens on vaccine development.


Subject(s)
Biological Ontologies , Animals , Parasites/immunology , Protozoan Vaccines/immunology , Humans , Vaccines/immunology , Models, Biological
11.
Front Cell Infect Microbiol ; 14: 1297321, 2024.
Article in English | MEDLINE | ID: mdl-38481660

ABSTRACT

Chagas' is a neglected disease caused by the eukaryotic kinetoplastid parasite, Trypanosoma cruzi. Currently, approximately 8 million people are infected worldwide, most of whom are in the chronic phase of the disease, which involves cardiac, digestive, or neurologic manifestations. There is an urgent need for a vaccine because treatments are only effective in the initial phase of infection, which is generally underdiagnosed. The selection and combination of antigens, adjuvants, and delivery platforms for vaccine formulations should be designed to trigger mixed humoral and cellular immune responses, considering that T. cruzi has a complex life cycle with both intracellular and bloodstream circulating parasite stages in vertebrate hosts. Here, we report the effectiveness of vaccination with a T. cruzi-specific protein family (TcTASV), employing both recombinant proteins with aluminum hydroxide and a recombinant baculovirus displaying a TcTASV antigen at the capsid. Vaccination stimulated immunological responses by producing lytic antibodies and antigen-specific CD4+ and CD8+ IFNÉ£ secreting lymphocytes. More than 90% of vaccinated animals survived after lethal challenges with T. cruzi, whereas all control mice died before 30 days post-infection. Vaccination also induced a strong decrease in chronic tissue parasitism and generated immunological memory that allowed vaccinated and infected animals to control both the reactivation of the infection after immunosuppression and a second challenge with T. cruzi. Interestingly, inoculation with wild-type baculovirus partially protected the mice against T. cruzi. In brief, we demonstrated for the first time that the combination of the baculovirus platform and the TcTASV family provides effective protection against Trypanosoma cruzi, which is a promising vaccine for Chagas disease.


Subject(s)
Chagas Disease , Parasites , Protozoan Vaccines , Trypanosoma cruzi , Vaccines , Humans , Animals , Mice , Baculoviridae/genetics , Antigens, Protozoan/genetics , Chagas Disease/parasitology , Trypanosoma cruzi/genetics , Vaccination , Protozoan Vaccines/genetics
12.
ACS Appl Mater Interfaces ; 16(13): 15832-15846, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38518375

ABSTRACT

Chagas disease (CD) (American trypanosomiasis caused by Trypanosoma cruzi) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms. In this study, we assessed the feasibility of developing an mRNA-based therapeutic CD vaccine targeting two known T. cruzi vaccine antigens (Tc24─a flagellar antigen and ASP-2─an amastigote antigen). We present the mRNA engineering steps, preparation, and stability of the lipid nanoparticles and evaluation of their uptake by dendritic cells, as well as their biodistribution in c57BL/J mice. Furthermore, we assessed the immunogenicity and efficacy of two mRNA-based candidates as monovalent and bivalent vaccine strategies using an in vivo chronic mouse model of CD. Our results show several therapeutic benefits, including reductions in parasite burdens and cardiac inflammation, with each mRNA antigen, especially with the mRNA encoding Tc24, and Tc24 in combination with ASP-2. Therefore, our findings demonstrate the potential of mRNA-based vaccines as a therapeutic option for CD and highlight the opportunities for developing multivalent vaccines using this approach.


Subject(s)
Chagas Disease , Protozoan Vaccines , Mice , Animals , RNA , Tissue Distribution , Chagas Disease/prevention & control , Antigens, Protozoan/genetics , RNA, Messenger , Technology
13.
Vaccine ; 42(9): 2299-2309, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38429153

