Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Molecules ; 29(19)2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39407654

ABSTRACT

Four synthetic Schiff bases (PSB1 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-dibromophenol], PSB2 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-diiodophenol], PSB3 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-iodophenol], and PSB4 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-chloro-6-iodophenol]) were fully characterized. These compounds exhibit an intramolecular hydrogen bond between the hydroxyl group of the phenolic ring and the nitrogen of the azomethine group, contributing to their stability. Their antimicrobial activity was evaluated against various Gram-negative and Gram-positive bacteria, and it was found that the synthetic pyridine Schiff bases, as well as their precursors, showed no discernible antimicrobial effect on Gram-negative bacteria, including Salmonella Typhi (and mutant derivatives), Salmonella Typhimurium, Escherichia coli, and Morganella morganii. In contrast, a more pronounced biocidal effect against Gram-positive bacteria was found, including Bacillus subtilis, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Among the tested compounds, PSB1 and PSB2 were identified as the most effective against Gram-positive bacteria, with PSB2 showing the most potent biocidal effects. Although the presence of reactive oxygen species (ROS) was noted after treatment with PSB2, the primary mode of action for PSB2 does not appear to involve ROS generation. This conclusion is supported by the observation that antioxidant treatment with vitamin C only partially mitigated bacterial inhibition, indicating an alternative biocidal mechanism.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pyridines , Schiff Bases , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects , Halogens/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Molecular Structure
2.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062883

ABSTRACT

Pyridine, a compound with a heterocyclic structure, is a key player in medicinal chemistry and drug design. It is widely used as a framework for the design of biologically active molecules and is the second most common heterocycle in FDA-approved drugs. Pyridine is known for its diverse biological activity, including antituberculosis, antitumor, anticoagulant, antiviral, antimalarial, antileishmania, anti-inflammatory, anti-Alzheimer's, antitrypanosomal, antimalarial, vasodilatory, antioxidant, antimicrobial, and antiproliferative effects. This review, spanning from 2022 to 2012, involved the meticulous identification of pyridine derivatives with antiproliferative activity, as indicated by their minimum inhibitory concentration values (IC50) against various cancerous cell lines. The aim was to determine the most favorable structural characteristics for their antiproliferative activity. Using computer programs, we constructed and calculated the molecular descriptors and analyzed the electrostatic potential maps of the selected pyridine derivatives. The study found that the presence and positions of the -OMe, -OH, -C=O, and NH2 groups in the pyridine derivatives enhanced their antiproliferative activity over the cancerous cellular lines studied. Conversely, pyridine derivatives with halogen atoms or bulky groups in their structures exhibited lower antiproliferative activity.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Pyridines , Pyridines/chemistry , Pyridines/pharmacology , Humans , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Line, Tumor
3.
Exp Parasitol ; 262: 108787, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759776

ABSTRACT

New affordable drugs are needed for the treatment of infection with the protozoan parasite Trypanosoma cruzi responsible for the Chagas disease (CD). Only two old drugs are currently available, nifurtimox and benznidazole (Bz) but they exhibit unwanted side effects and display a weak activity in the late chronic phase of the disease. In this context, we evaluated the activity of a series of aryl-pyrazolone derivatives against T cruzi, using both bloodstream trypomastigote and intracellular amastigote forms of the parasite. The test compounds originate from a series of anticancer agents targeting the immune checkpoint ligand PD-L1 and bear an analogy with known anti-trypanosomal pyrazolones. A first group of 6 phenyl-pyrazolones was tested, revealing the activity of a single pyridyl-pyrazolone derivative. Then a second group of 8 compounds with a common pyridyl-pyrazolone core was evaluated. The in vitro testing process led to the identification of two non-cytotoxic and highly potent molecules against the intracellular form of T. cruzi, with an activity comparable to Bz. Moreover, one compound revealed an activity largely superior to that of Bz against bloodstream trypomastigotes, while being non-cytotoxic (selectivity index >1000). Unfortunately, the compound showed little activity in vivo, most likely due to its very limited plasma stability. However, the study opens novel perspectives for the design of new anti-trypanosomal products and the mechanism of action of the compounds is discussed.


