Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.835
Filter
1.
J Environ Sci (China) ; 148: 13-26, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095152

ABSTRACT

Bisphenol A (BPA) is an industrial pollutant that can cause immune impairment. Selenium acts as an antioxidant, as selenium deficiency often accompanies oxidative stress, resulting in organ damage. This study is the first to demonstrate that BPA and/or selenium deficiency induce pyroptosis and ferroptosis-mediated thymic injury in chicken and chicken lymphoma cell (MDCC-MSB-1) via oxidative stress-induced endoplasmic reticulum (ER) stress. We established a broiler chicken model of BPA and/or selenium deficiency exposure and collected thymus samples as research subjects after 42 days. The results demonstrated that BPA or selenium deficiency led to a decrease in antioxidant enzyme activities (T-AOC, CAT, and GSH-Px), accumulation of peroxides (H2O2 and MDA), significant upregulation of ER stress-related markers (GRP78, IER 1, PERK, EIF-2α, ATF4, and CHOP), a significant increase in iron ion levels, significant upregulation of pyroptosis-related gene (NLRP3, ASC, Caspase1, GSDMD, IL-18 and IL-1ß), significantly increase ferroptosis-related genes (TFRC, COX2) and downregulate GPX4, HO-1, FTH, NADPH. In vitro experiments conducted in MDCC-MSB-1 cells confirmed the results, demonstrating that the addition of antioxidant (NAC), ER stress inhibitor (TUDCA) and pyroptosis inhibitor (Vx765) alleviated oxidative stress, endoplasmic reticulum stress, pyroptosis, and ferroptosis. Overall, this study concludes that the combined effects of oxidative stress and ER stress mediate pyroptosis and ferroptosis in chicken thymus induced by BPA exposure and selenium deficiency.


Subject(s)
Benzhydryl Compounds , Chickens , Endoplasmic Reticulum Stress , Ferroptosis , Phenols , Pyroptosis , Reactive Oxygen Species , Selenium , Animals , Benzhydryl Compounds/toxicity , Ferroptosis/drug effects , Pyroptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Selenium/deficiency , Phenols/toxicity , Reactive Oxygen Species/metabolism , Thymus Gland/drug effects , Oxidative Stress/drug effects
2.
Respir Res ; 25(1): 355, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354535

ABSTRACT

INTRODUCTION: Pyroptosis, inflammatory necrosis of cells, is a programmed cell death involved in the pathological process of diseases. Endoplasmic reticulum stress (ERS), as a protective stress response of cell, decreases the unfold protein concentration to inhibit the unfold protein agglutination. Whereas the relationship between endoplasmic reticulum stress and pyroptosis in pulmonary hypertension (PH) remain unknown. Previous evident indicated that circular RNA (circRNA) can participate in several biological process, including cell pyroptosis. However, the mechanism of circRNA regulate pyroptosis of pulmonary artery smooth muscle cells through endoplasmic reticulum stress still unclear. Here, we proved that circSSR1 was down-regulate expression during hypoxia in pulmonary artery smooth muscle cells, and over-expression of circSSR1 inhibit pyroptosis both in vitro and in vivo under hypoxic. Our experiments have indicated that circSSR1 could promote host gene SSR1 translation via m6A to activate ERS leading to pulmonary artery smooth muscle cell pyroptosis. In addition, our results showed that G3BP1 as upstream regulator mediate the expression of circSSR1 under hypoxia. These results highlight a new regulatory mechanism for pyroptosis and provide a potential therapy target for pulmonary hypertension. METHODS: RNA-FISH and qRT-PCR were showed the location of circSSR1 and expression change. RNA pull-down and RIP verify the circSSR1 combine with YTHDF1. Western blotting, PI staining and LDH release were used to explore the role of circSSR1 in PASMCs pyroptosis. RESULTS: CircSSR1 was markedly downregulated in hypoxic PASMCs. Knockdown CircSSR1 inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circSSR1 combine with YTHDF1 to promote SSR1 protein translation rely on m6A, activating pyroptosis via endoplasmic reticulum stress. Furthermore, G3BP1 induce circSSR1 degradation under hypoxic. CONCLUSION: Our findings clarify the role of circSSR1 up-regulated parental protein SSR1 expression mediate endoplasmic reticulum stress leading to pyroptosis in PASMCs, ultimately promoting the development of pulmonary hypertension.