ABSTRACT

Toxoplasma gondii is a pervasive protozoan parasite that is responsible for significant zoonoses. A wide array of vaccines using different effector molecules of T. gondii have been studied worldwide to control toxoplasmosis. None of the existing vaccines are sufficiently effective to confer protective immunity. Among the different Toxoplasma-derived effector molecules, T. gondii dense granule protein 15 from the type II strain (GRA15 (II)) was recently characterized as an immunomodulatory molecule that induced host immunity via NF-κB. Therefore, we assessed the immunostimulatory and protective efficacy of recombinant GRA15 (II) (rGRA15) against T. gondii infection in a C57BL/6 mouse model. We observed that rGRA15 treatment increased the production of IL-12p40 from mouse peritoneal macrophages in vitro. Immunization of mice with rGRA15 induced the production of anti-TgGRA15-specific IgG, IgG1 and IgG2c antibodies. The rGRA15-sensitized spleen cells from mice inoculated with the same antigen strongly promoted spleen cell proliferation and IFN-γ production. Immunization with rGRA15 significantly enhanced the survival rate of mice and dramatically decreased parasite burden in mice challenged with the Pru (type II) strain. These results suggested that rGRA15 triggered humoral and cellular immune responses to control infection. However, all of the immunized mice died when challenged with the GRA15-deficient Pru strain or the RH (type I) strain. These results suggest that GRA15 (II)-dependent immunity plays a crucial role in protection against challenge infection with the type II strain of T. gondii. This study is the first report to show GRA15 (II) as a recombinant vaccine antigen against Toxoplasma infection.


Subject(s)
Protozoan Vaccines , Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Vaccines, DNA , Vaccines , Animals , Mice , Protozoan Proteins , Mice, Inbred C57BL , Toxoplasmosis/prevention & control , Recombinant Proteins/metabolism , Antibodies, Protozoan , Toxoplasmosis, Animal/prevention & control , Mice, Inbred BALB C
14.
Poult Sci ; 103(5): 103596, 2024 May.
Article in English | MEDLINE | ID: mdl-38471232

ABSTRACT

This study compared 2 herbal anticoccidiosis drugs (water-soluble and feed-additive drugs) with monensin coccidiostat, toltrazuril (TTZ, anticoccidiosis drug), and Livacox Q (anticoccidiosis vaccine) in terms of their effects on the prevention and treatment of coccidiosis in broilers. In this study, 280 Ross 308 broiler chickens (a mix of both genders) were used in a completely randomized design with 7 treatments and 5 replications each including 8 chickens per replicate. On d 21 of rearing, all experimental groups, except for the negative control group (NC), were challenged with a mixed suspension of common strains of Eimeria, and the intended indices were assessed, including performance indices, number of oocysts per gram (OPG) of feces, intestinal injuries, and the total number of intestinal bacteria. In addition, the NC and the group receiving the monensin had greater body weight gain (BWG) (P < 0.05). At the end of week 6, the monensin group had the highest feed intake (FI), while the water soluble medicine treatment resulted in the lowest feed intake (P < 0.05). Regarding the lesion scores on day 28, the highest and lowest rates of jejunal injuries were observed in the positive control group (PC), the monensin and vaccine group respectively. The rate of oocysts excretion (oocysts per gram of feces = OPG) on different days was higher in the PC group, and the use of monensin could further reduce excretion compared to the other groups (P > 0.05). Based on a comparison of the population of lactic acid bacteria between the NC and both medicinal plant treated groups, the use of these products could increase the population of these types of bacteria. Moreover, the population of Escherichia coli was less considerable in the NC and herbal powder groups (P < 0.05). Overall, similar to commercial medicines, the herbal medicines used in this project can be effective in the prevention and treatment of coccidiosis and can improve profitability in broiler rearing centers by improving intestinal health.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Coccidiostats , Diet , Eimeria , Poultry Diseases , Protozoan Vaccines , Triazines , Animals , Coccidiosis/veterinary , Coccidiosis/prevention & control , Coccidiosis/parasitology , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/parasitology , Triazines/pharmacology , Triazines/administration & dosage , Animal Feed/analysis , Male , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/pharmacology , Eimeria/physiology , Female , Diet/veterinary , Random Allocation , Dietary Supplements/analysis
15.
Vet Parasitol ; 327: 110141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367528

ABSTRACT

Eimeria tenella is the most pathogenic and harmful intestinal parasitic protozoan. Recombinant DNA vaccines open options for promising strategies for preventing avian coccidiosis, replacing chemical drugs and live oocyst vaccines. Two important antigenic proteins, EtAMA3 (also known as SporoAMA1) and EtRON2L2, act together to promote the invasion of E. tenella sporozoites. In this study, a recombinant DNA vaccine, designated pcDNA3.1(+)-AR, was constructed based on EtAMA3DII, EtRON2L2D3, and EtRON2L2D4. Chickens were intramuscularly immunized with different doses (25, 50, or 100 µg) of pcDNA3.1(+)-AR to evaluate its immunoprotective effects in vivo. The chickens in the 50 µg and 100 µg groups had higher cytokine concentrations (interleukin 2, interferon-gamma, and interleukin 10), and lesion scores (81.9% and 67.57%, respectively) and relative oocyst production (47% and 19%, respectively) reduced compared with the unchallenged group, indicating partial protection against E. tenella. These results suggest that pcDNA3.1(+)-AR is a promising vaccine candidate against avian coccidiosis.


Subject(s)
Coccidiosis , Eimeria tenella , Poultry Diseases , Protozoan Vaccines , Vaccines, DNA , Animals , Chickens/parasitology , Coccidiosis/prevention & control , Coccidiosis/veterinary , Recombinant Proteins , Oocysts , Poultry Diseases/parasitology
16.
Vaccine ; 42(6): 1342-1351, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38310017

ABSTRACT

Toxoplasma gondii (T. gondii) is one of the most common pathogenic protozoa in the world, and causes toxoplasmosis, which in varying degrees causes significant economic losses and poses a serious public health challenge globally. To date, the development of an effective vaccine for human toxoplasmosis remains a challenge. Given that T.gondii calcium-dependent protein kinase 3 (CDPK3), dense granule protein 35 (GRA35) and rhoptry organelle protein 46 (ROP46) play key roles during Toxoplasma gondii invasion of host cells, we developed a protein vaccine cocktail including these proteins and validated its protective efficacy. The specific protective effects of vaccine on mice were analyzed by measuring serum antibodies, cytokines, splenocyte proliferation, the percentage of CD4+ and CD8+ T-lymphocytes, survival rate, and parasite cyst burden. The results showed that mice vaccinated with a three-protein cocktail produced the highest levels of immune protein antibodies to IgG, and high levels of IFN-γ, IL-2, IL-4, and IL-10 compared to other mice vaccinated with two proteins. In addition, CD4+ and CD8+ T cell percentages were significantly elevated. Compared to the control groups, mice vaccinated with the three-protein cocktail survived significantly longer after acute infection with T. gondii and had significantly fewer cysts after chronic infection. These results demonstrated that a cocktail vaccine of TgCDPK3, TgGRA35, and TgROP46 can effectively induce cellular and humoral immune responses with good protective effects in mice, indicating its potential as vaccine candidates for toxoplasmosis.


Subject(s)
Protein Kinases , Protozoan Vaccines , Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Vaccines, DNA , Animals , Mice , Humans , Mice, Inbred BALB C , Toxoplasmosis/prevention & control , Protozoan Proteins/genetics , Organelles , Antibodies, Protozoan , Toxoplasmosis, Animal/prevention & control
17.
Parasite Immunol ; 46(2): e13023, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38372452

ABSTRACT

Toxoplasmosis is one of the most dangerous zoonotic diseases, causing serious economic losses worldwide due to abortion and reproductive problems. Vaccination is the best way to prevent disease; thus, it is imperative to develop a candidate vaccine for toxoplasmosis. BAG1 and ROP8 have the potential to become vaccine candidates. In this study, rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 were used to evaluate the immune effect of vaccines in each group by detecting the humoral and cellular immune response levels of BABL/c mice after immunization and the ability to resist acute and chronic infection with Toxoplasma gondii (T. gondii). We divided the mice into vaccine groups with different proteins, and the mice were immunized on days 0, 14, and 28. The protective effects of different proteins against T. gondii were analysed by measuring the cytokines, serum antibodies, splenocyte proliferation assay results, survival time, and number and diameter of brain cysts of mice after infection. The vaccine groups exhibited substantially higher IgG, IgG1, and IgG2a levels and effectively stimulated lymphocyte proliferation. The levels of IFN-γ and IL-2 in the vaccine group were significantly increased. The survival time of the mice in each vaccine group was prolonged and the diameter of the cysts in the vaccine group was smaller; rTgBAG1-rTgROP8 had a better protection. Our study showed that the rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 recombinant protein vaccines are partial but effective approaches against acute or chronic T. gondii infection. They are potential candidates for a toxoplasmosis vaccine.


Subject(s)
Protozoan Vaccines , Toxoplasmosis , Animals , Mice , Antibodies, Protozoan , Antigens, Protozoan/genetics , Immunity, Cellular , Immunization , Immunoglobulin G , Mice, Inbred BALB C , Protozoan Proteins , Protozoan Vaccines/immunology , Recombinant Proteins/genetics , Toxoplasma , Toxoplasmosis/prevention & control , Vaccination
18.
Exp Parasitol ; 259: 108719, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364954

ABSTRACT

BACKGROUND: Rabbit coccidiosis is a parasitism caused by either one or multiple co-infections of Eimeria species. Among them, Eimeria intestinalis is the primary pathogen responsible for diarrhea, growth retardation, and potential mortality in rabbits. Concerns regarding drug resistance and drug residues have led to the development of recombinant subunit vaccines targeting Eimeria species as a promising preventive measure. The aim of this study was to assess the immunoprotective efficacy of recombinant subunit vaccines comprising EiROP25 and EiROP30 (rhoptry proteins (ROPs)) against E. intestinalis infection in rabbits. METHODS: Cloning, prokaryotic expression, and protein purification were performed to obtain EiROP25 and EiROP30. Five groups of fifty 35-day-old Eimeria-free rabbits were created (unchallenged control group, challenged control group, vector protein control group, rEiROP25 group, and rEiROP30 group), with 10 rabbits in each group. Rabbits in the rEiROP25 and rEiROP30 groups were immunized with the recombinant proteins (100 µg per rabbit) for primary and booster immunization (100 µg per rabbit) at a two-week intervals, and challenged with 7 × 104 oocysts per rabbit after an additional two-week interval. Two weeks after the challenge, the rabbits were euthanized for analysis. Weekly collections of rabbit sera were made to measure changes in specific IgG and cytokine level. Clinical symptoms and pathological changes after challenge were observed and recorded. At the conclusion of the animal experiment, lesion scores, the relative weight increase ratio, the oocyst reduction rate, and the anticoccidial index were computed. RESULTS: Rabbits immunized with rEiROP25 and rEiROP30 exhibited relative weight gain ratios of 56.57% and 72.36%, respectively. Oocysts decreased by 78.14% and 84.06% for the rEiROP25 and rEiROP30 groups, respectively. The anticoccidial indexes were 140 and 155. Furthermore, there was a noticeable drop in intestinal lesions. After the primary immunization with rEiROP25 and rEiROP30, a week later, there was a notable rise in specific IgG levels, which remained elevated for two weeks following challenge (P < 0.05). Interleukin (IL)-2 levels increased markedly in the rEiROP25 group, whereas IL-2, interferon gamma (IFN-γ), and IL-4 levels increased substantially in the rEiROP30 group (P < 0.05). CONCLUSION: Immunization of rabbits indicated that both rEiROP25 and rEiROP30 are capable of inducing an increase in specific antibody levels. rEiROP25 triggered a Th1-type immune protection response, while rEiROP30 elicited a Th1/Th2 mixed response. EiROP25 and EiROP30 can generate a moderate level of immune protection, with better efficacy observed for EiROP30. This study provides valuable insights for the promotion of recombinant subunit vaccines targeting rabbit E. intestinalis infection.


Subject(s)
Coccidiosis , Eimeria , Poultry Diseases , Protozoan Vaccines , Rabbits , Animals , Coccidiosis/prevention & control , Coccidiosis/veterinary , Recombinant Proteins , Vaccines, Synthetic , Oocysts , Vaccines, Subunit , Immunoglobulin G , Chickens , Poultry Diseases/prevention & control
19.
Acta Trop ; 252: 107125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38280636

ABSTRACT

There are no approved vaccines yet for human visceral leishmaniasis (VL), the most severe form of the leishmaniasis clinical manifestations that is fatal in over 95 % of untreated cases. It is well-accepted that immunological changes during aging have deleterious impact on the efficacy of vaccines and response to infections. In this work, we compared the response of young and aged mice to intranasal vaccination with killed Leishmania amazonensis promastigote antigens (LaAg) that were then challenged with L. infantum infection, a species that causes visceral leishmaniasis. Intranasal vaccination with LaAg induced a similar reduction in parasitism and hepatosplenomegaly in both young and aged mice compared to their unvaccinated counterparts. Following infection, there was also a less prominent inflammatory profile particularly in the vaccinated aged group, with lower production of TNF-α and nitrite compared to the respective unvaccinated group. Interestingly, the LaAg intranasal vaccination promoted increased production of IFN-γ that was observed in both young- and aged vaccinated groups. Additionally, CD4+ and CD8+T cells from both vaccinated groups presented decreased expression of the inhibitory receptors PD-1 and KLRG1 compared to their unvaccinated controls. Interestingly, a strong positive correlation was observed between the expression of both inhibitory receptors PD-1 and KLRG1 and parasitism, which was more conspicuous in the unvaccinated-aged mice than in the others. Overall, this study helps define new strategies to improve vaccine effectiveness and provides a perspective for prophylactic alternatives against leishmaniasis.


Subject(s)
Leishmania infantum , Leishmania mexicana , Leishmaniasis Vaccines , Leishmaniasis, Visceral , Leishmaniasis , Protozoan Vaccines , Humans , Animals , Mice , Aged , Leishmaniasis, Visceral/prevention & control , Programmed Cell Death 1 Receptor , Antigens, Protozoan , Mice, Inbred BALB C , Cytokines
20.
J Immunol ; 212(4): 617-631, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38197653

ABSTRACT

Chagas disease by Trypanosoma cruzi infection is a major public health issue. The available therapeutic agents have limited efficacy and significant side effects. A reliable vaccine would reduce the threat of T. cruzi infections and prevent Chagas disease. Understanding the immune response to this infection would improve vaccine design. We previously demonstrated that adoptively transferred NK cells from mice immunized with highly attenuated T. cruzi, GFP-DDDHA strain, provided potent protection in naive recipients against secondary lethal challenge with various wild-type (WT) strains. To understand the importance of NK cells in protecting mice against T. cruzi infection, we performed an in-depth characterization of NK cell phenotype, responses, and memory-like traits during acute infections due to GFP-DDDHA and WT strains and in immunized mice during a recall response to a WT lethal challenge. NK cells robustly expanded and became more mature and cytolytic during the GFP-DDDHA strain immunization. NK cells in immunized mice responded more robustly after WT lethal challenge than during an acute primary WT infection. In addition, protection by immunization with the GFP-DDDHA strain is significantly weakened in NK cell-deficient mice and did not prevent parasitemia from WT lethal challenge, indicating that NK cells with memory-like traits were a critical component for early control of WT lethal challenge. Prior T. cruzi vaccine development studies have not included studies of this rapid NK response. These findings provide insights into overcoming existing challenges in developing a safe and effective vaccine to prevent this infection.


Subject(s)
Chagas Disease , Protozoan Vaccines , Trypanosoma cruzi , Animals , Mice , Chagas Disease/prevention & control , Immunization , Killer Cells, Natural
SELECTION OF CITATIONS
SEARCH DETAIL