Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.739
1.
Sci Rep ; 14(1): 10582, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719932

Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.


Colonic Neoplasms , Cyclin-Dependent Kinases , Fluorouracil , Thromboplastin , Up-Regulation , Humans , Thromboplastin/metabolism , Thromboplastin/genetics , Cell Line, Tumor , Fluorouracil/pharmacology , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Up-Regulation/drug effects , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Pyridinium Compounds/pharmacology , Cyclic N-Oxides/pharmacology , Indolizines/pharmacology , Epithelial-Mesenchymal Transition/drug effects
2.
Front Endocrinol (Lausanne) ; 15: 1282231, 2024.
Article En | MEDLINE | ID: mdl-38756999

Introduction: Cigarettes containing nicotine (Nic) are a risk factor for the development of cardiovascular and metabolic diseases. We reported that Nic delivered via injections or e-cigarette vapor led to hepatic steatosis in mice fed with a high-fat diet. High-fructose corn syrup (HFCS) is the main sweetener in sugar-sweetened beverages (SSBs) in the US. Increased consumption of SSBs with HFCS is associated with increased risks of non-alcoholic fatty liver disease (NAFLD). Nicotinamide riboside (NR) increases mitochondrial nicotinamide adenine dinucleotide (NAD+) and protects mice against hepatic steatosis. This study evaluated if Nic plus Coca-Cola™ (Coke) with HFCS can cause hepatic steatosis and that can be protected by NR. Methods: C57BL/6J mice received twice daily intraperitoneal (IP) injections of Nic or saline and were given Coke (HFCS), or Coke with sugar, and NR supplementation for 10 weeks. Results: Our results show that Nic+Coke caused increased caloric intake and induced hepatic steatosis, and the addition of NR prevented these changes. Western blot analysis showed lipogenesis markers were activated (increased cleavage of the sterol regulatory element-binding protein 1 [SREBP1c] and reduction of phospho-Acetyl-CoA Carboxylase [p-ACC]) in the Nic+Coke compared to the Sal+Water group. The hepatic detrimental effects of Nic+Coke were mediated by decreased NAD+ signaling, increased oxidative stress, and mitochondrial damage. NR reduced oxidative stress and prevented mitochondrial damage by restoring protein levels of Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor coactivator 1-alpha (PGC1) signaling. Conclusion: We conclude that Nic+Coke has an additive effect on producing hepatic steatosis, and NR is protective. This study suggests concern for the development of NAFLD in subjects who consume nicotine and drink SSBs with HFCS.


Mice, Inbred C57BL , Niacinamide , Nicotine , Pyridinium Compounds , Animals , Pyridinium Compounds/pharmacology , Mice , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Male , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/chemically induced , High Fructose Corn Syrup/adverse effects , Liver/metabolism , Liver/drug effects , Liver/pathology , Oxidative Stress/drug effects
3.
Biomed Pharmacother ; 175: 116701, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729053

Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) have received considerable attention as anti-aging and anti-metabolic disease nutraceuticals. However, few studies have focused on their role in ameliorating hepatic metabolic disturbances. In the present study, the effects of NMN and NR on the liver of mice with nonalcoholic fatty liver disease (NAFLD) were investigated via transcriptome and metabolome analyses. NMN and NR reduced body weight gain, improved glucose homeostasis, regulated plasma lipid levels, and ameliorated liver injury, oxidative stress, and lipid accumulation in mice with HFD-induced NAFLD. Integrated transcriptome and metabolome analyses indicated that NMN and NR altered the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, and linoleic acid metabolism pathways, increased saturated fatty acid (palmitic acid, stearate, and arachidic acid) content, and increased polyunsaturated fatty acid (linoleic acid and eicosapentaenoic acid) content. Quantitative reverse transcription PCR (qRT-PCR) showed that NMN and NR primarily promoted arachidonic acid and linoleic acid catabolism via cytochrome P450 (CYP450) enzymes. This study established a theoretical foundation for the potential use of NMN and NR in future clinical settings.


Liver , Metabolome , Mice, Inbred C57BL , Niacinamide , Nicotinamide Mononucleotide , Non-alcoholic Fatty Liver Disease , Pyridinium Compounds , Transcriptome , Animals , Niacinamide/pharmacology , Niacinamide/therapeutic use , Niacinamide/analogs & derivatives , Pyridinium Compounds/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/therapeutic use , Male , Transcriptome/drug effects , Metabolome/drug effects , Mice , Liver/metabolism , Liver/drug effects , Oxidative Stress/drug effects , Lipid Metabolism/drug effects , Diet, High-Fat/adverse effects
4.
Biomed Pharmacother ; 175: 116689, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703508

Ischemic heart disease invariably leads to devastating damage to human health. Nicotinamide ribose (NR), as one of the precursors of NAD+ synthesis, has been discovered to exert a protective role in various neurological and cardiovascular disorders. Our findings demonstrated that pretreatment with 200 mg/kg NR for 3 h significantly reduced myocardial infarct area, decreased levels of CK-MB and LDH in serum, and improved cardiac function in the rats during myocardial ischemia-reperfusion (I/R) injury. Meanwhile, 0.5 mM NR also effectively increased the viability and decreased the LDH release of H9c2 cells during OGD/R. We had provided evidence that NR pretreatment could decrease mitochondrial reactive oxygen species (mtROS) production and MDA content, and enhance SOD activity, thereby mitigating mitochondrial damage and inhibiting apoptosis during myocardial I/R injury. Further investigations revealed that NR increased NAD+ content and upregulated SIRT3 protein expression in myocardium. Through using of SIRT3 small interfering RNA and the SIRT3 deacetylase activity inhibitor 3-TYP, we had confirmed that the cardioprotective effect of NR on cardiomyocytes was largely dependent on the inhibition of mitochondrial oxidative stress via SIRT3-SOD2 axis. Overall, our study suggested that exogenous supplementation with NR mitigated mitochondrial damage and inhibited apoptosis during myocardial I/R injury by reducing mitochondrial oxidative stress via SIRT3-SOD2-mtROS pathway.


Apoptosis , Myocardial Reperfusion Injury , Niacinamide , Oxidative Stress , Pyridinium Compounds , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 3 , Superoxide Dismutase , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Sirtuin 3/metabolism , Signal Transduction/drug effects , Male , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Superoxide Dismutase/metabolism , Rats , Apoptosis/drug effects , Oxidative Stress/drug effects , Pyridinium Compounds/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Cell Line , Cardiotonic Agents/pharmacology , Sirtuins
5.
Cell Death Dis ; 15(5): 345, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769311

Treatment-naïve small cell lung cancer (SCLC) is typically susceptible to standard-of-care chemotherapy consisting of cisplatin and etoposide recently combined with PD-L1 inhibitors. Yet, in most cases, SCLC patients develop resistance to first-line therapy and alternative therapies are urgently required to overcome this resistance. In this study, we tested the efficacy of dinaciclib, an FDA-orphan drug and inhibitor of the cyclin-dependent kinase (CDK) 9, among other CDKs, in SCLC. Furthermore, we report on a newly developed, highly specific CDK9 inhibitor, VC-1, with tumour-killing activity in SCLC. CDK9 inhibition displayed high killing potential in a panel of mouse and human SCLC cell lines. Mechanistically, CDK9 inhibition led to a reduction in MCL-1 and cFLIP anti-apoptotic proteins and killed cells, almost exclusively, by intrinsic apoptosis. While CDK9 inhibition did not synergise with chemotherapy, it displayed high efficacy in chemotherapy-resistant cells. In vivo, CDK9 inhibition effectively reduced tumour growth and improved survival in both autochthonous and syngeneic SCLC models. Together, this study shows that CDK9 inhibition is a promising therapeutic agent against SCLC and could be applied to chemo-refractory or resistant SCLC.


Cyclin-Dependent Kinase 9 , Indolizines , Lung Neoplasms , Pyridinium Compounds , Small Cell Lung Carcinoma , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Humans , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cell Line, Tumor , Mice , Pyridinium Compounds/pharmacology , Pyridinium Compounds/therapeutic use , Indolizines/pharmacology , Cyclic N-Oxides/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
6.
Drug Dev Res ; 85(3): e22193, 2024 May.
Article En | MEDLINE | ID: mdl-38685605

The scaffolds of two known CDK inhibitors (CAN508 and dinaciclib) were the starting point for synthesizing two series of pyarazolo[1,5-a]pyrimidines to obtain potent inhibitors with proper selectivity. The study presented four promising compounds; 10d, 10e, 16a, and 16c based on cytotoxic studies. Compound 16a revealed superior activity in the preliminary anticancer screening with GI % = 79.02-99.13 against 15 cancer cell lines at 10 µM from NCI full panel 60 cancer cell lines and was then selected for further investigation. Furthermore, the four compounds revealed good safety profile toward the normal cell lines WI-38. These four compounds were subjected to CDK inhibitory activity against four different isoforms. All of them showed potent inhibition against CDK5/P25 and CDK9/CYCLINT. Compound 10d revealed the best activity against CDK5/P25 (IC50 = 0.063 µM) with proper selectivity index against CDK1 and CDK2. Compound 16c exhibited the highest inhibitory activity against CDK9/CYCLINT (IC50 = 0.074 µM) with good selectivity index against other isoforms. Finally, docking simulations were performed for compounds 10e and 16c accompanied by molecular dynamic simulations to understand their behavior in the active site of the two CDKs with respect to both CAN508 and dinaciclib.


Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Cyclic N-Oxides , Drug Design , Indolizines , Molecular Docking Simulation , Protein Kinase Inhibitors , Pyridinium Compounds , Humans , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemistry , Indolizines/pharmacology , Indolizines/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cyclic N-Oxides/pharmacology , Cyclic N-Oxides/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cyclin-Dependent Kinases/antagonists & inhibitors , Structure-Activity Relationship , Pyrimidines/pharmacology , Pyrimidines/chemistry , Drug Screening Assays, Antitumor , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism
7.
Int Immunopharmacol ; 132: 112013, 2024 May 10.
Article En | MEDLINE | ID: mdl-38583241

BACKGROUND: Diabetes-related skin ulcers provide a substantial therapeutic issue, sometimes leading to amputation, needing immediate practical treatments for efficient wound care. While the exact mechanisms are unknown, pyroptosis and deregulation of the unfolded protein response (UPR) are known to exacerbate inflammation. Nicotinamide Riboside (NR) and Resveratrol (RV), which are known for their Nicotinamide adenine dinucleotide (NAD+) boosting and anti-inflammatory properties, are being studied as potential treatments. The purpose of this study was to shed light on the underlying molecular mechanisms and explore the medical application of NR and RV in diabetic wound healing. METHODS: 54 male Sprague-Dawley rats divided into control, diabetic (DM), Gel Base, DM-NR, DM-RV, and DM-NR + RV. Rats were orally administered 50 mg/kg/day of RV and 300 mg/kg/day of NR for 5 weeks. Following diabetes induction, their wounds were topically treated with 5 % NR and RV gel for 15 days. The wound closure rate, body weight, and serum lipid profiles were examined. Gene expression study evaluated UPR and pyroptosis-related genes (BIP, PERK, ATF6, IRE1α, sXBP1, CHOP, NLRP3, caspase-1, NFκB, and IL1-ß) in wound tissues, alongside histological assessment of cellular changes. RESULTS: NR and RV treatments greatly enhanced wound healing. Molecular investigation demonstrated UPR and pyroptosis marker modifications, suggesting UPR balance and anti-inflammatory effects. Histological investigation demonstrated decreased inflammation and increased re-epithelialization. The combination of NR and RV therapy had better results than either treatment alone. CONCLUSION: This study shows that NR and RV have therapeutic promise in treating diabetic wounds by addressing UPR dysregulation, and pyroptosis. The combination therapy is a viable strategy to improving the healing process, providing a multimodal intervention for diabetic skin ulcers. These findings pave the way for additional investigation and possible therapeutic applications, giving hope for better outcomes in diabetic wound care.


Diabetes Mellitus, Experimental , Niacinamide , Niacinamide/analogs & derivatives , Pyridinium Compounds , Pyroptosis , Rats, Sprague-Dawley , Resveratrol , Unfolded Protein Response , Wound Healing , Animals , Male , Pyroptosis/drug effects , Wound Healing/drug effects , Resveratrol/pharmacology , Resveratrol/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Niacinamide/therapeutic use , Niacinamide/pharmacology , Pyridinium Compounds/therapeutic use , Pyridinium Compounds/pharmacology , Unfolded Protein Response/drug effects , Rats , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
8.
Pharm Res ; 41(5): 921-935, 2024 May.
Article En | MEDLINE | ID: mdl-38684562

PURPOSE: This study examined the effects of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) on folliculogenesis and mitochondrial dynamics (fission and fusion mechanisms) in ovaries of middle-aged female rats. METHODS: Experimental groups were young, middle-aged (control), middle-aged + NMN and middle-aged + NR. NMN was administered at a concentration of 500 mg/kg intraperitoneally but NR at a concentration of 200 mg/kg by gavage. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were analyzed by ELISA. Hematoxylin-eosin staining sections were used for histopathological examination and follicles-counting. Expression levels of mitochondrial fission (Drp1, Mff and Fis1) and fusion (Mfn1, Mfn2, Opa1, Fam73a and Fam73b) genes as well as Sirt1 gene were analyzed by RT-PCR. Expression levels of fission-related proteins (DRP1, MFF, FIS1 and SIRT1) were analyzed by Western Blot. RESULTS: Higher ovarian index, more corpus luteum and antral follicles were detected in NMN and NR groups compared to the control. NMN or NR could rebalance LH/FSH ratio. The control group was determined to possess higher expression levels of fission genes and lower expression levels of fusion genes when compared the young group. In comparison with the control group, both NMN and NR group were found to exhibit less mitochondrial fission but more mitochondrial fussion. Higher gene and protein levels for Sirt1 were measured in NMN and NR groups compared to the control group. CONCLUSION: This study reveals that NMN alone or NR alone can rebalance mitochondrial dynamics by decreasing excessive fission in middle-aged rat ovaries, thus alleviating mitochondrial stress and correcting aging-induced folliculogenesis abnormalities.


Aging , Mitochondrial Dynamics , Niacinamide , Nicotinamide Mononucleotide , Ovary , Pyridinium Compounds , Animals , Female , Mitochondrial Dynamics/drug effects , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Ovary/drug effects , Ovary/metabolism , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/metabolism , Rats , Pyridinium Compounds/pharmacology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Luteinizing Hormone/metabolism , Luteinizing Hormone/blood , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Rats, Sprague-Dawley , Follicle Stimulating Hormone/metabolism , Dynamins
9.
Photodermatol Photoimmunol Photomed ; 40(3): e12961, 2024 May.
Article En | MEDLINE | ID: mdl-38676310

BACKGROUND: Environmental ultraviolet radiation has deleterious effects on humans, including sunburn and immune perturbations. These immune changes are involved in skin carcinogenesis. OBJECTIVES: To determine whether nicotinamide riboside and/or pterostilbene administered systemically inhibits inflammatory and immune effects of exposure to mid-range ultraviolet radiation. METHODS: To examine UVB radiation-induced inflammatory effects, mice were fed standard chow/water, 0.04% pterostilbene in chow and 0.2% nicotinamide riboside in drinking water, diet with nicotinamide riboside alone, or diet with pterostilbene alone. After 4 weeks, mice were exposed to UVB radiation (3500 J/m2), and 24-/48-h ear swelling was assessed. We also asked if each agent or the combination inhibits UVB radiation suppression of contact hypersensitivity in two models. Mice were fed standard diet/water or chow containing 0.08% pterostilbene, water with 0.4% nicotinamide riboside, or both for 4 weeks. Low-dose: Half the mice in each group were exposed on the depilated dorsum to UVB radiation (1700 J/m2) daily for 4 days, whereas half were mock-irradiated. Mice were immunized on the exposed dorsum to dinitrofluorobenzene 4 h after the last irradiation, challenged 7 days later on the ears with dinitrofluorobenzene, and 24-h ear swelling assessed. High dose: Mice were treated similarly except that a single dose of 10,000 J/m2 of radiation was administered and immunization was performed on the unirradiated shaved abdomen 3 days later. RESULTS: Nicotinamide riboside and pterostilbene together inhibited UVB-induced skin swelling more than either alone. Pterostilbene alone and both given together could inhibit UVB-induced immune suppression in both the low-dose and high-dose models while nicotinamide riboside alone was more effective in the low-dose model than the high-dose model. CONCLUSION: Nicotinamide riboside and pterostilbene have protective effects against UVB radiation-induced tissue swelling and immune suppression.


Niacinamide , Niacinamide/analogs & derivatives , Pyridinium Compounds , Stilbenes , Ultraviolet Rays , Animals , Niacinamide/pharmacology , Pyridinium Compounds/pharmacology , Mice , Ultraviolet Rays/adverse effects , Stilbenes/pharmacology , Female , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Dermatitis, Contact/etiology
10.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Article En | MEDLINE | ID: mdl-38446233

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Cholinesterase Reactivators , Pralidoxime Compounds , Taurine/analogs & derivatives , Rats , Humans , Animals , Cholinesterase Reactivators/pharmacology , Trimedoxime/pharmacology , Butyrylcholinesterase , Acetylcholinesterase , Oximes/pharmacology , Pyridinium Compounds/pharmacology , Antidotes/pharmacology , Cholinesterase Inhibitors/toxicity , Phosphorus , Oxygen
11.
Basic Res Cardiol ; 119(3): 403-418, 2024 Jun.
Article En | MEDLINE | ID: mdl-38528175

Decreased nicotinamide adenine dinucleotide (NAD+) levels contribute to various pathologies such as ageing, diabetes, heart failure and ischemia-reperfusion injury (IRI). Nicotinamide riboside (NR) has emerged as a promising therapeutic NAD+ precursor due to efficient NAD+ elevation and was recently shown to be the only agent able to reduce cardiac IRI in models employing clinically relevant anesthesia. However, through which metabolic pathway(s) NR mediates IRI protection remains unknown. Furthermore, the influence of insulin, a known modulator of cardioprotective efficacy, on the protective effects of NR has not been investigated. Here, we used the isolated mouse heart allowing cardiac metabolic control to investigate: (1) whether NR can protect the isolated heart against IRI, (2) the metabolic pathways underlying NR-mediated protection, and (3) whether insulin abrogates NR protection. NR protection against cardiac IRI and effects on metabolic pathways employing metabolomics for determination of changes in metabolic intermediates, and 13C-glucose fluxomics for determination of metabolic pathway activities (glycolysis, pentose phosphate pathway (PPP) and mitochondrial/tricarboxylic acid cycle (TCA cycle) activities), were examined in isolated C57BL/6N mouse hearts perfused with either (a) glucose + fatty acids (FA) ("mild glycolysis group"), (b) lactate + pyruvate + FA ("no glycolysis group"), or (c) glucose + FA + insulin ("high glycolysis group"). NR increased cardiac NAD+ in all three metabolic groups. In glucose + FA perfused hearts, NR reduced IR injury, increased glycolytic intermediate phosphoenolpyruvate (PEP), TCA intermediate succinate and PPP intermediates ribose-5P (R5P) / sedoheptulose-7P (S7P), and was associated with activated glycolysis, without changes in TCA cycle or PPP activities. In the "no glycolysis" hearts, NR protection was lost, whereas NR still increased S7P. In the insulin hearts, glycolysis was largely accelerated, and NR protection abrogated. NR still increased PPP intermediates, with now high 13C-labeling of S7P, but NR was unable to increase metabolic pathway activities, including glycolysis. Protection by NR against IRI is only present in hearts with low glycolysis, and is associated with activation of glycolysis. When activation of glycolysis was prevented, through either examining "no glycolysis" hearts or "high glycolysis" hearts, NR protection was abolished. The data suggest that NR's acute cardioprotective effects are mediated through glycolysis activation and are lost in the presence of insulin because of already elevated glycolysis.


Glycolysis , Insulin , Mice, Inbred C57BL , Myocardial Reperfusion Injury , Niacinamide , Pyridinium Compounds , Animals , Pyridinium Compounds/pharmacology , Glycolysis/drug effects , Insulin/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Male , Myocardium/metabolism , Mice , Isolated Heart Preparation , Metabolomics , NAD/metabolism , Disease Models, Animal , Citric Acid Cycle/drug effects
12.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38417730

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Chemical Warfare Agents , Cholinesterase Reactivators , Nerve Agents , Humans , Mice , Animals , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/therapeutic use , Cholinesterase Reactivators/chemistry , Nerve Agents/toxicity , No-Observed-Adverse-Effect Level , Chemical Warfare Agents/toxicity , Oximes/pharmacology , Oximes/therapeutic use , Oximes/chemistry , Pyridinium Compounds/pharmacology , Cholinesterase Inhibitors/toxicity , Cholinesterase Inhibitors/chemistry , Cholinesterases , Acetylcholinesterase , Antidotes/pharmacology , Antidotes/therapeutic use
13.
Toxicology ; 503: 153741, 2024 Mar.
Article En | MEDLINE | ID: mdl-38311098

Organophosphate (OP) poisoning is currently treated with atropine, oximes and benzodiazepines. The nicotinic signs, i.e., respiratory impairment, can only be targeted indirectly via the use of oximes as reactivators of OP-inhibited acetylcholinesterase. Hence, compounds selectively targeting nicotinic acetylcholine receptors (nAChRs) might fundamentally improve current treatment options. The bispyridinium compound MB327 has previously shown some therapeutic effect against nerve agents in vitro and in vivo. Nevertheless, compound optimization was deemed necessary, due to limitations (e.g., toxicity and efficacy). The current study investigated a series of 4-tert-butyl bispyridinium compounds and of corresponding bispyridinium compounds without substituents in a rat diaphragm model using an indirect field stimulation technique. The length of the respective linker influenced the ability of the bispyridinium compounds to restore muscle function in rat hemidiaphragms. The current data show structure-activity relationships for a series of bispyridinium compounds and provide insight for future structure-based molecular modeling.


Cholinesterase Reactivators , Nerve Agents , Organophosphate Poisoning , Rats , Animals , Oximes/pharmacology , Oximes/therapeutic use , Nerve Agents/toxicity , Diaphragm , Acetylcholinesterase/metabolism , Pyridinium Compounds/pharmacology , Pyridinium Compounds/therapeutic use , Structure-Activity Relationship , Organophosphate Poisoning/drug therapy , Cholinesterase Reactivators/pharmacology , Cholinesterase Inhibitors/pharmacology
14.
Bioorg Med Chem Lett ; 98: 129585, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38086468

Ceramides, crucial sphingolipids in cellular biology, play various roles ranging from structural membrane integrity to signaling pathway regulation. Structurally, a ceramide consists of a fatty acid connected to a sphingoid base. The characteristics of the fatty acid chain, including length and saturation, determine the physiological properties of the ceramide. Ceramides typically fall into the following categories based on chain length: medium, long, very-long, and ultra-long. Among them, two very-long-chain ceramides, Cer(24:1(15Z)) and Cer(24:0), have been extensively studied, and they are known for their regulatory functions. However, the hydrophobic natures of ceramides, arising from their long hydrocarbon chain impedes their solubilities and levels of cellular delivery. Although ω-pyridinium ceramide analogs (ω-PyrCers) have been developed to address this issue, ω-PyrCers with very-long fatty acid chains or unsaturation have not been developed, presumably due to limited access to the corresponding ω-bromo fatty acids required in their syntheses. In this study, we prepared the ω-PyrCers of Cer(24:1(15Z)) and Cer(24:0), PyrCer(24:1(15Z)) and PyrCer(24:0), respectively. The key in the synthesis is the Wittig reaction to prepare the ω-bromo fatty acid with an appropriate chain length and (Z)-double bond position. Preliminary evaluation of the PyrCer(24:1(15Z)) and PyrCer(24:0) revealed their potential in hepatocellular carcinoma treatment.


Antineoplastic Agents , Ceramides , Sphingolipids , Ceramides/pharmacology , Ceramides/chemistry , Fatty Acids/pharmacology , Pyridinium Compounds/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy
15.
Chem Res Toxicol ; 36(12): 1912-1920, 2023 12 18.
Article En | MEDLINE | ID: mdl-37950699

Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.


Cholinesterase Reactivators , Humans , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Acetylcholinesterase/metabolism , Hep G2 Cells , Cholinesterase Inhibitors/toxicity , Oximes/pharmacology , Oximes/chemistry , Antidotes/pharmacology , Organophosphates/toxicity , Oxidative Stress , Carbon , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemistry
16.
Chem Biol Interact ; 385: 110735, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37802409

We report a green chemistry approach for preparation of oxime-functionalized ILs as AChE reactivators: amide/ester linked IL, l-alanine, and l-phenylalanine derived salts bearing pyridinium aldoxime moiety. The reactivation capacities of the novel oximes were evaluated towards AChE inhibited by typical toxic organophosphates, sarin (GB), VX, and paraoxon (PON). The studied compounds are mostly non-toxic up to the highest concentrations screened (2 mM) towards Gram-negative and Gram-positive bacteria cell lines and both filamentous fungi and yeasts in the in vitro screening experiments as well as towards the eukaryotic cell (CHO-K1 cell line). Introduction of the oxime moiety in initially biodegradable structure decreases its ability to biodegradation. The compound 3d was shown to reveal remarkable activity against the AChE inhibited by VX, exceeding conventional reactivators 2-PAM and obidoxime. The regularities on antidotal activity, cell viability, plasma stability, biodegradability as well as molecular docking study of the newly synthesized oximes will be used for further improvement of their structures.


Cholinesterase Reactivators , Ionic Liquids , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Oximes/pharmacology , Oximes/chemistry , Antidotes , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemistry
17.
Bioorg Med Chem Lett ; 96: 129504, 2023 11 15.
Article En | MEDLINE | ID: mdl-37838342

This study aimed to explore non-pyridinium oxime acetylcholinesterase (AChE) reactivators that could hold the potential to overcome the limitations of the currently available compounds used in the clinic to treat the neurologic manifestations induced by intoxication with organophosphorus agents. Fifteen compounds with various non-pyridinium oxime moieties were evaluated for AChE activity at different concentrations, including aldoximes, ketoximes, and α-ketoaldoximes. The therapeutic potential of the oxime compounds was evaluated by assessing their ability to reactivate AChE inhibited by paraoxon. Among the tested compounds, α-Ketoaldoxime derivative 13 showed the highest reactivation (%) reaching 67 % and 60 % AChE reactivation when evaluated against OP-inhibited electric eel AChE at concentrations of 1,000 and 100 µM, respectively. Compound 13 showed a comparable reactivation ability of AChE (60 %) compared to that of pralidoxime (56 %) at concentrations of 100 µM. Molecular docking simulation of the most active compounds 12 and 13 was conducted to predict the binding mode of the reactivation of electric eel AChE. As a result, a non-pyridinium oxime moiety 13, is a potential reactivator of OP-inhibited AChE and is taken as a lead compound for the development of novel AChE reactivators with enhanced capacity to freely cross the blood-brain barrier.


Cholinesterase Reactivators , Oximes , Oximes/pharmacology , Oximes/chemistry , Paraoxon/pharmacology , Acetylcholinesterase/metabolism , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemistry , Acetamides , Organophosphorus Compounds/chemistry
18.
Sci Adv ; 9(29): eadi4862, 2023 07 21.
Article En | MEDLINE | ID: mdl-37478182

Nicotinamide riboside is a precursor to the important cofactor nicotinamide adenine dinucleotide and has elicited metabolic benefits in multiple preclinical studies. In 2016, the first clinical trial of nicotinamide riboside was conducted to test the safety and efficacy of human supplementation. Many trials have since been conducted aiming to delineate benefits to metabolic health and severe diseases in humans. This review endeavors to summarize and critically assess the 25 currently published research articles on human nicotinamide riboside supplementation to identify any poorly founded claims and assist the field in elucidating the actual future potential for nicotinamide riboside. Collectively, oral nicotinamide riboside supplementation has displayed few clinically relevant effects, and there is an unfortunate tendency in the literature to exaggerate the importance and robustness of reported effects. Even so, nicotinamide riboside may play a role in the reduction of inflammatory states and has shown some potential in the treatment of diverse severe diseases.


NAD , Niacinamide , Humans , Niacinamide/pharmacology , Niacinamide/metabolism , NAD/metabolism , Pyridinium Compounds/pharmacology , Dietary Supplements
19.
Chem Biol Interact ; 382: 110622, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37442286

The A-series is the most recent generation of chemical warfare nerve agents (CWA) which act directly on the inhibition of the human acetylcholinesterase (HssAChE) enzyme. These compounds lack accurate experimental data on their physicochemical properties, and there is no evidence that traditional antidotes effectively reactivate HssAChE inhibited by them. In the search for potential antidotes, we employed virtual screening, molecular docking, and molecular dynamics (MD) simulations for the theoretical assessment of the performance of a library of Mannich phenols as potential reactivators of HssAChE inhibited by the Novichok agents A-230, A-232, and A-234, in comparison with the commercial oximes pralidoxime (2-PAM), asoxime (HI-6), trimedoxime (TMB-4), and obidoxime. Following the near-attack conformation (NAC) approach, our results suggest that the compounds assessed would face difficulties in triggering the proposed nucleophilic in-line displacement mechanism. Despite this, it was observed that certain Mannich phenols presented similar or superior results to those obtained by reference oximes against A-232 and A-234 model, suggesting that these compounds can adopt more favourable conformations. Additional binding energy calculations confirmed the stability of the model/ligands complexes and the reactivating potential observed in the molecular docking and MD studies. Our findings indicate that the Mannich phenols could be alternative antidotes and that their efficacy should be evaluated experimentally against the A-series CWA.


Chemical Warfare Agents , Cholinesterase Reactivators , Nerve Agents , Humans , Antidotes/pharmacology , Cholinesterase Reactivators/pharmacology , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Oximes/pharmacology , Oximes/chemistry , Trimedoxime/chemistry , Trimedoxime/pharmacology , Chemical Warfare Agents/pharmacology , Pyridinium Compounds/pharmacology
20.
FEBS J ; 290(19): 4762-4776, 2023 10.
Article En | MEDLINE | ID: mdl-37289138

Human sirtuins play important roles in various cellular events including DNA repair, gene silencing, mitochondrial biogenesis, insulin secretion and apoptosis. They regulate a wide array of protein and enzyme targets through their NAD+ -dependent deacetylase activities. Sirtuins are also thought to mediate the beneficial effects of low-calorie intake to extend longevity in diverse organisms from yeast to mammals. Small molecules mimicking calorie restriction to stimulate sirtuin activity are attractive therapeutics against age-related disorders such as cardiovascular diseases, diabetes and neurodegeneration. Little is known about one of the mitochondrial sirtuins, SIRT5. SIRT5 has emerged as a critical player in maintaining cardiac health and neuronal viability upon stress and functions as a tumour suppressor in a context-specific manner. Much has been debated about whether SIRT5 has evolved away from being a deacetylase because of its weak catalytic activity, especially in the in vitro testing. We have, for the first time, identified a SIRT5-selective allosteric activator, nicotinamide riboside (NR). It can increase SIRT5 catalytic efficiency with different synthetic peptide substrates. The mechanism of action was further explored using a combination of molecular biology and biochemical strategies. Based on the existing structural biology information, the NR binding site was also mapped out. These activators are powerful chemical probes for the elucidation of cellular regulations and biological functions of SIRT5. The knowledge gained in this study can be used to guide the design and synthesis of more potent, isotype-selective SIRT5 activators and to develop them into therapeutics for metabolic disorders and age-related diseases.


Sirtuins , Animals , Humans , Sirtuins/genetics , Niacinamide/pharmacology , Peptides/chemistry , Pyridinium Compounds/pharmacology , Mammals/metabolism
...