Subject(s)
Endoplasmic Reticulum Stress , Myocytes, Smooth Muscle , Pulmonary Artery , Pyroptosis , Endoplasmic Reticulum Stress/physiology , Pyroptosis/physiology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Animals , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , RNA, Circular/metabolism , RNA, Circular/genetics , Male , Cells, Cultured , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/genetics , Membrane Proteins
3.
Cell Death Dis ; 15(10): 725, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358349

ABSTRACT

Pancreatic cancer is one of the leading causes of cancer-associated mortality, with a poor treatment approach. Previous study has shown that inducing pyroptosis in pancreatic ductal adenocarcinoma (PDAC) slows the growth of PDACs, implying that pyroptosis inducers are potentially effective for PDAC therapy. Here, we found that Dronedarone hydrochloride (DH), an antiarrhythmic drug, induces pyroptosis in pancreatic cancer cells and inhibits PDAC development in mice. In PANC-1 cells, DH caused cell death in a dosage- and time-dependent manner, with only pyroptosis inhibitors and GSDMD silencing rescuing the cell death, indicating that DH triggered GSDMD-dependent pyroptosis. Further work revealed that DH increased mitochondrial stresses and caused mitochondrial DNA (mtDNA) leakage, activating the cytosolic STING-cGAS and pyroptosis pathways. Finally, we assessed the anti-cancer effects of DH in a pancreatic cancer mouse model and found that DH treatment suppressed pancreatic tumor development in vivo. Collectively, our investigation demonstrates that DH triggers pyroptosis in PDAC and proposes its potential effects on anti-PDAC growth.


Subject(s)
DNA, Mitochondrial , Dronedarone , Pancreatic Neoplasms , Pyroptosis , Pyroptosis/drug effects , Animals , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Humans , Dronedarone/pharmacology , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Mice , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Mice, Nude
4.
Cell Commun Signal ; 22(1): 466, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350285

ABSTRACT

BACKGROUND: Gasdermin D (GSDMD) mediated pyroptosis plays a significant role in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. However, the precise mechanisms regulating pyroptosis remain unclear. In the study, we aimed to investigate the underlying mechanism of pyroptosis in myocardial I/R injury. METHODS: In the present study, we analyzed the effects of USP5 on the RIPK1 kinase activity mediated pyroptosis in vitro after H/R (hypoxia/reoxygenation) and in vivo in a MI/R mouse model. TTC and Evan's blue dye, Thioflavin S and immunohistochemistry staining were performed in wild-type, RIPK1flox/flox Cdh5-Cre and USP5 deficiency mice. CMEC cells were transfected with si-USP5. HEK293T cells were transfected with USP5 and RIPK1 overexpression plasmid or its mutants. The levels of USP5, RIPK1, Caspase-8, FADD and GSDMD were determined by Western blot. Protein interactions were evaluated by immunoprecipitation. The protein colocalization in cells was monitored using a confocal microscope. RESULTS: In this study, our data demonstrate that RIPK1 is essential for limiting cardiac endothelial cell (CMEC) pyroptosis mediated by caspase-8 in response to myocardial I/R. Additionally, we investigate the role of ubiquitin-specific protease 5 (USP5) as a deubiquitinase for RIPK1. Mechanistically, USP5 interacts with RIPK1, leading to its deubiquitination and stabilization. CONCLUSIONS: These findings offer new insights into the role of USP5 in regulating RIPK1-induced pyroptosis.


Subject(s)
Myocardial Reperfusion Injury , Pyroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Pyroptosis/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Humans , Mice , HEK293 Cells , Mice, Inbred C57BL , Male
5.
World J Gastroenterol ; 30(34): 3850-3855, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39350786

ABSTRACT

In this editorial, we comment on the article by Zhou et al. The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1 (SIRT1) activation in acute liver failure (ALF). ALF is characterized by a sudden and severe liver injury resulting in significant hepatocyte damage, often posing a high risk of mortality. The predominant form of hepatic cell death in ALF involves apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Glutathione peroxidase 4 (GPX4) inhibition sensitizes the cell to ferroptosis and triggers cell death, while Gasdermin D (GSDMD) is a mediator of pyroptosis. The study showed that ferroptosis and pyroptosis in ALF are regulated by blocking the p53/GPX4/GSDMD pathway, bridging the gap between the two processes. The inhibition of p53 elevates the levels of GPX4, reducing the levels of inflammatory and liver injury markers, ferroptotic events, and GSDMD-N protein levels. Reduced p53 expression and increased GPX4 on deletion of GSDMD indicated ferroptosis and pyroptosis interaction. SIRT1 is a NAD-dependent deacetylase, and its activation attenuates liver injury and inflammation, accompanied by reduced ferroptosis and pyroptosis-related proteins in ALF. SIRT1 activation also inhibits the p53/GPX4/GSDMD axis by inducing p53 acetylation, attenuating LPS/D-GalN-induced ALF.


Subject(s)
Ferroptosis , Intracellular Signaling Peptides and Proteins , Liver Failure, Acute , Phosphate-Binding Proteins , Phospholipid Hydroperoxide Glutathione Peroxidase , Sirtuin 1 , Tumor Suppressor Protein p53 , Sirtuin 1/metabolism , Sirtuin 1/genetics , Liver Failure, Acute/metabolism , Liver Failure, Acute/pathology , Tumor Suppressor Protein p53/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Ferroptosis/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Animals , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Signal Transduction , Pyroptosis/drug effects , Hepatocytes/metabolism , Liver/pathology , Liver/metabolism , Mice , Gasdermins
6.
World J Gastroenterol ; 30(34): 3856-3861, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39350783

ABSTRACT

In this editorial, we comment on the article by Zhou et al published in a recent issue. We specifically focus on the crucial roles of ferroptosis and pyroptosis in acute liver failure (ALF), a disease with high mortality rates. Ferroptosis is the result of increased intracellular reactive oxygen species due to iron accumulation, glutathione (GSH) depletion, and decreased GSH peroxidase 4 activity, while pyroptosis is a procedural cell death mediated by gasdermin D which initiates a sustained inflammatory process. In this review, we describe the characteristics of ferroptosis and pyroptosis, and discuss the involvement of the two cell death modes in the onset and development of ALF. Furthermore, we summarize several interfering methods from the perspective of ferroptosis and pyroptosis for the alleviation of ALF. These observations might provide new targets and a theoretical basis for the treatment of ALF, which are also crucial for improving the prognosis of patients with ALF.


Subject(s)
Ferroptosis , Liver Failure, Acute , Pyroptosis , Reactive Oxygen Species , Humans , Liver Failure, Acute/pathology , Liver Failure, Acute/metabolism , Reactive Oxygen Species/metabolism , Iron/metabolism , Animals , Glutathione/metabolism , Phosphate-Binding Proteins/metabolism , Liver/pathology , Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Prognosis , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Gasdermins
7.
Front Immunol ; 15: 1400977, 2024.
Article in English | MEDLINE | ID: mdl-39351226

ABSTRACT

Pyroptosis is a form of programmed cell death that is crucial in the development of various diseases, including autoimmune diseases, atherosclerotic diseases, cancer, and pregnancy complications. In recent years, it has gained significant attention in national and international research due to its association with inflammatory immune overactivation and its involvement in pregnancy complications such as miscarriage and preeclampsia (PE). The mechanisms discussed include the canonical pyroptosis pathway of gasdermin activation and pore formation (caspase-1-dependent pyroptosis) and the non-canonical pyroptosis pathway (cysteoaspartic enzymes other than caspase-1). These pathways work on various cellular and factorial levels to influence normal pregnancy. This review aims to summarize and analyze the pyroptosis pathways associated with abnormal pregnancies and pregnancy complications. The objective is to enhance pregnancy outcomes by identifying various targets to prevent the onset of pyroptosis.


Subject(s)
Pregnancy Complications , Pyroptosis , Humans , Pregnancy , Female , Pregnancy Complications/immunology , Pregnancy Complications/metabolism , Animals , Pre-Eclampsia/immunology , Pre-Eclampsia/metabolism , Signal Transduction
8.
World J Gastroenterol ; 30(33): 3791-3798, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39351426

ABSTRACT

In this editorial, we comment on the article published in the recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a fatal disease that causes uncontrolled massive hepatocyte death and rapid loss of liver function. Ferroptosis and pyroptosis, cell death forms that can be initiated or blocked concurrently, can play significant roles in developing inflammation and various malignancies. However, their roles in ALF remain unclear. The article discovered the positive feedback between ferroptosis and pyroptosis in the progression of ALF, and revealed that the silent information regulator sirtuin 1 (SIRT1) inhibits both pathways through p53, dramatically reducing inflammation and protecting hepatocytes. This suggests the potential use of SIRT1 and its downstream molecules as therapeutics for ALF. Thus, we will discuss the role of ferroptosis and pyroptosis in ALF and the crosstalk between these cell death mechanisms. Additionally, we address potential treatments that could alleviate ALF by simultaneously inhibiting both cell death pathways, as well as examples of SIRT1 activators being used as disease treatment strategies, providing new insights into the therapy of ALF.


Subject(s)
Ferroptosis , Hepatocytes , Liver Failure, Acute , Pyroptosis , Sirtuin 1 , Humans , Pyroptosis/drug effects , Ferroptosis/drug effects , Liver Failure, Acute/metabolism , Liver Failure, Acute/pathology , Sirtuin 1/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Hepatocytes/drug effects , Signal Transduction/drug effects , Animals , Liver/pathology , Liver/metabolism , Liver/drug effects , Molecular Targeted Therapy/methods , Tumor Suppressor Protein p53/metabolism
9.
PeerJ ; 12: e17874, 2024.
Article in English | MEDLINE | ID: mdl-39224819

ABSTRACT

Acute pancreatitis (AP) is a sudden-onset disease of the digestive system caused by abnormal activation of pancreatic enzymes. Dual oxidase 2 (DUOX2) has been found to be elevated in the progression of a variety of inflammatory diseases. Therefore, we analyzed the specific roles of DUOX2 in AP development. Blood samples were collected from of AP patients and healthy people, and the caerulein- stimulated human pancreatic duct cells (H6C7) were utilized to establish an AP cell model. Cell growth and apoptosis were measured using an MTT assay and TUNEL staining. Additionally, RT-qPCR and western blot assays were conducted to assess the RNA and protein expressions of the cells. ELISA kits were used to determine TNF-α, IL-6, IL-8, and IL-1ß levels. The interaction between DUOX2 and miR-605-3p was predicted using the Targetscan database and confirmed by dual-luciferase report assay. We found that DUOX2 increased while miR-605-3p decreased in the blood of AP patients and caerulein-stimulated H6C7 cells. DUOX2 was targeted by miR-605-3p. Furthermore, DUOX2 knockdown or miR-605-3p overexpression promoted cell viability, decreased the TNF-α, IL-6, IL-8, and IL-1ß levels, and inhibited apoptosis rate in caerulein-stimulated H6C7 cells. DUOX2 knockdown or miR-605-3p overexpression also increased the Bcl-2 protein levels and down-regulated Bax, cleaved-caspase-1, NLRP3 and p-p65. Interestingly, DUOX2 overexpression reversed the miR-605-3p mimic function in the caerulein-treated H6C7 cells. In conclusion, our research demonstrated that DUOX2 knockdown relieved the injury and inflammation in caerulein-stimulated H6C7 cells.


Subject(s)
Ceruletide , Dual Oxidases , MicroRNAs , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pancreatitis , Pyroptosis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Dual Oxidases/metabolism , Dual Oxidases/genetics , Pancreatitis/pathology , Pancreatitis/metabolism , Pancreatitis/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B/metabolism , Signal Transduction , Male , Cell Line , Pancreatic Ducts/pathology , Pancreatic Ducts/metabolism , Apoptosis , Female , Middle Aged
10.
Int J Nanomedicine ; 19: 9175-9193, 2024.
Article in English | MEDLINE | ID: mdl-39263632

ABSTRACT

Purpose: Ischemic stroke is a refractory disease wherein the reperfusion injury caused by sudden restoration of blood supply is the main cause of increased mortality and disability. However, current therapeutic strategies for the inflammatory response induced by cerebral ischemia-reperfusion (I/R) injury are unsatisfactory. This study aimed to develop a functional nanoparticle (MM/ANPs) comprising apelin-13 (APNs) encapsulated in macrophage membranes (MM) modified with distearoyl phosphatidylethanolamine-polyethylene glycol-RVG29 (DSPE-PEG-RVG29) to achieve targeted therapy against ischemic stroke. Methods: MM were extracted from RAW264.7. PLGA was dissolved in dichloromethane, while Apelin-13 was dissolved in water, and CY5.5 was dissolved in dichloromethane. The precipitate was washed twice with ultrapure water and then resuspended in 10 mL to obtain an aqueous solution of PLGA nanoparticles. Subsequently, the cell membrane was evenly dispersed homogeneously and mixed with PLGA-COOH at a mass ratio of 1:1 for the hybrid ultrasound. DSPE-PEG-RVG29 was added and incubated for 1 h to obtain MM/ANPs. Results: In this study, we developed a functional nanoparticle delivery system (MM/ANPs) that utilizes macrophage membranes coated with DSPE-PEG-RVG29 peptide to efficiently deliver Apelin-13 to inflammatory areas using ischemic stroke therapy. MM/ANPs effectively cross the blood-brain barrier and selectively accumulate in ischemic and inflamed areas. In a mouse I/R injury model, these nanoparticles significantly improved neurological scores and reduced infarct volume. Apelin-13 is gradually released from the MM/ANPs, inhibiting NLRP3 inflammasome assembly by enhancing sirtuin 3 (SIRT3) activity, which suppresses the inflammatory response and pyroptosis. The positive regulation of SIRT3 further inhibits the NLRP3-mediated inflammation, showing the clinical potential of these nanoparticles for ischemic stroke treatment. The biocompatibility and safety of MM/ANPs were confirmed through in vitro cytotoxicity tests, blood-brain barrier permeability tests, biosafety evaluations, and blood compatibility studies. Conclusion: MM/ANPs offer a highly promising approach to achieve ischemic stroke-targeted therapy inhibiting NLRP3 inflammasome-mediated pyroptosis.


Subject(s)
Inflammasomes , Ischemic Stroke , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Nanoparticles , Pyroptosis , Animals , Mice , Ischemic Stroke/drug therapy , RAW 264.7 Cells , Pyroptosis/drug effects , Nanoparticles/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages/drug effects , Macrophages/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/chemistry , Polyethylene Glycols/chemistry , Mice, Inbred C57BL , Reperfusion Injury/drug therapy , Phosphatidylethanolamines/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism
11.
J Orthop Surg Res ; 19(1): 550, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252111

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease characterized by the degeneration, destruction, and excessive ossification of articular cartilage. The prevalence of OA is rising annually, concomitant with the aging global population and increasing rates of obesity. This condition imposes a substantial and escalating burden on individual health, healthcare systems, and broader social and economic frameworks. The etiology of OA is multifaceted and not fully understood. Current research suggests that the death of chondrocytes, encompassing mechanisms such as cellular apoptosis, pyroptosis, autophagy, ferroptosis and cuproptosis, contributes to both the initiation and progression of the disease. These cell death pathways not only diminish the population of chondrocytes but also exacerbate joint damage through the induction of inflammation and other deleterious processes. This paper delineates the morphological characteristics associated with various modes of cell death and summarizes current research results on the molecular mechanisms of different cell death patterns in OA. The objective is to review the advancements in understanding chondrocyte cell death in OA, thereby offering novel insights for potential clinical interventions.


Subject(s)
Cell Death , Chondrocytes , Disease Progression , Osteoarthritis , Chondrocytes/pathology , Humans , Osteoarthritis/pathology , Osteoarthritis/therapy , Cell Death/physiology , Apoptosis/physiology , Cartilage, Articular/pathology , Autophagy/physiology , Animals , Pyroptosis/physiology , Ferroptosis/physiology
12.
Front Immunol ; 15: 1456244, 2024.
Article in English | MEDLINE | ID: mdl-39253076

ABSTRACT

Inflammatory diseases compromise a clinically common and diverse group of conditions, causing detrimental effects on body functions. Gasdermins (GSDM) are pore-forming proteins, playing pivotal roles in modulating inflammation. Belonging to the GSDM family, gasdermin D (GSDMD) actively mediates the pathogenesis of inflammatory diseases by mechanistically regulating different forms of cell death, particularly pyroptosis, and cytokine release, in an inflammasome-dependent manner. Aberrant activation of GSDMD in different types of cells, such as immune cells, cardiovascular cells, pancreatic cells and hepatocytes, critically contributes to the persistent inflammation in different tissues and organs. The contributory role of GSDMD has been implicated in diabetes mellitus, liver diseases, cardiovascular diseases, neurodegenerative diseases, and inflammatory bowel disease (IBD). Clinically, alterations in GSDMD levels are potentially indicative to the occurrence and severity of diseases. GSDMD inhibition might represent an attractive therapeutic direction to counteract the progression of inflammatory diseases, whereas a number of GSDMD inhibitors have been shown to restrain GSDMD-mediated pyroptosis through different mechanisms. This review discusses the current understanding and future perspectives on the role of GSDMD in the development of inflammatory diseases, as well as the clinical insights of GSDMD alterations, and therapeutic potential of GSDMD inhibitors against inflammatory diseases. Further investigation on the comprehensive role of GSDM shall deepen our understanding towards inflammation, opening up more diagnostic and therapeutic opportunities against inflammatory diseases.


Subject(s)
Inflammation , Intracellular Signaling Peptides and Proteins , Phosphate-Binding Proteins , Pyroptosis , Humans , Phosphate-Binding Proteins/metabolism , Inflammation/immunology , Inflammation/metabolism , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Inflammasomes/metabolism , Gasdermins
13.
BMC Res Notes ; 17(1): 260, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267194

ABSTRACT

This study hypothesized that SCFA, acetate impacts positively on hypothalamic pyroptosis and its related abnormalities in experimentally induced PCOS rat model, possibly through NrF2/HIF1-α modulation. Eight-week-old female Wister rats were divided into groups (n = 5), namely control, PCOS, acetate and PCOS + acetate groups. Induction of PCOS was performed by administering 1 mg/kg body weight of letrozole for 21 days. After PCOS confirmation, the animals were treated with 200 mg/kg of acetate for 6 weeks. Rats with PCOS were characterized with insulin resistance, leptin resistance, increased plasma testosterone as well as degenerated ovarian follicles. There was also a significant increase in hypothalamic triglyceride level, triglyceride-glucose index, inflammatory biomarkers (SDF-1 and NF-kB) and caspase-6 as well as plasma LH and triglyceride. A decrease was observed in plasma adiponectin, GnRH, FSH, and hypothalamic GABA with severe inflammasome expression in PCOS rats. These were accompanied by decreased level of NrF2/HIF1-α, and the alterations were reversed when treated with acetate. Collectively, the present results suggest the therapeutic impact of acetate on hypothalamic pyroptosis and its related comorbidity in PCOS, a beneficial effect that is accompanied by modulation of NrF2/HIF1-α.


Subject(s)
Hypothalamus , Hypoxia-Inducible Factor 1, alpha Subunit , Polycystic Ovary Syndrome , Pyroptosis , Rats, Wistar , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/pathology , Female , Animals , Hypothalamus/metabolism , Hypothalamus/drug effects , Hypothalamus/pathology , Pyroptosis/drug effects , Rats , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin Resistance , NF-E2-Related Factor 2/metabolism , Disease Models, Animal , Letrozole/pharmacology , Triglycerides/blood , Triglycerides/metabolism , Luteinizing Hormone/blood , Follicle Stimulating Hormone/blood , Adiponectin/metabolism , Adiponectin/blood , Testosterone/blood , Leptin/blood , Leptin/metabolism , Gonadotropin-Releasing Hormone/metabolism , gamma-Aminobutyric Acid/metabolism
14.
Nat Cell Biol ; 26(9): 1420-1433, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223376

ABSTRACT

Innate immunity, cell death and inflammation underpin many aspects of health and disease. Upon sensing pathogens, pathogen-associated molecular patterns or damage-associated molecular patterns, the innate immune system activates lytic, inflammatory cell death, such as pyroptosis and PANoptosis. These genetically defined, regulated cell death pathways not only contribute to the host defence against infectious disease, but also promote pathological manifestations leading to cancer and inflammatory diseases. Our understanding of the underlying mechanisms has grown rapidly in recent years. However, how dying cells, cell corpses and their liberated cytokines, chemokines and inflammatory signalling molecules are further sensed by innate immune cells, and their contribution to further amplify inflammation, trigger antigen presentation and activate adaptive immunity, is less clear. Here, we discuss how pattern-recognition and PANoptosome sensors in innate immune cells recognize and respond to cell-death signatures. We also highlight molecular targets of the innate immune response for potential therapeutic development.


Subject(s)
Cell Death , Immunity, Innate , Signal Transduction , Humans , Animals , Cell Death/immunology , Inflammation/immunology , Inflammation/pathology , Pyroptosis/immunology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Receptors, Pattern Recognition/metabolism , Receptors, Pattern Recognition/immunology
15.
FASEB J ; 38(18): e70054, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39297783

ABSTRACT

Excessive proinflammatory cytokine release induced by pyroptosis plays a vital role in intestinal mucosal inflammation in ulcerative colitis (UC). Several pyroptosis-related factors are regulated by the centrosome. Pericentriolar material 1 (PCM1) is a primary component of centriolar satellites that is present as cytoplasmic granules around the centrosome. Our previous study revealed that PCM1 was highly expressed in UC patients, but the role of PCM1 in UC remains unknown. This study aimed to elucidate the role of PCM1 in the development of UC, especially the mechanism in pyroptosis process of UC. Clinical mucosal sample and dextran sulfate sodium (DSS)-induced colitis mouse were used to reveal the association between PCM1 and intestinal inflammation. Intestinal epithelial cell-specific PCM1-knockout mice were constructed to determine the role of PCM1 in colitis. Finally, PCM1 RNA interference and overexpression assays in THP1 cells were employed to study the molecular mechanisms of PCM1 in inflammatory responses and pyroptosis. We found that PCM1 expression was upregulated in the colonic mucosa of UC patients and positively correlated with inflammatory indicators. PCM1 expression was elevated in DSS-induced colitis mice and was reduced after methylprednisolone treatment. In the DSS colitis model, intestinal-specific PCM1-knockout mice exhibited milder intestinal inflammation and lower pyroptosis levels than wild-type mice. In cell level, PCM1 exerted a proinflammatory effect by activating the NLRP3 inflammasome and triggering subsequent gasdermin D-mediated pyroptosis to release IL-1ß and IL-18. In conclusion, PCM1 mediates activation of the NLRP3 inflammasome and gasdermin D-dependent pyroptosis, ultimately accelerating intestinal inflammation in UC. These findings revealed a previously unknown role of PCM1 in initiating intestinal mucosal inflammation and pyroptosis in UC, and this factor is expected to be a regulator in the complex inflammatory network of UC.