Subject(s)
Chagas Disease , Pyrazolones , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Pyrazolones/pharmacology , Pyrazolones/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Animals , Mice , Chagas Disease/drug therapy , Chagas Disease/parasitology , Pyridines/pharmacology , Pyridines/chemistry , Inhibitory Concentration 50 , Nitroimidazoles/pharmacology , Nitroimidazoles/chemistry
4.
Dalton Trans ; 53(20): 8692-8708, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38700377

ABSTRACT

Selective recognition of fructosyl amino acids in water by arylboronic acid-based receptors is a central field of modern supramolecular chemistry that impacts biological and medicinal chemistry. Fructosyl valine (FV) and fructosyl glycyl histidine (FGH) occur as N-terminal moieties of human glycated hemoglobin; therefore, the molecular design of biomimetic receptors is an attractive, but very challenging goal. Herein, we report three novel cationic Zn-terpyridine complexes bearing a fluorescent N-quinolinium nucleus covalently linked to three different isomers of strongly acidified phenylboronic acids (ortho-, 2Zn; meta-, 3Zn and para-, 4Zn) for the optical recognition of FV, FGH and comparative analytes (D-fructose, Gly, Val and His) in pure water at physiological pH. The complexes were designed to act as fluorescent receptors using a cooperative action of boric acid and a metal chelate. Complex 3Zn was found to display the most acidic -B(OH)2 group (pKa = 6.98) and exceptionally tight affinity for FV (K = 1.43 × 105 M-1) with a strong quenching analytical response in the micromolar concentration range. The addition of fructose and the other amino acids only induced moderate optical changes. On the basis of several spectroscopic tools (1H, 11B NMR, UV-Vis, and fluorescence titrations), ESI mass spectrometry, X-ray crystal structure, and DFT calculations, the interaction mode between 3Zn and FV is proposed in a 1 : 1 model through a cooperative two-point recognition involving a sp3 boronate-diol esterification with simultaneous coordination bonding of the carboxylate group of Val to the Zn atom. Fluorescence quenching is attributed to a static complexation photoinduced electron transfer mechanism as evidenced by lifetime experiments. The addition of FGH to 3Zn notably enhanced its emission intensity with micromolar affinity, but with a lower apparent binding constant than that observed for FV. FGH interacts with 3Zn through boronate-diol complexation and coordination of the imidazole ring of His. DFT-optimized structures of complexes 3Zn-FV and 3Zn-FGH show a picture of binding which shows that the Zn-complex has a suitable (B⋯Zn) distance to the two-point recognition with these analytes. Molecular recognition of fructosyl amino acids by transition-metal-based receptors has not been explored until now.


Subject(s)
Boronic Acids , Coordination Complexes , Fluorescent Dyes , Pyridines , Water , Zinc , Zinc/chemistry , Boronic Acids/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Pyridines/chemistry , Water/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Valine/chemistry , Molecular Structure , Histidine/chemistry
5.
Nitric Oxide ; 147: 26-41, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614230

ABSTRACT

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.


Subject(s)
Antiviral Agents , DNA , Ruthenium , Humans , DNA/metabolism , DNA/chemistry , Ruthenium/chemistry , Ruthenium/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Ligands , Animals , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Imines/chemistry , Imines/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/metabolism
6.
Int J Parasitol Drugs Drug Resist ; 25: 100536, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663046

ABSTRACT

Malaria continues to be a significant burden, particularly in Africa, which accounts for 95% of malaria deaths worldwide. Despite advances in malaria treatments, malaria eradication is hampered by insecticide and antimalarial drug resistance. Consequently, the need to discover new antimalarial lead compounds remains urgent. To help address this need, we evaluated the antiplasmodial activity of twenty-two amides and thioamides with pyridine cores and their non-pyridine analogues. Twelve of these compounds showed in vitro anti-proliferative activity against the intraerythrocytic stage of Plasmodium falciparum, the most virulent species of Plasmodium infecting humans. Thiopicolinamide 13i was found to possess submicromolar activity (IC50 = 142 nM) and was >88-fold less active against a human cell line. The compound was equally effective against chloroquine-sensitive and -resistant parasites and did not inhibit ß-hematin formation, pH regulation or PfATP4. Compound 13i may therefore possess a novel mechanism of action.


Subject(s)
Antimalarials , Plasmodium falciparum , Pyridines , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Antimalarials/chemistry , Humans , Pyridines/pharmacology , Pyridines/chemistry , Amides/pharmacology , Cell Line , Inhibitory Concentration 50 , Drug Resistance , Drug Discovery , Erythrocytes/drug effects , Erythrocytes/parasitology , Thioamides/pharmacology , Thioamides/chemistry , Parasitic Sensitivity Tests
7.
Arch Pharm (Weinheim) ; 357(7): e2400081, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548680

ABSTRACT

New pyridine-based chalcones 4a-h and pyrazolines 5a-h (N-acetyl), 6a-h (N-phenyl), and 7a-h (N-4-chlorophenyl) were synthesized and evaluated by the National Cancer Institute (NCI) against 60 different human cancer cell lines. Pyrazolines 6a, 6c-h, and 7a-h satisfied the pre-determined threshold inhibition criteria, obtaining that compounds 6c and 6f exhibited high antiproliferative activity, reaching submicromolar GI50 values from 0.38 to 0.45 µM, respectively. Moreover, compound 7g (4-CH3) exhibited the highest cytostatic activity of these series against different cancer cell lines from leukemia, nonsmall cell lung, colon, ovarian, renal, and prostate cancer, with LC50 values ranging from 5.41 to 8.35 µM, showing better cytotoxic activity than doxorubicin. Furthermore, the compounds were tested for antibacterial and antiplasmodial activities. Chalcone 4c was the most active with minimal inhibitory concentration (MIC) = 2 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA), while the pyrazoline 6h showed a MIC = 8 µg/mL against Neisseria gonorrhoeae. For anti-Plasmodium falciparum activity, the chalcones display higher activity with EC50 values ranging from 10.26 to 10.94 µg/mL. Docking studies were conducted against relevant proteins from P. falciparum, exhibiting the minimum binding energy with plasmepsin II. In vivo toxicity assay in Galleria mellonella suggests that most compounds are low or nontoxic.


Subject(s)
Anti-Bacterial Agents , Antimalarials , Antineoplastic Agents , Chalcones , Microbial Sensitivity Tests , Plasmodium falciparum , Pyrazoles , Pyridines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis , Chalcones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Line, Tumor , Structure-Activity Relationship , Plasmodium falciparum/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Molecular Structure , Animals , Dose-Response Relationship, Drug , Neisseria gonorrhoeae/drug effects
8.
Eur J Med Chem ; 233: 114215, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35227978

ABSTRACT

A total of 27 novel pyrrolo-pyridine benzamide derivatives were designed, synthesized and biologically evaluated. 14 of these derivatives were superior to Cabozantinib in cytotoxic assay, and compound 21 exhibited the best antitumor effect in vitro and vivo. Apoptosis activity was implemented by compound 21 on A549 cells, especially for the greatly enhanced late apoptosis compared with the control group (8.13% vs 4.49%), which was superior to that of Cabozantinib (6.89%). Similarly, 21 stagnated the A549 cells arrest in the two cell distribution phases (G0/G1 and G2/M) in dose-dependence manner. In addition, compound 21 could inhibit c-Met expression compared with Cabozantinib at the same concentration (10 µM). The results of molecular docking and dynamics study demonstrated that compound 21 formed four key hydrogen bonds with c-Met kinase. And key amino acids Met1160, Phe1134 and Phe1223 played a key functional role in the binding free energy. Furthermore, 21 exhibited high antitumor efficacy in tumor growth inhibition rate, which was superior to Cabozantinib (64.5% vs 47.9%). Overall, compound 21 could be considered as a promising antitumor agent.


Subject(s)
Antineoplastic Agents , Molecular Dynamics Simulation , Antineoplastic Agents/chemistry , Benzamides/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor , Imidazoles , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Pyrroles/chemistry , Structure-Activity Relationship , Sulfonamides , Thiophenes
9.
Acta Crystallogr C Struct Chem ; 77(Pt 10): 621-632, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34607985

ABSTRACT

The synthesis, crystal structure and spectroscopic and electronic properties of N-(2-methyl-5-nitrophenyl)-4-(pyridin-2-yl)pyrimidin-2-amine (NPPA), C16H13N5O2, a potential template for drug design against chronic myelogenous leukemia (CML), is reported. The design and construction of the target molecule were carried out starting from the guanidinium nitrate salt (previously synthesized) and the corresponding enaminone. X-ray diffraction analysis and a study of the Hirshfeld surfaces revealed important interactions between the nitro-group O atoms and the H atoms of the pyridine and pyrimidine rings. A crystalline ordering in layers, by the stacking of rings through interactions of the π-π type, was observed and confirmed by a study of the shape-index surfaces and dispersion energy calculations. Quantitative electrostatic potential studies revealed the most positive value of the molecule on regions close to the N-H groups (34.8 kcal mol-1); nevertheless, steric impediments and the planarity of the molecule do not allow the formation of hydrogen bonds from this group. This interaction is however activated when the molecule takes on a new extended conformation in the active pocket of the enzyme kinase (PDB ID 2hyy), interacting with protein residues that are fundamental in the inhibition process of CML. The most negative values of the molecule are seen in regions close to the nitro group (-35.4 and -34.0 kcal mol-1). A molecular docking study revealed an energy affinity of ΔG = -10.3 kcal mol-1 for NPPA which, despite not having a more negative value than the control molecule (Imatinib; ΔG = -12.8 kcal mol-1), shows great potential to be used as a template for new drugs against CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Pyridines/chemical synthesis , Crystallography, X-Ray , Drug Design , Hydrogen Bonding , Molecular Conformation , Molecular Docking Simulation , Pyridines/chemistry , Spectrum Analysis
10.
J Med Chem ; 64(19): 13980-14010, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34591474

ABSTRACT

We review progress in the application of fragment-based drug discovery (FBDD) to epigenetic drug discovery (EPIDD) targeted at epigenetic writer and eraser enzymes as well as reader domains over the last 15 years. The greatest successes to date are in prospecting for bromodomain binding ligands. From a diverse array of fragment hits, multiple potent and selective compounds ensued, including the oncology clinical candidates mivebresib, ABBV-744, pelabresib, and PLX51107.


Subject(s)
Drug Discovery , Oxazoles/chemistry , Pyridines/chemistry , Pyridones/chemistry , Pyrroles/chemistry , Sulfonamides/chemistry , Humans , Ligands , Molecular Structure
11.
J Inorg Biochem ; 224: 111560, 2021 11.
Article in English | MEDLINE | ID: mdl-34399231

ABSTRACT

Currently, acetylcholinesterase (AChE) inhibitors are the only anti-Alzheimer drugs commercially available. Despite their wide use those drugs are all dose dependent and their effect last for no longer than two years, with several side effects. The search of novel acetylcholinesterase (AChE) inhibitors remains as the main scientific route. Here we describe the synthesis, characterization, biological activity and an NMR binding-target study of a novel cis-[Ru(Bpy)2(EtPy)2]2+, (RuEtPy), Bpy = 2,2'-bipyridine and EtPy = 4,2-Ethylamino-pyridine) as a potential AChE inhibitor. The classic Ellman's colorimetric assay suggests that the RuEtPy exhibits a high inhibitory activity, following a competitive mechanism, with a remarkable low inhibition constant (Ki ≈ 16.8 µM), together with a IC50 = 39 µM. Hence, we have studied the spatial interactions for this novel candidate towards the human acetylcholinesterase (hAChE) using saturation transfer difference (STD)-NMR, in order to describe the mechanism of the interaction. NMR binding-target results shows that the 4,2-Ethylamino-Pyridine group is spatially closer to hAChE surface chemical arrangement than 2,2' bipyridine counterpart, exerting an efficient intermolecular interaction, with a low dissociation constant (KD ≈ 55 µM), probing that 4,2-Ethylamino-pyridine motif plays a key role in the inhibitory action.


Subject(s)
Cholinesterase Inhibitors/chemistry , Coordination Complexes/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Humans , Magnetic Resonance Spectroscopy/methods , Molecular Structure
12.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202296

ABSTRACT

TASK channels belong to the two-pore-domain potassium (K2P) channels subfamily. These channels modulate cellular excitability, input resistance, and response to synaptic stimulation. TASK-channel inhibition led to membrane depolarization. TASK-3 is expressed in different cancer cell types and neurons. Thus, the discovery of novel TASK-3 inhibitors makes these bioactive compounds very appealing to explore new cancer and neurological therapies. TASK-3 channel blockers are very limited to date, and only a few heterofused compounds have been reported in the literature. In this article, we combined a pharmacophore hypothesis with molecular docking to address for the first time the rational design, synthesis, and evaluation of 5-(indol-2-yl)pyrazolo[3,4-b]pyridines as a novel family of human TASK-3 channel blockers. Representative compounds of the synthesized library were assessed against TASK-3 using Fluorometric imaging plate reader-Membrane Potential assay (FMP). Inhibitory properties were validated using two-electrode voltage-clamp (TEVC) methods. We identified one active hit compound (MM-3b) with our systematic pipeline, exhibiting an IC50 ≈ 30 µM. Molecular docking models suggest that compound MM-3b binds to TASK-3 at the bottom of the selectivity filter in the central cavity, similar to other described TASK-3 blockers such as A1899 and PK-THPP. Our in silico and experimental studies provide a new tool to predict and design novel TASK-3 channel blockers.


Subject(s)
Molecular Docking Simulation , Potassium Channel Blockers , Potassium Channels, Tandem Pore Domain , Pyridines , Humans , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/chemistry , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Potassium Channels, Tandem Pore Domain/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry
13.
J Chromatogr A ; 1645: 462091, 2021 May 24.
Article in English | MEDLINE | ID: mdl-33845250

ABSTRACT

In this study, a background electrolyte capable to separate and quantify inorganic cations in high ionic strength samples by UV-absorption indirect detection was designed. In this regard, the four most abundant monovalent and divalent cations in earth crust (K+, Na+, Ca+2, Mg+2) were selected as model compounds. A group of small carboxylic acids and, several toluidines and pyridines were evaluated as mild strength complexing agents and chromophoric probes, respectively. The optimized background electrolyte was composed of 200 mM 2,4,6-trimethylpyridine as the chromophoric probe, 250 mM lactic acid as the weak complexing agent and pH buffering reagent (adjusted to pH 4.5), and 5% v/v methanol as organic solvent modifier. Based on a minimum number of components, it provided outstanding separation performance in less than 4 min in a wide linear dynamic range (10 - 2500 µg·mL-1). Performances were contrasted against a reference method based on conductometric detection. Furthermore, studies of separation efficiency and peak shape were carried out at different analyte concentrations in high electric conductivity solutions. The herein developed method demonstrated exceptional features in terms of limits of detection (~10 µg·mL-1), resolution, speed of analysis, sensitivity and peak capacity in high electric conductivity samples. Moreover, the method was successfully applied to high ionic strength samples such as rock digest, sea water, soy sauce and isotonic drinks.


Subject(s)
Cations/analysis , Electrolytes/chemistry , Electrophoresis, Capillary/methods , Spectrophotometry, Ultraviolet/methods , Lactic Acid/chemistry , Limit of Detection , Methanol/chemistry , Osmolar Concentration , Pyridines/chemistry
14.
Arch Pharm (Weinheim) ; 354(8): e2100092, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33928662

ABSTRACT

This study describes the direct synthesis of 2-amino-4-(phenylsubstituted)-5H-indeno[1,2-b]pyridine-3-carbonitrile derivatives 5-21, through sequential multicomponent reaction of aromatic aldehydes, malononitrile, and 1-indanone in the presence of ammonium acetate and acetic acid (catalytic). The biological study showed that compound 10 significantly impeded proliferation of the cell lines PC-3, LNCaP, and MatLyLu. The antimetastatic effects of compound 10 could be related with inhibition of MMP9 in the PC-3 and LNCaP human cell lines. On the basis of a study of the structure-activity relationship of these compounds, we propose that the presence of two methoxy groups at positions 6 and 7 of the indeno nucleus and a 4-hydroxy-3-methoxy phenyl substitution pattern at position 4 of the pyridine ring is decisive for these types of molecules to exert very good antiproliferative and antimetastatic activities.


Subject(s)
Antineoplastic Agents/pharmacology , Indenes/pharmacology , Prostatic Neoplasms/drug therapy , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Indenes/chemical synthesis , Indenes/chemistry , Male , Neoplasm Metastasis/prevention & control , PC-3 Cells , Prostatic Neoplasms/pathology , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
15.
Dalton Trans ; 50(12): 4255-4269, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33688874

ABSTRACT

Biological catecholamines such as l-DOPA and dopamine play vital physiological roles in the brain and are chemical indicators of human diseases. A new range of fluorescent Zn(ii)-terpyridine complexes are described and studied in-depth as chemosensors for catecholamine-based neurotransmitters and nucleosides in pure water. The new Zn-terpyridine-based chemosensors contain a cationic N-isoquinolinium nucleus as the optical indicator covalently linked to three different isomers of strongly acidified phenylboronic acids (ortho-, 2.Zn; meta-, 3.Zn and para-, 4.Zn, substituted derivatives) as catechol binding sites. The addition of l-DOPA, dopamine, epinephrine, l-tyrosine and nucleosides to Zn(ii)-boronic acid chemosensors at physiological pH quenches their blue emission with a pronounced selectivity and an unprecedented high affinity towards l-DOPA (log K = 6.01). This efficient response by l-DOPA was also observed in the presence of coexisting species in blood plasma and urine with a detection limit of 3.0 µmol L-1. A photoinduced electron transfer quenching mechanism with simultaneous chemosensor-l-DOPA complexation in both the excited and ground states is proposed. The fluorescence experimental observations show that the 2.Zn·eosin-Y adduct can be used as a selective naked-eye chemosensing ensemble for l-DOPA with a fast turn-on fluorescent response and color change from blue to green under UV light at the micromolar level. On the basis of multiple spectroscopic techniques (1H, 11B NMR, UV-Vis, and fluorescence), MS-ESI experiments, crystal structures, and DFT calculations, the binding mode between Zn(ii)-chemosensors and l-DOPA is proposed in a 1 : 1 model through a cooperative two-point recognition involving the reversible esterification of the boronic acid moiety with the aromatic diol fragment of l-DOPA together with the coordination of the carboxylate anion to the Zn(ii) atom with strong electrostatic contribution.


Subject(s)
Boronic Acids/chemistry , Fluorescent Dyes/chemistry , Neurotransmitter Agents/analysis , Pyridines/chemistry , Zinc/chemistry , Crystallography, X-Ray , Fluorescent Dyes/chemical synthesis , Models, Molecular , Molecular Structure
16.
ChemMedChem ; 16(6): 966-975, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33078573

ABSTRACT

Neglected tropical diseases remain among the most critical public health concerns in Africa and South America. The drug treatments for these diseases are limited, which invariably leads to fatal cases. Hence, there is an urgent need for new antitrypanosomal drugs. To address this issue, a large number of diverse heterocyclic compounds were prepared. Straightforward synthetic approaches tolerated pre-functionalized structures, giving rise to a structurally diverse set of analogs. We report on a set of 57 heterocyclic compounds with selective activity potential against kinetoplastid parasites. In general, 29 and 19 compounds of the total set could be defined as active against Trypanosoma cruzi and T. brucei brucei, respectively (antitrypanosomal activities <10 µM). The present work discusses the structure-activity relationships of new fused-ring scaffolds based on imidazopyridine/pyrimidine and furopyridine cores. This library of compounds shows significant potential for anti-trypanosomiases drug discovery.


Subject(s)
Imidazoles/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Trypanosomiasis/drug therapy , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Parasitic Sensitivity Tests , Pyridines/chemical synthesis , Pyridines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
17.
Bioorg Med Chem ; 29: 115855, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33199200

ABSTRACT

Despite the serious public health problems caused by Chagas disease in several countries, the available therapy remains with only two drugs that are poorly active during the chronic phase of the disease in addition to having severe side effects. In search of new trypanocidal agents, herein we describe the synthesis and biological evaluation of eleven new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine compounds containing the carbohydrazide or the 2,3-dihydro-1,3,4-oxadiazole moieties. Two of them showed promising in vitro activity against amastigote forms of T. cruzi and were evaluated in vivo in male BALB/c mice infected with T. cruzi Y strain. Our results suggest that the substitution at the C-2 position of the phenyl group connected to the carbohydrazide or to the 2,3-dihydro-1,3,4-oxadiazole moieties plays an important role in the trypanocidal activity of this class of compounds. Moreover, the compound containing the 2,3-dihydro-1,3,4-oxadiazole moiety has demonstrated more favorable structural requirements for in vivo activity than its carbohydrazide analog.


Subject(s)
Chagas Disease/drug therapy , Pyrazoles/pharmacology , Pyridines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Cell Survival/drug effects , Chagas Disease/pathology , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Parasitic Sensitivity Tests , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
18.
Dalton Trans ; 50(1): 323-335, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33305766

ABSTRACT

This work describes the synthesis of three new ruthenium(ii) complexes with gallic acid and derivatives of the general formula [Ru(L)(dppb)(bipy)]PF6, where L = gallate (GAC), benzoate (BAC), and esterified-gallate (EGA), bipy = 2,2'-bipyridine and dppb = 1,4-bis(diphenylphosphino)butane. The complexes were characterized by elemental analysis, molar conductivity, NMR, cyclic voltammetry, UV-vis and IR spectroscopy, and two of them by X-ray crystallography. Cell viability assays show promising results, indicating higher cytotoxicity of the complexes in MDA-MB-231 cells, a triple-negative breast cancer (TNBC) cell line, compared with the hormone-dependent MCF-7 cell line. Studies in vitro with the MDA-MB-231 cell line showed that only Ru(BAC) and Ru(GAC) interacted with BSA. Besides that, the Ru(GAC) complex, which has a polyphenolic acid, interacted in an apo-Tf structure and function dependent manner and it was able to inhibit the formation of reactive oxygen species. Ru(GAC) was able to cause damage to the cellular cytoskeleton leading to inhibition of some cellular processes of TNBC cells, such as invasion, migration, and adhesion.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Gallic Acid/pharmacology , Pyridines/pharmacology , Ruthenium/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Actin Cytoskeleton/drug effects , Animals , Apoproteins/metabolism , Biphenyl Compounds/chemistry , Cell Adhesion/drug effects , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Coordination Complexes/chemistry , Gallic Acid/chemistry , Humans , Mice , Picrates/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Serum Albumin, Bovine/metabolism , Transferrin/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
19.
J Biochem Mol Toxicol ; 35(3): e22663, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33125183

ABSTRACT

Imidazo[1,2-a]pyridines (IP) and organoselenium compounds have been widely exploited in medicinal chemistry due to their pharmacological activities. Hepatocellular carcinoma (HCC) has few treatment options, and unfortunately, the prognosis is poor. Thus, the development of novel therapeutic drugs is urgent. The present study aimed at evaluating the antitumor mechanism of selenylated IP against HepG2 cells and in vivo. The selenylated IP named IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine) showed high cytotoxicity against HepG2 cells (half-maximal inhibitory concentration [IC50 ] = 0.03 µM) and selectivity for this tumor cell line. At nontoxic concentration, IP-Se-06 decreased the protein levels of Bcl-xL and increased the levels of p53, leading to inhibition of cell proliferation and apoptosis. This compound decreased the level of extracellular signal-regulated kinase 1/2 protein and changed the levels of proteins involved in the drive of the cell cycle, tumor growth, and survival (cyclin B1, cyclin-dependent kinase 2). In addition, IP-Se-06 decreased the number of cells in the S phase. In addition, IP-Se-06 led to increased generation of reactive oxygen species, changed antioxidant defenses, and caused DNA fragmentation. Finally, IP-Se-06 significantly inhibited the growth of Ehrlich ascites tumors in mice, increased survival time, and inhibited angiogenesis. Therefore, IP-Se-06 may be an important compound regarding the development of a therapeutic drug for HCC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular , Liver Neoplasms , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Pyridines/pharmacology , Animals , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Organoselenium Compounds/chemistry , Pyridines/chemistry , Xenograft Model Antitumor Assays
20.
Curr Top Med Chem ; 20(24): 2168-2185, 2020.
Article in English | MEDLINE | ID: mdl-32621719

ABSTRACT

BACKGROUND: Methicillin-resistant and vancomycin-resistant Staphylococcus aureus are pathogens causing severe infectious diseases that pose real public health threats problems worldwide. In S. aureus, the most efficient multidrug-resistant system is the NorA efflux pump. For this reason, it is critical to identify efflux pump inhibitors. OBJECTIVE: In this paper, we present an update of the new natural and synthetic compounds that act as modulators of antibiotic resistance through the inhibition of the S. aureus NorA efflux pump. RESULTS: Several classes of compounds capable of restoring the antibiotic activity have been identified against resistant-S. aureus strains, acting as NorA efflux pump inhibitors. The most promising classes of compounds were quinolines, indoles, pyridines, phenols, and sulfur-containing heterocycles. However, the substantial degree structural diversity of these compounds makes it difficult to establish good structure- activity correlations that allow the design of compounds with more promising activities and properties. CONCLUSION: Despite substantial efforts put forth in the search for new antibiotic adjuvants that act as efflux pump inhibitors, and despite several promising results, there are currently no efflux pump inhibitors authorized for human or veterinary use, or in clinical trials. Unfortunately, it appears that infection control strategies have remained the same since the discovery of penicillin, and that most efforts remain focused on discovering new classes of antibiotics, rather than trying to prolong the life of available antibiotics, and simultaneously fighting mechanisms of bacterial resistance.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Drug Discovery , Drug Resistance, Bacterial , Humans , Indoles/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Phenols/chemistry , Protein Conformation , Pyridines/chemistry , Quinolines/chemistry , Structure-Activity Relationship , Vancomycin-Resistant Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL