Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article En | MEDLINE | ID: mdl-35008954

AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.


Aggrecans/genetics , Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Genetic Predisposition to Disease , Hereditary Central Nervous System Demyelinating Diseases/etiology , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Mitochondrial Diseases/etiology , Mitochondrial Diseases/metabolism , Psychomotor Disorders/etiology , Psychomotor Disorders/metabolism , Aggrecans/deficiency , Aggrecans/metabolism , Amino Acid Transport Systems, Acidic/metabolism , Animals , Antiporters/metabolism , Biomarkers , Brain/metabolism , Combined Modality Therapy , Disease Management , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Energy Metabolism , Genetic Association Studies , Glutamic Acid/metabolism , Hereditary Central Nervous System Demyelinating Diseases/diagnosis , Hereditary Central Nervous System Demyelinating Diseases/therapy , Humans , Malates/metabolism , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/therapy , Myelin Sheath/metabolism , Oxidation-Reduction , Phenotype , Psychomotor Disorders/diagnosis , Psychomotor Disorders/therapy
2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article En | MEDLINE | ID: mdl-34732576

ATP-sensitive potassium (KATP) gain-of-function (GOF) mutations cause neonatal diabetes, with some individuals exhibiting developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome. Mice expressing KATP-GOF mutations pan-neuronally (nKATP-GOF) demonstrated sensorimotor and cognitive deficits, whereas hippocampus-specific hKATP-GOF mice exhibited mostly learning and memory deficiencies. Both nKATP-GOF and hKATP-GOF mice showed altered neuronal excitability and reduced hippocampal long-term potentiation (LTP). Sulfonylurea therapy, which inhibits KATP, mildly improved sensorimotor but not cognitive deficits in KATP-GOF mice. Mice expressing KATP-GOF mutations in pancreatic ß-cells developed severe diabetes but did not show learning and memory deficits, suggesting neuronal KATP-GOF as promoting these features. These findings suggest a possible origin of cognitive dysfunction in DEND and the need for novel drugs to treat neurological features induced by neuronal KATP-GOF.


Cognition Disorders/etiology , Diabetes Mellitus/psychology , Epilepsy/psychology , Hippocampus/metabolism , Infant, Newborn, Diseases/psychology , KATP Channels/genetics , Motor Disorders/etiology , Psychomotor Disorders/psychology , Animals , Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Disease Models, Animal , Epilepsy/etiology , Epilepsy/metabolism , Female , Gain of Function Mutation , Infant, Newborn, Diseases/etiology , Infant, Newborn, Diseases/metabolism , Learning Disabilities/drug therapy , Learning Disabilities/etiology , Long-Term Potentiation , Male , Memory Disorders/drug therapy , Memory Disorders/etiology , Mice, Transgenic , Psychomotor Disorders/etiology , Psychomotor Disorders/metabolism , Sulfonylurea Compounds/therapeutic use
3.
Nutrients ; 13(10)2021 Sep 29.
Article En | MEDLINE | ID: mdl-34684470

l-Serine (Ser) is synthesized de novo from 3-phosphoglycerate via the phosphorylated pathway committed by phosphoglycerate dehydrogenase (Phgdh). A previous study reported that feeding a protein-free diet increased the enzymatic activity of Phgdh in the liver and enhanced Ser synthesis in the rat liver. However, the nutritional and physiological functions of Ser synthesis in the liver remain unclear. To clarify the physiological significance of de novo Ser synthesis in the liver, we generated liver hepatocyte-specific Phgdh KO (LKO) mice using an albumin-Cre driver. The LKO mice exhibited a significant gain in body weight compared to Floxed controls at 23 weeks of age and impaired systemic glucose metabolism, which was accompanied by diminished insulin/IGF signaling. Although LKO mice had no apparent defects in steatosis, the molecular signatures of inflammation and stress responses were evident in the liver of LKO mice. Moreover, LKO mice were more vulnerable to protein starvation than the Floxed mice. These observations demonstrate that Phgdh-dependent de novo Ser synthesis in liver hepatocytes contributes to the maintenance of systemic glucose tolerance, suppression of inflammatory response, and resistance to protein starvation.


Carbohydrate Metabolism, Inborn Errors/metabolism , Diet, Protein-Restricted , Hepatocytes/metabolism , Insulin Resistance , Microcephaly/metabolism , Obesity/metabolism , Phosphoglycerate Dehydrogenase/deficiency , Psychomotor Disorders/metabolism , Seizures/metabolism , Animals , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Glucose/metabolism , Insulin/metabolism , Mice , Obesity/etiology , Organ Specificity , Phosphoglycerate Dehydrogenase/metabolism , Signal Transduction
4.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article En | MEDLINE | ID: mdl-34462350

Intraventricular hemorrhage (IVH) results in periventricular inflammation, hypomyelination of the white matter, and hydrocephalus in premature infants. No effective therapy exists to prevent these disorders. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists reduce inflammation, alleviate free radical generation, and enhance microglial phagocytosis, promoting clearance of debris and red blood cells. We hypothesized that activation of PPAR-γ would enhance myelination, reduce hydrocephalus, and promote neurological recovery in newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH; autopsy brain samples from premature infants with and without IVH were analyzed. We found that IVH augmented PPAR-γ expression in microglia of both preterm human infants and rabbit kits. The treatment with PPAR-γ agonist or PPAR-γ overexpression by adenovirus delivery further elevated PPAR-γ levels in microglia, reduced proinflammatory cytokines, increased microglial phagocytosis, and improved oligodendrocyte progenitor cell (OPC) maturation in kits with IVH. Transcriptomic analyses of OPCs identified previously unrecognized PPAR-γ-induced genes for purinergic signaling, cyclic adenosine monophosphate generation, and antioxidant production, which would reprogram these progenitors toward promoting myelination. RNA-sequencing analyses of microglia revealed PPAR-γ-triggered down-regulation of several proinflammatory genes and transcripts having roles in Parkinson's disease and amyotrophic lateral sclerosis, contributing to neurological recovery in kits with IVH. Accordingly, PPAR-γ activation enhanced myelination and neurological function in kits with IVH. This also enhanced microglial phagocytosis of red blood cells but did not reduce hydrocephalus. Treatment with PPAR-γ agonist might enhance myelination and neurological recovery in premature infants with IVH.


Cerebral Intraventricular Hemorrhage/metabolism , Myelin Proteins/biosynthesis , PPAR gamma/metabolism , Amino Acid Transport Systems, Acidic/deficiency , Amino Acid Transport Systems, Acidic/metabolism , Animals , Animals, Newborn , Antiporters/deficiency , Antiporters/metabolism , Cerebral Intraventricular Hemorrhage/pathology , Disease Models, Animal , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Humans , Infant, Premature , Microglia/metabolism , Mitochondrial Diseases/metabolism , Oligodendroglia/pathology , PPAR gamma/agonists , Psychomotor Disorders/metabolism , Rabbits , Rosiglitazone/pharmacology , Sequence Analysis, RNA/methods
5.
Mol Genet Metab ; 133(2): 123-136, 2021 06.
Article En | MEDLINE | ID: mdl-33903016

Tetrahydrobiopterin (BH4) deficiency is caused by genetic variants in the three genes involved in de novo cofactor biosynthesis, GTP cyclohydrolase I (GTPCH/GCH1), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS), sepiapterin reductase (SR/SPR), and the two genes involved in cofactor recycling, carbinolamine-4α-dehydratase (PCD/PCBD1) and dihydropteridine reductase (DHPR/QDPR). Dysfunction in BH4 metabolism leads to reduced cofactor levels and may result in systemic hyperphenylalaninemia and/or neurological sequelae due to secondary deficiency in monoamine neurotransmitters in the central nervous system. More than 1100 patients with BH4 deficiency and 800 different allelic variants distributed throughout the individual genes are tabulated in database of pediatric neurotransmitter disorders PNDdb. Here we provide an update on the molecular-genetic analysis and structural considerations of these variants, including the clinical courses of the genotypes. From a total of 324 alleles, 11 are associated with the autosomal recessive form of GTPCH deficiency presenting with hyperphenylalaninemia (HPA) and neurotransmitter deficiency, 295 GCH1 variant alleles are detected in the dominant form of L-dopa-responsive dystonia (DRD or Segawa disease) while phenotypes of 18 alleles remained undefined. Autosomal recessive variants observed in the PTS (199 variants), PCBD1 (32 variants), and QDPR (141 variants) genes lead to HPA concomitant with central monoamine neurotransmitter deficiency, while SPR deficiency (104 variants) presents without hyperphenylalaninemia. The clinical impact of reported variants is essential for genetic counseling and important for development of precision medicine.


Alcohol Oxidoreductases/genetics , GTP Cyclohydrolase/genetics , Phenylketonurias/genetics , Phosphorus-Oxygen Lyases/genetics , Biopterins/analogs & derivatives , Biopterins/genetics , Biopterins/metabolism , Dihydropteridine Reductase/genetics , Dystonia/genetics , Dystonia/metabolism , Dystonia/pathology , Genetic Predisposition to Disease , Humans , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/pathology , Microtubule-Associated Proteins/genetics , Phenylketonurias/classification , Phenylketonurias/metabolism , Phenylketonurias/pathology , Psychomotor Disorders/genetics , Psychomotor Disorders/metabolism , Psychomotor Disorders/pathology
6.
Nitric Oxide ; 100-101: 50-56, 2020 08 01.
Article En | MEDLINE | ID: mdl-32278831

The cerebellum is widely known as a motor structure because it regulates and controls motor learning, coordination, and balance. However, it is also critical for non-motor functions such as cognitive processing, sensory discrimination, addictive behaviors and mental disorders. The cerebellum has the highest relative abundance of neuronal nitric oxide synthase (nNos) and is sensitive to ethanol. Although it has been demonstrated that the interaction of γ-aminobutyric acid (GABA) and nitric oxide (NO) might play an important role in the regulation of ethanol-induced cerebellar ataxia, the molecular mechanisms through which ethanol regulates nNos function to elicit this behavioral effect have not been studied extensively. Here, we investigated the dose-dependent effects of acute ethanol treatment on motor impairment using the rotarod behavioral paradigm and the alterations of nNos mRNA expression in cerebellum, frontal cortex (FC), hippocampus and striatum. We also examined the link between acute ethanol-induced motor impairment and nNos by pharmacological manipulation of nNos function. We found that acute ethanol induced a dose-dependent elevation of ethanol blood levels which was associated with the impairment of motor coordination performance and decreased expression of cerebellar nNos. In contrast, acute ethanol increased nNos expression in FC but did not to change the expression for this enzyme in striatum and hippocampus. The effects of acute ethanol were attenuated by l-arginine, a precursor for NO and potentiated by 7-nitroindazole (7-NI), a selective inhibitor of nNos. Our data suggests that differential regulation of nNos mRNA expression in cerebellum and frontal cortex might be involved in acute ethanol-induced motor impairment.


Alcohol-Induced Disorders, Nervous System/metabolism , Cerebellar Ataxia/metabolism , Ethanol/adverse effects , Nitric Oxide Synthase Type I/metabolism , Psychomotor Disorders/metabolism , Alcohol-Induced Disorders, Nervous System/chemically induced , Animals , Arginine/pharmacology , Cerebellar Ataxia/chemically induced , Cerebellum/drug effects , Cerebellum/metabolism , Enzyme Inhibitors/pharmacology , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Indazoles/pharmacology , Male , Nitric Oxide Synthase Type I/antagonists & inhibitors , Psychomotor Disorders/chemically induced , Rats, Sprague-Dawley
7.
Schizophr Bull ; 46(2): 272-285, 2020 02 26.
Article En | MEDLINE | ID: mdl-31361896

In 1874, Karl Kahlbaum described catatonia as an independent syndrome characterized by motor, affective, and behavioral anomalies. In the following years, various catatonia concepts were established with all sharing the prime focus on motor and behavioral symptoms while largely neglecting affective changes. In 21st century, catatonia is a well-characterized clinical syndrome. Yet, its neurobiological origin is still not clear because methodological shortcomings of hitherto studies had hampered this challenging effort. To fully capture the clinical picture of catatonia as emphasized by Karl Kahlbaum, 2 decades ago a new catatonia scale was developed (Northoff Catatonia Rating Scale [NCRS]). Since then, studies have used NCRS to allow for a more mechanistic insight of catatonia. Here, we undertook a systematic review searching for neuroimaging studies using motor/behavioral catatonia rating scales/criteria and NCRS published up to March 31, 2019. We included 19 neuroimaging studies. Studies using motor/behavioral catatonia rating scales/criteria depict cortical and subcortical motor regions mediated by dopamine as neuronal and biochemical substrates of catatonia. In contrast, studies relying on NCRS found rather aberrant higher-order frontoparietal networks which, biochemically, are insufficiently modulated by gamma-aminobutyric acid (GABA)-ergic and glutamatergic transmission. This is further supported by the high therapeutic efficacy of GABAergic agents in acute catatonia. In sum, this systematic review points out the difference between motor/behavioral and NCRS-based classification of catatonia on both neuronal and biochemical grounds. That highlights the importance of Kahlbaum's original truly psychomotor concept of catatonia for guiding both research and clinical diagnosis and therapy.


Brain , Catatonia , Psychomotor Disorders , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Catatonia/classification , Catatonia/diagnostic imaging , Catatonia/metabolism , Catatonia/physiopathology , Humans , Psychomotor Disorders/classification , Psychomotor Disorders/diagnostic imaging , Psychomotor Disorders/metabolism , Psychomotor Disorders/physiopathology
8.
FASEB J ; 33(11): 12336-12347, 2019 11.
Article En | MEDLINE | ID: mdl-31451050

Reactive oxygen species (ROS) can act as second messengers in various signaling pathways, and abnormal oxidation contributes to multiple diseases, including cancer. Detecting and quantifying protein oxidation is crucial for a detailed understanding of reduction-oxidation reaction (redox) signaling. We developed an Activated Thiol Sepharose-based proteomic (ATSP) approach to quantify reversible protein oxidation. ATSP can enrich H2O2-sensitive thiol peptides, which are more likely to contain reactive cysteines involved in redox signaling. We applied our approach to analyze hereditary leiomyomatosis and renal cell carcinoma (HLRCC), a type of kidney cancer that harbors fumarate hydratase (FH)-inactivating mutations and has elevated ROS levels. Multiple proteins were oxidized in FH-deficient cells, including many metabolic proteins such as the pyruvate kinase M2 isoform (PKM2). Treatment of HLRCC cells with dimethyl fumarate or PKM2 activators altered PKM2 oxidation levels. Finally, we found that ATSP could detect Src homology region 2 domain-containing phosphatase-2 and PKM2 oxidation in cells stimulated with platelet-derived growth factor. This newly developed redox proteomics workflow can detect reversible oxidation of reactive cysteines and can be employed to analyze multiple physiologic and pathologic conditions.-Xu, Y., Andrade, J., Ueberheide, B., Neel, B. G. Activated Thiol Sepharose-based proteomic approach to quantify reversible protein oxidation.


Proteins/metabolism , Proteomics/methods , Sepharose/analogs & derivatives , Animals , Carrier Proteins/metabolism , Cells, Cultured , Cysteine/metabolism , Dimethyl Fumarate/pharmacology , Fumarate Hydratase/deficiency , Fumarate Hydratase/metabolism , Membrane Proteins/metabolism , Metabolism, Inborn Errors/metabolism , Muscle Hypotonia/metabolism , Oxidation-Reduction , Psychomotor Disorders/metabolism , Rats , Sepharose/chemistry , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins
9.
Int J Mol Sci ; 20(15)2019 Jul 31.
Article En | MEDLINE | ID: mdl-31370244

Aneurysmal subarachnoid hemorrhage (aSAH), characterized by the extravasation of blood into the subarachnoid space caused by an intracranial aneurysm rupture, may lead to neurocognitive impairments and permanent disability and usually carries poor outcome. Dental or gingiva-derived stem cells have been shown to contribute to immune modulation and neuroregeneration, but the underlying mechanisms are unclear. In the present study, we sought to investigate whether dental pulp stem cells (DPSCs) secrete certain factor(s) that can ameliorate the neural damage and other manifestations in a rat aSAH model. Twenty-four hours after the induction of aSAH, microthrombosis, cortical vasoconstriction, and the decrease in microcirculation and tissue oxygen pressure were detected. Intrathecal administration of DPSC-derived conditioned media (DPSC-CM) ameliorated aSAH-induced vasoconstriction, neuroinflammation, and improved the oxygenation in the injured brain. Rotarod test revealed that the aSAH-induced cognitive and motor impairments were significantly improved by this DPSC-CM administration. Cytokine array indicated the major constituent of DPSC-CM was predominantly insulin growth factor-1 (IGF-1). Immunohistochemistry staining of injured brain tissue revealed the robust increase in Iba1-positive cells that were also ameliorated by DPSC-CM administration. Antibody-mediated neutralization of IGF-1 moderately deteriorated the rescuing effect of DPSC-CM on microcirculation, Iba1-positive cells in the injured brain area, and the cognitive/motor impairments. Taken together, the DPSC-derived secretory factors showed prominent therapeutic potential for aSAH. This therapeutic efficacy may include improvement of microcirculation, alleviation of neuroinflammation, and microglial activation; partially through IGF-1-dependent mechanisms.


Brain Ischemia/drug therapy , Culture Media, Conditioned/pharmacology , Neurocognitive Disorders/drug therapy , Neuroprotective Agents/pharmacology , Psychomotor Disorders/drug therapy , Subarachnoid Hemorrhage/drug therapy , Thrombosis/drug therapy , Animals , Brain Ischemia/genetics , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Culture Media, Conditioned/chemistry , Dental Pulp/cytology , Dental Pulp/metabolism , Disease Models, Animal , Gene Expression , Injections, Spinal , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Male , Microcirculation/drug effects , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Neurocognitive Disorders/genetics , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/physiopathology , Neuroprotective Agents/chemistry , Oxygen Consumption/drug effects , Psychomotor Disorders/genetics , Psychomotor Disorders/metabolism , Psychomotor Disorders/physiopathology , Rats , Rats, Wistar , Rotarod Performance Test , Stem Cells/chemistry , Stem Cells/cytology , Stem Cells/metabolism , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/physiopathology , Thrombosis/genetics , Thrombosis/metabolism , Thrombosis/physiopathology , Vasoconstriction/drug effects
10.
Int J Mol Sci ; 20(14)2019 Jul 23.
Article En | MEDLINE | ID: mdl-31340538

WW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.


Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Cerebral Cortex/metabolism , Dwarfism/genetics , Epilepsy/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Mitochondrial Diseases/genetics , Neurogenesis/genetics , Psychomotor Disorders/genetics , Tumor Suppressor Proteins/genetics , WW Domain-Containing Oxidoreductase/genetics , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Animals , Antiporters/genetics , Antiporters/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Cell Count , Cerebral Cortex/growth & development , Cerebral Cortex/pathology , Disease Models, Animal , Dwarfism/metabolism , Dwarfism/pathology , Epilepsy/metabolism , Epilepsy/pathology , Gene Expression Regulation, Developmental , Germ-Line Mutation , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Hereditary Central Nervous System Demyelinating Diseases/pathology , Male , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Neurons/metabolism , Neurons/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Prosencephalon/growth & development , Prosencephalon/metabolism , Prosencephalon/pathology , Psychomotor Disorders/metabolism , Psychomotor Disorders/pathology , Rats , Rats, Transgenic , Signal Transduction , Tumor Suppressor Proteins/deficiency , WW Domain-Containing Oxidoreductase/deficiency
11.
Dev Neurobiol ; 79(1): 51-59, 2019 01.
Article En | MEDLINE | ID: mdl-30430747

Rett syndrome (RTT) is a monogenic neurodevelopmental disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. Patients with RTT develop symptoms after 6-18 months of age, exhibiting characteristic movement deficits, such as ambulatory difficulties and loss of hand skills, in addition to breathing abnormalities and intellectual disability. Given the striking psychomotor dysfunction, numerous studies have investigated the underlying neurochemical and circuit mechanisms from different aspects. Here, I review the evidence linking MeCP2 deficiency to alterations in neurotransmission and neural circuits that govern the psychomotor function and discuss a recently identified pathological origin underlying the psychomotor deficits in RTT.


Nerve Net/pathology , Neurochemistry , Psychomotor Disorders , Rett Syndrome/complications , Animals , DNA-Binding Proteins/genetics , Disease Models, Animal , Humans , Mutation , Psychomotor Disorders/etiology , Psychomotor Disorders/metabolism , Psychomotor Disorders/pathology , Rett Syndrome/genetics
12.
J Lipid Res ; 59(12): 2413-2420, 2018 12.
Article En | MEDLINE | ID: mdl-30348640

Neu-Laxova syndrome (NLS) is a very rare autosomal recessive congenital disorder characterized by disturbed development of the central nervous system and the skin and caused by mutations in any of the three genes involved in de novo l-serine biosynthesis: PHGDH, PSAT1, and PSPH l-Serine is essential for the biosynthesis of phosphatidylserine and sphingolipids. The extracellular lipid of the stratum corneum, of which sphingolipid constitutes a significant part, plays a primary role in skin barrier function. Here, we describe a Japanese NLS pedigree with a previously unreported nonsense mutation in PHGDH and a unique inversion of chromosome 1. In addition, the levels of 11 major ceramide classes in the tape-stripped stratum corneum of the NLS patient's skin were assessed by LC/MS. Notably, lower amounts of ceramides of all classes were found in the patient's stratum corneum than in those of controls. This is the first report to demonstrate the reduction of ceramides in the stratum corneum of an NLS patient due to PHGDH mutations. The clinical findings and a detailed analysis of ceramides from the stratum corneum in the family extend the spectrum of clinical anomalies and give us a clue to the pathomechanisms of ichthyosis in NLS patients with phosphoglycerate dehydrogenase deficiency.


Abnormalities, Multiple/metabolism , Brain Diseases/metabolism , Carbohydrate Metabolism, Inborn Errors/metabolism , Ceramides/metabolism , Fetal Growth Retardation/metabolism , Ichthyosis/metabolism , Limb Deformities, Congenital/metabolism , Microcephaly/metabolism , Phosphoglycerate Dehydrogenase/deficiency , Phosphoglycerate Dehydrogenase/metabolism , Psychomotor Disorders/metabolism , Seizures/metabolism , Adult , Amino Acids/metabolism , Female , Gestational Age , Humans , Immunohistochemistry , Infant, Newborn , Male , Pregnancy , Sphingolipids/metabolism , Exome Sequencing , Young Adult
13.
Cell Death Dis ; 9(10): 990, 2018 09 24.
Article En | MEDLINE | ID: mdl-30250195

Cancer cells with a less differentiated stem-like phenotype are more resistant to therapeutic manipulations than their differentiated counterparts, and are considered as one of the main causes of cancer persistence and relapse. As such, induction of differentiation in cancer stem-like cells (CSLCs) has emerged as an alternative strategy to enhance the efficacy of anticancer therapies. CSLCs are metabolically distinct from differentiated cells, and any aberration from the intrinsic metabolic state can induce differentiation of CSLCs. Therefore, metabolism-related molecular targets, with a capacity to promote differentiation within CSLCs, are of therapeutic importance. Here, we demonstrate that phosphoglycerate dehydrogenase (PHGDH), an essential enzyme catalyzing the synthesis of amino acid serine, is important for maintaining the poorly differentiated, stem-like state of CSLCs. Our data shows that PHGDH deficiency impairs the tumorsphere formation capacity in embryonal carcinoma stem-like cells (ECSLCs), breast cancer stem-like cells (BCSLCs) and patient-derived brain tumor-initiating cells (BTICs), which is accompanied by the reduced expression of characteristic stemness-promoting factors, such as Oct4, Nanog, Sox-2, and Bmi-1. Mechanistically, PHGDH deficiency in ECSLCs promotes differentiation to various lineages via degradation of Oct4 and by increasing the stability of differentiation marker ß3-tubulin. Furthermore, PHGDH inhibition promotes p-mTOR independent but Beclin-1-dependent autophagy, independent of apoptosis. When studied in combination, the inhibition of both PHGDH and p-mTOR in ECSLCs causes further augmentation of autophagy, and additionally promotes apoptosis, demonstrating the clinical applicability of PHGDH-based manipulations in cancer therapies. Recapitulating these in vitro findings in CSLC models, the intratumoral PHGDH expression in patient-derived tumors is positively correlated with the mRNA levels of stemness factors, especially Oct4, and cancer patients co-expressing high levels of PHGDH and Oct4 display significantly lower survival than those with low PHGDH/Oct4 co-expression. Altogether, this study identifies a clinically-relevant role for PHGDH in the regulation of stemness-differentiation axis within CSLCs.


Autophagy , Brain Neoplasms/metabolism , Carcinoma, Embryonal/metabolism , Cell Differentiation , Embryonal Carcinoma Stem Cells/metabolism , Glioblastoma/metabolism , Phosphoglycerate Dehydrogenase/metabolism , TOR Serine-Threonine Kinases/metabolism , Testicular Neoplasms/metabolism , Beclin-1/metabolism , Brain Neoplasms/pathology , Carbohydrate Metabolism, Inborn Errors/metabolism , Carcinoma, Embryonal/pathology , Cell Line, Tumor , Glioblastoma/pathology , Humans , Male , Microcephaly/metabolism , Octamer Transcription Factor-3/metabolism , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Phosphoglycerate Dehydrogenase/deficiency , Phosphoglycerate Dehydrogenase/genetics , Proteolysis , Psychomotor Disorders/metabolism , Seizures/metabolism , Testicular Neoplasms/pathology , Transfection , Tubulin/metabolism , Ubiquitination
14.
Cell Metab ; 28(4): 573-587.e13, 2018 10 02.
Article En | MEDLINE | ID: mdl-30017355

The role of phosphoglycerate dehydrogenase (PHGDH), a key enzyme of the serine synthesis pathway (SSP), in endothelial cells (ECs) remains poorly characterized. We report that mouse neonates with EC-specific PHGDH deficiency suffer lethal vascular defects within days of gene inactivation, due to reduced EC proliferation and survival. In addition to nucleotide synthesis impairment, PHGDH knockdown (PHGDHKD) caused oxidative stress, due not only to decreased glutathione and NADPH synthesis but also to mitochondrial dysfunction. Electron transport chain (ETC) enzyme activities were compromised upon PHGDHKD because of insufficient heme production due to cellular serine depletion, not observed in other cell types. As a result of heme depletion, elevated reactive oxygen species levels caused EC demise. Supplementation of hemin in PHGDHKD ECs restored ETC function and rescued the apoptosis and angiogenesis defects. These data argue that ECs die upon PHGDH inhibition, even without external serine deprivation, illustrating an unusual importance of serine synthesis for ECs.


Endothelial Cells/metabolism , Heme/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Serine/metabolism , Apoptosis , Carbohydrate Metabolism, Inborn Errors/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Dietary Supplements , Gene Knockdown Techniques , Hemin/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Microcephaly/metabolism , Mitochondria/metabolism , Mitophagy , Neovascularization, Physiologic , Oxidative Stress , Phosphoglycerate Dehydrogenase/deficiency , Protein Biosynthesis , Psychomotor Disorders/metabolism , Purines/metabolism , Reactive Oxygen Species/metabolism , Seizures/metabolism
15.
Mol Genet Metab ; 125(1-2): 118-126, 2018 09.
Article En | MEDLINE | ID: mdl-30031689

Folate metabolism in the brain is critically important and serves a number of vital roles in nucleotide synthesis, single carbon metabolism/methylation, amino acid metabolism, and mitochondrial translation. Genetic defects in almost every enzyme of folate metabolism have been reported to date, and most have neurological sequelae. We report 2 patients presenting with a neurometabolic disorder associated with biallelic variants in the MTHFS gene, encoding 5,10-methenyltetrahydrofolate synthetase. Both patients presented with microcephaly, short stature, severe global developmental delay, progressive spasticity, epilepsy, and cerebral hypomyelination. Baseline CSF 5-methyltetrahydrolate (5-MTHF) levels were in the low-normal range. The first patient was treated with folinic acid, which resulted in worsening cerebral folate deficiency. Treatment in this patient with a combination of oral L-5-methyltetrahydrofolate and intramuscular methylcobalamin was able to increase CSF 5-MTHF levels, was well tolerated over a 4 month period, and resulted in subjective mild improvements in functioning. Measurement of MTHFS enzyme activity in fibroblasts confirmed reduced activity. The direct substrate of the MTHFS reaction, 5-formyl-THF, was elevated 30-fold in patient fibroblasts compared to control, supporting the hypothesis that the pathophysiology of this disorder is a manifestation of toxicity from this metabolite.


Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Carbon-Nitrogen Ligases/genetics , Epilepsy/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Microcephaly/genetics , Mitochondrial Diseases/genetics , Psychomotor Disorders/genetics , Amino Acid Transport Systems, Acidic/cerebrospinal fluid , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Antiporters/cerebrospinal fluid , Antiporters/genetics , Antiporters/metabolism , Brain/metabolism , Brain/pathology , Carbon-Nitrogen Ligases/cerebrospinal fluid , Carbon-Nitrogen Ligases/deficiency , Carbon-Nitrogen Ligases/metabolism , Epilepsy/cerebrospinal fluid , Epilepsy/complications , Epilepsy/pathology , Female , Folate Receptor 1/deficiency , Hereditary Central Nervous System Demyelinating Diseases/cerebrospinal fluid , Hereditary Central Nervous System Demyelinating Diseases/complications , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Humans , Male , Metabolic Diseases/cerebrospinal fluid , Metabolic Diseases/complications , Metabolic Diseases/genetics , Metabolic Diseases/pathology , Microcephaly/cerebrospinal fluid , Microcephaly/complications , Microcephaly/pathology , Mitochondrial Diseases/cerebrospinal fluid , Mitochondrial Diseases/complications , Mitochondrial Diseases/metabolism , Nervous System Malformations/cerebrospinal fluid , Nervous System Malformations/complications , Nervous System Malformations/genetics , Nervous System Malformations/metabolism , Neuroaxonal Dystrophies , Psychomotor Disorders/cerebrospinal fluid , Psychomotor Disorders/complications , Psychomotor Disorders/metabolism , Tetrahydrofolates/cerebrospinal fluid , Tetrahydrofolates/metabolism
16.
Mol Genet Metab ; 123(3): 309-316, 2018 03.
Article En | MEDLINE | ID: mdl-29269105

Serine biosynthesis defects are autosomal recessive metabolic disorders resulting from the deficiency of any of the three enzymes involved in de novo serine biosynthesis, specifically phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). In this study, we performed metabolomic profiling on 4 children with serine biosynthesis defects; 3 with PGDH deficiency and 1 with PSAT deficiency. The evaluations were performed at baseline and with serine and glycine supplementation. Metabolomic profiling performed at baseline showed low phospholipid species, including glycerophosphocholine, glycerophosphoethanolamine, and sphingomyelin. All children had low serine and glycine as expected. Low glycerophosphocholine compounds were found in 4 children, low glycerophosphoethanolamine compounds in 3 children, and low sphingomyelin species in 2 children. Metabolic profiling with serine and glycine supplementation showed normalization of most of the low phospholipid compounds in the 4 children. Phospholipids are the major component of plasma and intracellular membranes, and phosphatidylcholine is the most abundant phospholipid of all mammalian cell types and subcellular organelles. Phosphatidylcholine is of particular importance for the nervous system, where it is essential for neuronal differentiation. The observed low phosphatidylcholine species in children with serine biosynthesis defects that improved after serine supplementation, supports the role of serine as a significant precursor for phosphatidylcholine. The vital role that phosphatidylcholine has during neuronal differentiation and the pronounced neurological manifestations in serine biosynthesis defects suggest that phosphatidylcholine deficiency occurring secondary to serine deficiency may have a significant contribution to the development of the neurological manifestations in individuals with serine biosynthesis defects.


Carbohydrate Metabolism, Inborn Errors/metabolism , Dietary Supplements , Glycine/administration & dosage , Microcephaly/metabolism , Phosphatidylcholines/metabolism , Phosphoglycerate Dehydrogenase/deficiency , Psychomotor Disorders/metabolism , Seizures/metabolism , Serine/biosynthesis , Transaminases/deficiency , Carbohydrate Metabolism, Inborn Errors/blood , Carbohydrate Metabolism, Inborn Errors/diet therapy , Cell Differentiation , Child , Child, Preschool , Female , Glycine/blood , Humans , Infant , Male , Metabolomics/methods , Microcephaly/blood , Microcephaly/diet therapy , Neurons/metabolism , Phosphoglycerate Dehydrogenase/blood , Phosphoglycerate Dehydrogenase/metabolism , Psychomotor Disorders/blood , Psychomotor Disorders/diet therapy , Seizures/blood , Seizures/diet therapy , Serine/administration & dosage , Serine/blood , Transaminases/blood , Transaminases/metabolism
17.
Int J Mol Sci ; 19(1)2017 Dec 29.
Article En | MEDLINE | ID: mdl-29286317

Rett Syndrome (RTT), an autism-related disorder caused by mutation of the X-linked Methyl CpG-binding Protein 2 (MECP2) gene, is characterized by severe cognitive and intellectual deficits. While cognitive deficits are well-documented in humans and rodent models, impairments of sensory, motor and metabolic functions also occur but remain poorly understood. To better understand non-cognitive deficits in RTT, we studied female rats heterozygous for Mecp2 mutation (Mecp2-/x); unlike commonly used male Mecp2-/y rodent models, this more closely approximates human RTT where males rarely survive. Mecp2-/x rats showed rapid, progressive decline of motor coordination through six months of age as assessed by rotarod performance, accompanied by deficits in gait and posture. Mecp2-/x rats were hyper-responsive to noxious pressure and cold, but showed visceral hyposensitivity when tested by colorectal distension. Mecp2-/x rats ate less, drank more, and had more body fat resulting in increased weight gain. Our findings reveal an array of progressive non-cognitive deficits in this rat model that are likely to contribute to the compromised quality of life that characterizes RTT.


Ataxia/genetics , Methyl-CpG-Binding Protein 2/genetics , Mutation , Psychomotor Disorders/genetics , Rett Syndrome/genetics , Animals , Ataxia/metabolism , Ataxia/physiopathology , Disease Models, Animal , Eating , Female , Gait , Heterozygote , Humans , Methyl-CpG-Binding Protein 2/deficiency , Posture , Psychomotor Disorders/metabolism , Psychomotor Disorders/physiopathology , Rats , Rats, Transgenic , Rett Syndrome/metabolism , Rett Syndrome/physiopathology , Rotarod Performance Test
18.
Cell Stem Cell ; 20(6): 831-843.e5, 2017 06 01.
Article En | MEDLINE | ID: mdl-28526555

Inactivating mutations in the thyroid hormone (TH) transporter Monocarboxylate transporter 8 (MCT8) cause severe psychomotor retardation in children. Animal models do not reflect the biology of the human disease. Using patient-specific induced pluripotent stem cells (iPSCs), we generated MCT8-deficient neural cells that showed normal TH-dependent neuronal properties and maturation. However, the blood-brain barrier (BBB) controls TH entry into the brain, and reduced TH availability to neural cells could instead underlie the diseased phenotype. To test potential BBB involvement, we generated an iPSC-based BBB model of MCT8 deficiency, and we found that MCT8 was necessary for polarized influx of the active form of TH across the BBB. We also found that a candidate drug did not appreciably cross the mutant BBB. Our results therefore clarify the underlying physiological basis of this disorder, and they suggest that circumventing the diseased BBB to deliver active TH to the brain could be a viable therapeutic strategy.


Blood-Brain Barrier/metabolism , Induced Pluripotent Stem Cells/metabolism , Monocarboxylic Acid Transporters/deficiency , Neurons/metabolism , Psychomotor Disorders/metabolism , Blood-Brain Barrier/pathology , Cell Line , Female , Humans , Induced Pluripotent Stem Cells/pathology , Male , Neurons/pathology , Psychomotor Disorders/genetics , Psychomotor Disorders/pathology , Symporters
19.
Sci Rep ; 7: 44401, 2017 03 09.
Article En | MEDLINE | ID: mdl-28276496

Mitochondrial Carrier Homolog 2 (MTCH2) is a novel regulator of mitochondria metabolism, which was recently associated with Alzheimer's disease. Here we demonstrate that deletion of forebrain MTCH2 increases mitochondria and whole-body energy metabolism, increases locomotor activity, but impairs motor coordination and balance. Importantly, mice deficient in forebrain MTCH2 display a deficit in hippocampus-dependent cognitive functions, including spatial memory, long term potentiation (LTP) and rates of spontaneous excitatory synaptic currents. Moreover, MTCH2-deficient hippocampal neurons display a deficit in mitochondria motility and calcium handling. Thus, MTCH2 is a critical player in neuronal cell biology, controlling mitochondria metabolism, motility and calcium buffering to regulate hippocampal-dependent cognitive functions.


Calcium/metabolism , Cognition/physiology , Hippocampus/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Neurons/metabolism , Animals , Energy Metabolism/physiology , Female , Hippocampus/physiopathology , Locomotion/physiology , Long-Term Potentiation/physiology , Male , Maze Learning/physiology , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/deficiency , Neurons/pathology , Postural Balance/physiology , Prosencephalon/metabolism , Prosencephalon/physiopathology , Psychomotor Disorders/metabolism , Psychomotor Disorders/physiopathology , Rotarod Performance Test , Spatial Memory/physiology , Synaptic Transmission/physiology
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1422-1435, 2017 06.
Article En | MEDLINE | ID: mdl-28235644

The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca2+-stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development.


Amino Acid Transport Systems/biosynthesis , Aspartic Acid/analogs & derivatives , Cell Proliferation , Down-Regulation , Mitochondrial Proteins/biosynthesis , Neurons/metabolism , Amino Acid Transport Systems, Acidic/deficiency , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Antiporters/deficiency , Antiporters/genetics , Antiporters/metabolism , Aspartic Acid/biosynthesis , Cell Line , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Hereditary Central Nervous System Demyelinating Diseases/pathology , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Neurons/pathology , Psychomotor Disorders/genetics , Psychomotor Disorders/metabolism , Psychomotor Disorders/pathology
...