Subject(s)
Colitis, Ulcerative , Intracellular Signaling Peptides and Proteins , Macrophages , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pyroptosis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis/physiology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Mice , Humans , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Macrophages/metabolism , Male , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Female , Dextran Sulfate/toxicity , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gasdermins
16.
Signal Transduct Target Ther ; 9(1): 245, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39300122

ABSTRACT

Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.


Subject(s)
Pyroptosis , Pyroptosis/genetics , Humans , Inflammasomes/metabolism , Inflammasomes/genetics , Inflammasomes/immunology , Granzymes/genetics , Granzymes/metabolism , Sepsis/genetics , Sepsis/pathology , Sepsis/metabolism , Sepsis/immunology , Caspase 8/genetics , Caspase 8/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/drug therapy , Signal Transduction
17.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4532-4536, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39307789

ABSTRACT

The key pathogenesis of atherosclerosis(AS) in traditional Chinese medicine(TCM) lies in the combination of phlegm and stasis due to spleen deficiency. In Western medicine, it is believed that pyroptosis can lead to atherosclerosis, and endoplasmic reticulum stress has been shown to promote pyroptosis. According to the theories of " spleen in correlation with endoplasmic reticulum",guided by spleen governing transportation and transformation, and endoplasmic reticulum processing proteins, it is believed that the syndrome of phlegm combined with stasis due to spleen deficiency has similarities with the mechanism of macrophage pyroptosis induced by endoplasmic reticulum stress in accelerating the progression of AS. This study explored the correlation between phlegm combined with stasis due to spleen deficiency and pyroptosis induced by endoplasmic reticulum stress, and then analyzed the modern medical mechanisms of phlegm combined with stasis due to spleen deficiency in mediating atherosclerosis. The discussion enriches the theory of spleen in correlation with endoplasmic reticulum, provides research ideas on the prevention and treatment of AS by invigorating spleen,eliminating phlegm, and resolving stasis, and lays a theoretical foundation for the clinical application of spleen-invigorating TCM in the treatment of AS.


Subject(s)
Atherosclerosis , Macrophages , Pyroptosis , Spleen , Spleen/metabolism , Atherosclerosis/metabolism , Humans , Macrophages/metabolism , Endoplasmic Reticulum/metabolism , Medicine, Chinese Traditional , Animals , Endoplasmic Reticulum Stress
18.
Sci Rep ; 14(1): 21860, 2024 09 19.
Article in English | MEDLINE | ID: mdl-39300102

ABSTRACT

No single treatment significantly reduces the mortality rate and improves neurological outcomes after intracerebral haemorrhage (ICH). New evidence suggests that pyroptosis-specific proteins are highly expressed in the perihaematomal tissues of patients with ICH and that the disulfiram (DSF) inhibits pyroptosis. An ICH model was established in C57BL/6 mice by intracranial injection of collagenase, after which DSF was used to treat the mice. Cell model of ICH was constructed, and DSF was used to treat the cells. HE, TUNEL, Nissl, FJC and IF staining were performed to evaluate the morphology of brain tissues; Western blotting and ELISA were performed to measure the protein expression of NOD-like receptor protein 3 (NLRP3)/Caspase-1/gasdermin D (GSDMD) classical pyroptosis pathway and Toll-likereceptor4 (TLR4)/nuclear factor-kappaB (NF-κB) inflammatory signaling pathway and blood‒brain barrier-associated factoes, and the wet/dry weight method was used to determine the brain water content. The expression of proteins related to the NLRP3/Caspase-1/GSDMD pathway and the TLR4/NF-κB pathway was upregulated in tissues surrounding the haematoma compared with that in control tissues; Moreover, the expression of the blood-brain barrier structural proteins occludin and zonula occludens-1 (ZO-1) was downregulated, and the expression of Aquaporin Protein-4 (AQP4) and matrix metalloprotein 9 (MMP-9) was upregulated. DSF significantly inhibited these changes, reduced the haematoma volume, decreased the brain water content, reduced neuronal death and degeneration and improved neurological function after ICH. ICH activated the classical pyroptosis pathway and TLR4/NF-κB inflammatory pathway, disruped the expression of blood-brain barrier structural proteins, and exacerbated brain injury and neurological dysfunction. DSF inhibited these changes and exerted the therapeutic effects on pathological changes and dysfunction caused by ICH.


Subject(s)
Blood-Brain Barrier , Disulfiram , Mice, Inbred C57BL , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Toll-Like Receptor 4 , Animals , Pyroptosis/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Disulfiram/pharmacology , Signal Transduction/drug effects , Male , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Disease Models, Animal , Caspase 1/metabolism , Phosphate-Binding Proteins/metabolism , Intracranial Hemorrhages/drug therapy , Intracranial Hemorrhages/metabolism , Occludin/metabolism , Zonula Occludens-1 Protein/metabolism , Matrix Metalloproteinase 9/metabolism , Humans , Gasdermins
19.
Mol Med ; 30(1): 155, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300342

ABSTRACT

BACKGROUND: Macrophage pyroptosis is a pivotal inflammatory mechanism in sepsis-induced lung injury, however, the underlying mechanisms remain inadequately elucidated. METHODS: Lipopolysaccharides (LPS)/adenosine triphosphate (ATP)-stimulated macrophages and cecal ligation and puncture (CLP)-induced mouse model for sepsis were established. The levels of key molecules were examined by qRT-PCR, Western blotting, immunohistochemistry (IHC) and ELISA assay. The subcellular localization of circMAPK1 was detected by RNA fluorescence in situ hybridization (FISH). Cell viability, LDH release and caspase-1 activity were monitored by CCK-8, LDH assays, and flow cytometry. The bindings between KDM2B/H3K36me2 and WNK1 promoter was detected by chromatin immunoprecipitation (ChIP) assay and luciferase assay, and associations among circMAPK1, UPF1 and KDM2B mRNA were assessed by RNA pull-down or RNA immunoprecipitation (RIP) assays. The pathological injury of lung tissues was evaluated by lung wet/dry weight ratio and hematoxylin and eosin (H&E) staining. RESULTS: CircMAPK1 was elevated in patients with septic lung injury. Knockdown of circMAPK1 protected against LPS/ATP-impaired cell viability and macrophage pyroptosis via WNK1/NLRP3 axis. Mechanistically, loss of circMAPK1 enhanced the association between KDM2B and WNK1 promoter to promote the demethylation of WNK1 and increase its expression. CircMAPK1 facilitated KDM2B mRNA decay by recruiting UPF1. Functional experiments showed that silencing of KDM2B or WNK1 counteracted circMAPK1 knockdown-suppressed macrophage pyroptosis. In addition, silencing of circMAPK1 alleviated CLP-induced lung injury in mice via KDM2B/WNK1/NLRP3 axis. CONCLUSION: CircMAPK1 exacerbates sepsis-induced lung injury by destabilizing KDM2B mRNA to suppress WNK1 expression, thus facilitating NLRP3-driven macrophage pyroptosis.


Subject(s)
Epigenesis, Genetic , Jumonji Domain-Containing Histone Demethylases , Pyroptosis , Sepsis , WNK Lysine-Deficient Protein Kinase 1 , Animals , Pyroptosis/genetics , Sepsis/complications , Sepsis/genetics , Sepsis/metabolism , Mice , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Male , WNK Lysine-Deficient Protein Kinase 1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Humans , RNA Stability , Lung Injury/etiology , Lung Injury/metabolism , Lung Injury/genetics , Disease Models, Animal , Female , Macrophages/metabolism , Mice, Inbred C57BL , F-Box Proteins
20.
Biomed Pharmacother ; 179: 117382, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39241565

ABSTRACT

Stroke has emerged as the primary cause of disability and death globally in recent years. Intracerebral hemorrhage (ICH), a particularly severe kind of stroke, is occurring in an increasing number of people. The two main clinical treatments for ICH now in use are conservative pharmaceutical therapy and surgical intervention, both of which have risks and drawbacks. Consequently, it is crucial to look into the pathophysiology of ICH and consider cutting-edge therapeutic approaches. Recent research has revealed that pyroptosis is a newly identified type of cell death distinguished by the break of the cell membrane and the discharge of pro-inflammatory substances through different routes. Following ICH, glial cells experience pyroptosis, which worsens neuroinflammation. Hence, the onset and progression of ICH are strongly linked to pyroptosis, which is facilitated by different inflammasomes. It is essential to conduct a comprehensive investigation of ICH damage processes and uncover new targets for treatment. The impact and function of pyroptosis in ICH, as well as the activation and regulation of inflammasomes and their mediated pyroptosis pathways will be fully discussed in this review.


Subject(s)
Cerebral Hemorrhage , Immunity, Innate , Inflammasomes , Pyroptosis , Pyroptosis/drug effects , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , Cerebral Hemorrhage/immunology , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/drug therapy , Animals , Immunity, Innate/drug effects , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL