Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 474
Filter
2.
Exp Eye Res ; 246: 110019, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117137

ABSTRACT

Cataracts are the world's number one blinding eye disease. Cataracts can only be effectively treated surgically, although there is a chance of surgical complications. One of the pathogenic processes of cataracts is oxidative stress, which closely correlated with pyroptosis. SIRT1 is essential for the regulation of pyroptosis. Nevertheless, the role of SIRT1 in formation of cataracts is unclear. In this work, we developed an in vitro model of shortwave blue light (SWBL)-induced scotomization in human lens epithelial cells (HLECs) and an in vivo model of SWBL-induced cataracts in rats. The study aimed to understand how the SIRT1/NF-κB/NLRP3 pathway functions. Additionally, the evaluation included cell death and the release of lactate dehydrogenase (LDH), a cytotoxicity marker, from injured cells. First, we discovered that SWBL exposure resulted in lens clouding in Sprague- Dawley (SD) rats and that the degree of clouding was positively linked to the duration of irradiation. Second, we discovered that SIRT1 exhibited antioxidant properties and was connected to the NF-κB/NLRP3 pathway. SWBL irradiation inhibited SIRT1 expression, exacerbated oxidative stress, and promoted nuclear translocation of NF-κB and the activation of the NLRP3 inflammasome, which caused LEC pyroptosis and ultimately led to cataract formation. Transient transfection to increase the expression of SIRT1 decreased the protein expression levels of NF-κB, NLRP3, caspase-1, and GSDMD, inhibited HLEC pyroptosis, and reduced the release of LDH, providing a potential method for cataract prevention and treatment.


Subject(s)
Cataract , Epithelial Cells , Lens, Crystalline , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Sirtuin 1 , Animals , Humans , Rats , Blotting, Western , Blue Light/adverse effects , Cataract/metabolism , Cataract/pathology , Cataract/etiology , Cells, Cultured , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/radiation effects , Lens, Crystalline/radiation effects , Lens, Crystalline/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Pyroptosis/physiology , Pyroptosis/radiation effects , Rats, Sprague-Dawley , Signal Transduction/physiology , Sirtuin 1/metabolism
3.
Pathol Res Pract ; 261: 155490, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39126977

ABSTRACT

Pyroptosis is an inflammatory programed cell death process that plays a crucial role in cancer therapeutic, while Gasdermin-D is a critical effector protein for pyroptosis execution. This review discusses the intricate interactions between Gasdermin-D and some non-coding RNAs (lncRNA, miRNA, siRNA) and their potential application in the regulation of pyroptosis as an anticancer therapy. Correspondingly, these ncRNAs significantly implicate in Gasdermin-D expression and function regarding the pyroptosis pathway. Functioning as competing endogenous RNAs (ceRNAs), these ncRNAs might regulate Gasdermin-D at the molecular level, underlying fatal cell death caused by cancer and tumor propagation. Therefore, these interactions appeal to therapeutics, offering new avenues for cancer treatment. It address this research gap by discussing the possible roles of ncRNAs as mediators of gasdermin-D regulation. It suggest therapeutic strategies based on the current research findings to ensure the interchange between the ideal pyroptosis and cancer cell death.


Subject(s)
Intracellular Signaling Peptides and Proteins , Neoplasms , Phosphate-Binding Proteins , Pyroptosis , RNA, Untranslated , Pyroptosis/physiology , Humans , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Animals , Gene Expression Regulation, Neoplastic , Gasdermins
4.
J Sex Med ; 21(8): 652-662, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38972660

ABSTRACT

BACKGROUND: Diabetes mellitus commonly causes endothelial cell and smooth muscle cell death in penile cavernous tissue. AIM: The study sought to study the mode of cell death in the penile cavernous tissue in type 1 diabetic rats. METHODS: A total of 36 Sprague Dawley rats 10 weeks of age were randomly divided into 2 groups: a normoglycemic group and type 1 diabetic group (intraperitoneal injection of Streptozotocin (STZ), 60 mg/kg). We randomly selected 6 rats from each group for tests at the end of 11, 14, and 18 weeks of age, respectively. All rats were able to eat and drink freely. The ratio of maximum intracavernous pressure to mean arterial pressure, concentration of serum testosterone, level of nitric oxide in the penile cavernosum, and expression of active caspase-1 (pyroptosis) and active caspase-3 (apoptosis) were determined. OUTCOMES: At the end of weeks 4 and 8 of type 1 diabetes, the proportions of endothelial cells and smooth muscle cells undergoing apoptosis and pyroptosis in penile cavernous tissue are different. RESULTS: The ratio of maximum intracavernous pressure to mean arterial pressure and nitric oxide levels were significantly lower in the 4- and 8-week diabetic groups than in the normoglycemic group (P < .01). Penile endothelial cell pyroptosis (5.67 ± 0.81%), smooth muscle cell apoptosis (23.72 ± 0.48%), total cell pyroptosis (9.67 ± 0.73%), and total apoptosis (10.52 ± 1.45%) were significantly greater in the 4-week diabetic group than in the normoglycemic group (P < .01). The proportion of endothelial cell pyroptosis (24.4 ± 3.69%), endothelial cell apoptosis (22.13 ± 2.43%), total cell pyroptosis (14.75 ± 0.93%), and total apoptosis (14.82 ± 1.08%) in the penile tissues of the 8-week diabetic group were significantly greater than those in the normoglycemic group (P < .01).The 8-week survival proportions of diabetic endothelial cells (38.86 ± 8.85%) and smooth muscle cells (44.46 ± 2.94%) was significantly lower than the 4-week survival proportions of endothelial cells (93.17 ± 8.07%) and smooth muscle cells (75.12 ± 4.76%) (P < .05). CLINICAL TRANSLATION: Inhibition of cell death by different methods at different stages may be the key to the treatment of type 1 diabetes-induced erectile dysfunction. STRENGTHS AND LIMITATIONS: The effect of type 1 diabetes on other types of cell death in penile cavernous tissue needs further study. CONCLUSION: The mode of death of endothelial cells in the cavernous tissue of the penis in the early stage in diabetic rats is dominated by pyroptosis, and the death of smooth muscle cells is dominated by apoptosis. Endothelial cell and smooth muscle cell death are not consistent at different stages of diabetes progression.


Subject(s)
Apoptosis , Caspase 3 , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Nitric Oxide , Penis , Rats, Sprague-Dawley , Male , Animals , Penis/pathology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/complications , Rats , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/pathology , Caspase 3/metabolism , Apoptosis/physiology , Nitric Oxide/metabolism , Pyroptosis/physiology , Testosterone/blood , Caspase 1/metabolism , Endothelial Cells/pathology , Cell Death
5.
Pathol Res Pract ; 260: 155444, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986361

ABSTRACT

Lung cancer is still a global health challenge in terms of high incidence, morbidity, and mortality. Recent scientific studies have determined that pyroptosis, a highly inflammatory form of programmed cell death, can be identified as a potential lung cancer therapeutic target. The NLRP3 inflammasome acts as a critical mediator in this process and, upon activation, activates multiprotein complex formation as well as caspase-1 activation. This process, triggered by a release of pro-inflammatory cytokines, results in pyroptotic cell death. Also, the relationship between the NLRP3 inflammasome and lung cancer was justified by its influence on tumour growth or metastasis. The molecular pathways produce progenitive mediators and remake the tissue. Finally, targeting NLRP3 inflammasome for pyroptosis induction and inhibition of its activation appears to be a promising lung cancer treatment approach. This technique makes cancer treatment more promising and personalized. This review explores the role of NLRP3 inflammasome activation and its possibilities in lung cancer treatment.


Subject(s)
Inflammasomes , Lung Neoplasms , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Inflammasomes/metabolism , Animals
6.
J Neuroimmunol ; 393: 578401, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38996718

ABSTRACT

BACKGROUND: We previously reported that the HMGB1/TLR4 axis promoted inflammation during the acute phase of intracerebral hemorrhage. Given that this phase is known to involve neuronal pyroptosis and neuroinflammation, here we explore whether HMGB1/TLR signaling activate inflammasome and pyroptosis after intracerebral hemorrhage. METHODS: Autologous blood was injected into Sprague-Dawley rats to induce intracerebral hemorrhage. Neurological deficits were assessed using a modified neurological severity score. These expression and localization of NLRP1 and NLRP3 inflammasomes, as well as the levels of pyroptosis and pyroptosis-associated proteins were assessed using Western blot or immunocytochemistry. These experiments were repeated in animals that received treatment with short interfering RNAs against NLRP1 or NLRP3, with HMGB1 inhibitor ethyl pyruvate or TLR4 inhibitor TAK-242. RESULTS: Intracerebral hemorrhage upregulated NLRP1 and NLRP3 in the ipsilateral striatum and increased the proportions of these cells that were pyroptosis-positive. Additionally, the levels of caspase protein family (e.g., pro-caspase-1 and caspase-1), apoptosis-associated speck-like protein (ASC), pro-interleukin-1ß (IL-1ß), and IL-1ß were also elevated. These effects on pyroptosis and associated neurological deficit, were partially reversed by knockdown of NLRP1 or NLRP3, or by inhibition of HMGB1 or TLR4. Inhibition of HMGB1 or TLR4 resulted in the downregulation NLRP3 but not NLRP1. CONCLUSIONS: The HMGB1/TLR4 signaling may activate the NLRP3 inflammasome during the acute phase of intracerebral hemorrhage, resulting in the inflammatory process known as pyroptosis. These insights suggest potential therapeutic targets for the mitigation tissue injury and associated neurological deficits following hemorrhagic stroke.


Subject(s)
Cerebral Hemorrhage , HMGB1 Protein , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Rats, Sprague-Dawley , Toll-Like Receptor 4 , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Pyroptosis/drug effects , HMGB1 Protein/metabolism , Rats , Toll-Like Receptor 4/metabolism , Male , Cerebral Hemorrhage/metabolism , Inflammasomes/metabolism , Signal Transduction/physiology , Signal Transduction/drug effects , Nerve Tissue Proteins
7.
Respir Res ; 25(1): 291, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080660

ABSTRACT

Acute lung injury (ALI) is characterized by an unregulated inflammatory reaction, often leading to severe morbidity and ultimately death. Excessive inflammation caused by M1 macrophage polarization and pyroptosis has been revealed to have a critical role in ALI. Recent study suggests that glycolytic reprogramming is important in the regulation of macrophage polarization and pyroptosis. However, the particular processes underlying ALI have yet to be identified. In this study, we established a Lipopolysaccharide(LPS)-induced ALI model and demonstrated that blocking glycolysis by using 2-Deoxy-D-glucose(2-DG) significantly downregulated the expression of M1 macrophage markers and pyroptosis-related genes, which was consistent with the in vitro results. Furthermore, our research has revealed that Phosphoglycerate Kinase 1(PGK1), an essential enzyme in the glycolysis pathway, interacts with NOD-, LRR- and pyrin domain-containing protein 3(NLRP3). We discovered that LPS stimulation improves the combination of PGK1 and NLRP3 both in vivo and in vitro. Interestingly, the absence of PGK1 reduces the phosphorylation level of NLRP3. Based on in vitro studies with mice bone marrow-derived macrophages (BMDMs), we further confirmed that siPGK1 plays a protective role by inhibiting macrophage pyroptosis and M1 macrophage polarization. The PGK1 inhibitor NG52 suppresses the occurrence of excessive inflammation in ALI. In general, it is plausible to consider a therapeutic strategy that focuses on modulating the relationship between PGK1 and NLRP3 as a means to mitigate the activation of inflammatory macrophages in ALI.


Subject(s)
Acute Lung Injury , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphoglycerate Kinase , Pyroptosis , Pyroptosis/physiology , Pyroptosis/drug effects , Animals , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/enzymology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Macrophages/metabolism , Macrophages/drug effects , Macrophages/enzymology , Glycolysis/physiology , Glycolysis/drug effects , Male , Lipopolysaccharides/toxicity , Mice, Knockout , Cells, Cultured
8.
Arch Pharm Res ; 47(7): 617-631, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987410

ABSTRACT

Regulated cell death (RCD) pathways, such as pyroptosis, apoptosis, and necroptosis, are essential for maintaining the body's balance, defending against pathogens, and eliminating abnormal cells that could lead to diseases like cancer. Although these pathways operate through distinct mechanisms, recent genetic and pharmacological studies have shown that they can interact and influence each other. The concept of "PANoptosis" has emerged, highlighting the interplay between pyroptosis, apoptosis, and necroptosis, especially during cellular responses to infections. This article provides a concise overview of PANoptosis and its molecular mechanisms, exploring its implications in various diseases. The review focuses on the extensive interactions among different RCD pathways, emphasizing the role of PANoptosis in infections, cytokine storms, inflammatory diseases, and cancer. Understanding PANoptosis is crucial for developing novel treatments for conditions involving infections, sterile inflammations, and cancer.


Subject(s)
Inflammation , Necroptosis , Neoplasms , Pyroptosis , Humans , Inflammation/pathology , Inflammation/drug therapy , Inflammation/immunology , Animals , Necroptosis/drug effects , Necroptosis/physiology , Pyroptosis/drug effects , Pyroptosis/physiology , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Apoptosis/drug effects , Cell Death/physiology , Regulated Cell Death/drug effects , Infections/pathology , Infections/immunology
9.
Life Sci ; 353: 122922, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032691

ABSTRACT

N6-methyladenosine (m6A) modification is closely related to cardiac fibrosis. As the most common and abundant form of mRNA modification in eukaryotes, m6A is deposited by methylases ("writers"), recognized and effected by RNA-binding proteins ("readers"), and removed by demethylases ("erasers"), achieving highly dynamic reversibility. m6A modification is involved in regulating the entire biological process of target RNA, including transcription, processing and splicing, export from the nucleus to the cytoplasm, and enhancement or reduction of stability and translation. Programmed cell death (PCD) comprises many forms and pathways, with apoptosis and autophagy being the most common. Other forms include pyroptosis, ferroptosis, necroptosis, mitochondrial permeability transition (MPT)-dependent necrosis, and parthanatos. In recent years, increasing evidence suggests that m6A modification can mediate PCD, affecting cardiac fibrosis. Since the correlation between some PCD types and m6A modification is not yet clear, this article mainly introduces the relationship between four common PCD types (apoptosis, autophagy, pyroptosis, and ferroptosis) and m6A modification, as well as their role and influence in cardiac fibrosis.


Subject(s)
Adenosine , Apoptosis , Autophagy , Fibrosis , Humans , Fibrosis/metabolism , Fibrosis/pathology , Apoptosis/physiology , Animals , Adenosine/metabolism , Adenosine/analogs & derivatives , Autophagy/physiology , Myocardium/pathology , Myocardium/metabolism , Pyroptosis/physiology , Ferroptosis/physiology
10.
Brain Res ; 1840: 149082, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38866307

ABSTRACT

Ubiquitin specific protease 18 (USP18) serves as a potent inhibitor of Type I interferon (IFN) signaling. Previous studies have shown that Usp18 deficient (homozygous Usp18 gene knockout) mice exhibit hydrocephalus; however, the precise molecular mechanism underlying hydrocephalus development remains elusive. In this study, we demonstrate that mice lacking both type I IFN receptor subunit 1 (Ifnar1) and Usp18 (Ifnar1/Usp18 double knockout mice) are viable and do not display a hydrocephalus phenotype. Moreover, we observed that suppression of USP18 in ependymal cells treated with IFN significantly increased cell death, including pyroptosis, and decreased proliferation. These findings suggest that heightened sensitivity to type I IFN during brain development contributes to the onset of hydrocephalus. Furthermore, they imply that inhibition of IFN signaling may hold promise as a therapeutic strategy for hydrocephalus.


Subject(s)
Hydrocephalus , Interferon Type I , Mice, Knockout , Receptor, Interferon alpha-beta , Ubiquitin Thiolesterase , Animals , Hydrocephalus/genetics , Hydrocephalus/pathology , Interferon Type I/metabolism , Mice , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Mice, Inbred C57BL , Signal Transduction/drug effects , Brain/metabolism , Brain/pathology , Brain/drug effects , Ependyma/metabolism , Cell Proliferation/drug effects , Pyroptosis/drug effects , Pyroptosis/physiology
11.
Neurochem Int ; 178: 105788, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38843953

ABSTRACT

Neuroinflammation is a major driver of postoperative cognitive dysfunction (POCD). The cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) signaling is a prominent alarming device for aberrant double-stranded DNA (dsDNA) that has emerged as a key mediator of neuroinflammation in cognitive-related diseases. However, the role of the cGAS-STING pathway in the pathogenesis of POCD remains unclear. A POCD model was developed in male C57BL/6J mice by laparotomy under isoflurane (Iso) anesthesia. The cGAS inhibitor RU.521 and caspase-3 agonist Raptinal were delivered by intraperitoneal administration. BV2 cells were exposed to Iso and lipopolysaccharide (LPS) in the absence or presence of RU.521, and then cocultured with HT22 cells in the absence or presence of Raptinal. Cognitive function was assessed using the Morris water maze test and novel object recognition test. Immunofluorescence assays were used to observe the colocalization of dsDNA and cGAS. The downstream proteins and pro-inflammatory cytokines were detected using the Western blot and enzyme-linked immunosorbent assay (ELISA). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to assess the degree of cell death in the hippocampus following anesthesia/surgery treatment. Isoflurane/laparotomy and Iso + LPS significantly augmented the levels of cGAS in the hippocampus and BV2 cells, accompanied by mislocalized dsDNA accumulation in the cytoplasm. RU.521 alleviated cognitive impairment, diminished the levels of 2'3'-cGAMP, cGAS, STING, phosphorylated NF-κB p65 and NF-κB-pertinent pro-inflammatory cytokines (TNFα and IL-6), and repressed pyroptosis-associated elements containing cleaved caspase-3, N-GSDME, IL-1ß and IL-18. These phenotypes could be rescued by Raptinal in vivo and in vitro. These findings suggest that pharmacological inhibition of cGAS mitigates neuroinflammatory burden of POCD by dampening caspase-3/GSDME-dependent pyroptosis, providing a potential therapeutic strategy for POCD.


Subject(s)
Caspase 3 , Mice, Inbred C57BL , Nucleotidyltransferases , Postoperative Cognitive Complications , Pyroptosis , Animals , Male , Mice , Pyroptosis/drug effects , Pyroptosis/physiology , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/prevention & control , Postoperative Cognitive Complications/drug therapy , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Caspase 3/metabolism
12.
J Endocrinol ; 262(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38842911

ABSTRACT

ß-Cell death contributes to ß-cell loss and insulin insufficiency in type 1 diabetes (T1D), and this ß-cell demise has been attributed to apoptosis and necrosis. Apoptosis has been viewed as the lone form of programmed ß-cell death, and evidence indicates that ß-cells also undergo necrosis, regarded as an unregulated or accidental form of cell demise. More recently, studies in non-islet cell types have identified and characterized novel forms of cell death that are biochemically and morphologically distinct from apoptosis and necrosis. Several of these mechanisms of cell death have been categorized as forms of regulated necrosis and linked to inflammation and disease pathogenesis. In this review, we revisit discoveries of ß-cell death in humans with diabetes and describe studies characterizing ß-cell apoptosis and necrosis. We explore literature on mechanisms of regulated necrosis including necroptosis, ferroptosis and pyroptosis, review emerging literature on the significance of these mechanisms in ß-cells, and discuss experimental approaches to differentiate between various mechanisms of ß-cell death. Our review of the literature leads us to conclude that more detailed experimental characterization of the mechanisms of ß-cell death is warranted, along with studies to better understand the impact of various forms of ß-cell demise on islet inflammation and ß-cell autoimmunity in pathophysiologically relevant models. Such studies will provide insight into the mechanisms of ß-cell loss in T1D and may shed light on new therapeutic approaches to protect ß-cells in this disease.


Subject(s)
Apoptosis , Cell Death , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Necrosis , Humans , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/physiology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/immunology , Animals , Cell Death/physiology , Apoptosis/physiology , Necroptosis/physiology , Pyroptosis/physiology , Ferroptosis/physiology
13.
Int J Nanomedicine ; 19: 4957-4976, 2024.
Article in English | MEDLINE | ID: mdl-38828198

ABSTRACT

Background: The "gut-islets axis" is an important endocrine signaling axis that regulates islets function by modulating the gut microbiota and endocrine metabolism within the gut. However, the specific mechanisms and roles of the intestine in islets regulation remain unclear. Recent studies investigated that exosomes derived from gut microbiota can transport signals to remotely regulate islets ß-cell function, suggesting the possibility of novel signaling pathways mediated by gut exosomes in the regulation of the "gut-islet axis.". Methods: The exosomes were isolated from the intestinal enteroendocrine cell-line STC-1cells culture supernatants treated with palmitate acid (PA) or BSA. Metabolic stress models were established by separately subjecting MIN6 cells to PA stimulation and feeding mice with a high-fat diet. Intervention with exosomes in vitro and in vivo to assess the biological effects of exosomes on islets ß cells under metabolic stress. The Mas receptor antagonist A779 and ACE2ko mice were used to evaluate the role of exosomal ACE2. Results: We found ACE2, a molecule that plays a crucial role in the regulation of islets function, is abundantly expressed in exosomes derived from STC-1 under physiological normal condition (NCEO). These exosomes cannot only be taken up by ß-cells in vitro but also selectively transported to the islets in vivo. Following intervention with NCEXO, both Min6 cells in a lipotoxic environment and mice on a high-fat diet exhibited significant improvements in islets ß-cell function and ß-cell mass. Further investigations demonstrated that these protective effects are attributed to exosomal ACE2, as ACE2 inhibits NLRP3 inflammasome activation and reduces ß-cell pyroptosis. Conclusion: ACE2-enriched exosomes from the gut can selectively target islets, subsequently inhibiting NLRP3 inflammasome activation and ß cell pyroptosis, thereby restoring islets ß cell function under metabolic stress. This study provides novel insights into therapeutic strategies for the prevention and treatment of obesity and diabetes.


Subject(s)
Angiotensin-Converting Enzyme 2 , Exosomes , Inflammasomes , Insulin-Secreting Cells , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Exosomes/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Pyroptosis/drug effects , Pyroptosis/physiology , Angiotensin-Converting Enzyme 2/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Cell Line , Intestine, Small/drug effects , Male , Diet, High-Fat , Mice, Knockout , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism
14.
Neuropathol Appl Neurobiol ; 50(3): e12992, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831600

ABSTRACT

PURPOSE: Radiation-induced brain injury, one of the side effects of cranial radiotherapy in tumour patients, usually results in durable and serious cognitive disorders. Microglia are important innate immune-effector cells in the central nervous system. However, the interaction between microglia and neurons in radiation-induced brain injury remains uncharacterised. METHODS AND MATERIALS: We established a microglia-neuron indirect co-culture model to assess the interaction between them. Microglia exposed to radiation were examined for pyroptosis using lactate dehydrogenase (LDH) release, Annexin V/PI staining, SYTOX staining and western blot. The role of nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) was investigated in microglia exposed to radiation and in mouse radiation brain injury model through siRNA or inhibitor. Mini-mental state examination and cytokines in blood were performed in 23 patients who had experienced cranial irradiation. RESULTS: Microglia exerted neurotoxic features after radiation in the co-culture model. NLRP3 was up-regulated in microglia exposed to radiation, and then caspase-1 was activated. Thus, the gasdermin D protein was cleaved, and it triggered pyroptosis in microglia, which released inflammatory cytokines. Meanwhile, treatment with siRNA NLRP3 in vitro and NLRP3 inhibitor in vivo attenuated the damaged neuron cell and cognitive impairment, respectively. What is more, we found that the patients after radiation with higher IL-6 were observed to have a decreased MMSE score. CONCLUSIONS: These findings indicate that radiation-induced pyroptosis in microglia may promote radiation-induced brain injury via the secretion of neurotoxic cytokines. NLRP3 was evaluated as an important mediator in radiation-induced pyroptosis and a promising therapeutic target for radiation-induced brain injury.


Subject(s)
Brain Injuries , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Pyroptosis/radiation effects , Pyroptosis/physiology , Microglia/metabolism , Microglia/radiation effects , Microglia/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Mice , Humans , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/etiology , Male , Neurons/metabolism , Neurons/pathology , Neurons/radiation effects , Coculture Techniques , Radiation Injuries/pathology , Radiation Injuries/metabolism , Female , Mice, Inbred C57BL , Middle Aged
15.
Biomed Pharmacother ; 176: 116863, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850650

ABSTRACT

Pyroptosis is a lytic and pro-inflammatory form of regulated cell death characterized by the formation of membrane pores mediated by the gasdermin protein family. Two main activation pathways have been documented: the caspase-1-dependent canonical pathway and the caspase-4/5/11-dependent noncanonical pathway. Pyroptosis leads to cell swelling, lysis, and the subsequent release of inflammatory mediators, including interleukin-1ß (IL-1ß) and interleukin-18 (IL-18). Chronic inflammation is a well-established foundation and driver for the development of metabolic diseases. Conversely, metabolic pathway dysregulation can also induce cellular pyroptosis. Recent studies have highlighted the significant role of pyroptosis modulation in various metabolic diseases, including type 2 diabetes mellitus, obesity, and metabolic (dysfunction) associated fatty liver disease. These findings suggest that pyroptosis may serve as a promising novel therapeutic target for metabolic diseases. This paper reviews an in-depth study of the current advancements in understanding the role of pyroptosis in the progression of metabolic diseases.


Subject(s)
Metabolic Diseases , Pyroptosis , Pyroptosis/physiology , Humans , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Animals , Signal Transduction , Inflammation/metabolism , Inflammation/pathology
16.
Eur J Med Res ; 29(1): 298, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802976

ABSTRACT

Joint contracture is one of the common diseases clinically, and joint capsule fibrosis is considered to be one of the most important pathological changes of joint contracture. However, the underlying mechanism of joint capsule fibrosis is still controversial. The present study aims to establish an animal model of knee extending joint contracture in rats, and to investigate the role of hypoxia-mediated pyroptosis in the progression of joint contracture using this animal model. 36 male SD rats were selected, 6 of which were not immobilized and were used as control group, while 30 rats were divided into I-1 group (immobilized for 1 week following 7 weeks of free movement), I-2 group (immobilized for 2 weeks following 6 weeks of free movement), I-4 group (immobilized for 4 weeks following 4 weeks of free movement), I-6 group (immobilized for 6 weeks following 2 weeks of free movement) and I-8 group (immobilized for 8 weeks) according to different immobilizing time. The progression of joint contracture was assessed by the measurement of knee joint range of motion, collagen deposition in joint capsule was examined with Masson staining, protein expression levels of HIF-1α, NLRP3, Caspase-1, GSDMD-N, TGF-ß1, α-SMA and p-Smad3 in joint capsule were assessed using western blotting, and the morphological changes of fibroblasts were observed by transmission electron microscopy. The degree of total and arthrogenic contracture progressed from the first week and lasted until the first eight weeks after immobilization. The degree of total and arthrogenic contracture progressed rapidly in the first four weeks after immobilization and then progressed slowly. Masson staining indicated that collagen deposition in joint capsule gradually increased in the first 8 weeks following immobilization. Western blotting analysis showed that the protein levels of HIF-1α continued to increase during the first 8 weeks of immobilization, and the protein levels of pyroptosis-related proteins NLRP3, Caspase-1, GSDMD-N continued to increase in the first 4 weeks after immobilization and then decreased. The protein levels of fibrosis-related proteins TGF-ß1, p-Smad3 and α-SMA continued to increase in the first 8 weeks after immobilization. Transmission electron microscopy showed that 4 weeks of immobilization induced cell membrane rupture and cell contents overflow, which further indicated the activation of pyroptosis. Knee extending joint contracture animal model can be established by external immobilization orthosis in rats, and the activation of hypoxia-mediated pyroptosis may play a stimulating role in the process of joint capsule fibrosis and joint contracture.


Subject(s)
Contracture , Hypoxia-Inducible Factor 1, alpha Subunit , Knee Joint , Pyroptosis , Rats, Sprague-Dawley , Animals , Contracture/metabolism , Contracture/physiopathology , Contracture/pathology , Pyroptosis/physiology , Rats , Male , Knee Joint/pathology , Knee Joint/metabolism , Knee Joint/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hypoxia/metabolism , Hypoxia/physiopathology , Disease Models, Animal , Transforming Growth Factor beta1/metabolism , Joint Capsule/metabolism , Joint Capsule/pathology , Joint Capsule/physiopathology , Range of Motion, Articular , Smad3 Protein/metabolism
18.
Eur J Neurosci ; 60(1): 3629-3642, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697919

ABSTRACT

Microglia are endogenous immune cells in the brain, and their pyroptosis and phenotype dichotomy are proved to play roles in neurodegenerative diseases. We investigated whether and how hypoxia affected pyroptosis and phenotype polarization in mouse microglia. Primary mouse microglia and BV2 microglia were exposed to hypoxia. Pyroptosis and M1/M2 phenotype were assessed by measuring gasdermin D truncation and M1/M2 surface marker expression. Mechanisms including purinergic ionotropic receptor (P2XR), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and NOD-like receptor protein 3 (NLRP3) inflammasome were investigated. We reported hypoxia (90% N2, 5% O2 and 5% CO2) induced pyroptosis and promoted M1 phenotype polarization in primary mouse microglia and BV2 microglia, and the effect appeared after 6 h exposure. Although hypoxia (90% N2, 5% O2 and 5% CO2, 6 h) had no effect on P2X1R and P2X7R expression, it increased P2X4R expression and decreased PGC-1α expression. Interestingly, blockade of P2X4R or P2X7R abolished hypoxia-modulated PGC-1α expression, pyroptosis and M1 polarization. PGC-1α overexpression or overactivation alleviated hypoxia-induced pyroptosis and M1 polarization, while PGC-1α knockdown or deactivation promoted pyroptosis and M1 polarization under normoxic situation. Further, hypoxia induced NLRP3 expression and activated caspase-1 and induced the phosphorylation of NF-κB and reduced the phosphorylation of STAT3/6. NLRP3 inhibitor and caspase-1 inhibitor abolished hypoxia-induced pyroptosis, while NF-κB inhibitor and STAT phosphorylation inducer ameliorated hypoxia-induced M1 polarization. In addition, NF-κB activator and STAT3/6 inhibitor caused microglia M1 polarization under normoxic situation. We concluded in cultured mouse microglia, hypoxia may induce pyroptosis via P2XR/PGC-1α/NLRP3/caspase-1 pathway and trigger M1 polarization through P2XR/PGC-1α/NF-κB/STAT3/6 pathway.


Subject(s)
Microglia , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Pyroptosis , Signal Transduction , Animals , Pyroptosis/physiology , Microglia/metabolism , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/physiology , Cell Differentiation/physiology , Cell Differentiation/drug effects , Mice, Inbred C57BL , Cell Hypoxia/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cells, Cultured , Inflammasomes/metabolism , Phenotype , Hypoxia/metabolism
19.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767387

ABSTRACT

Cell death is a fundamental process in all living organisms. The protocol establishes a lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced phorbol-12-myristate-13-acetate (PMA)-differentiated lipid deposition in human monocyte (THP-1) macrophage model to observe cell death. LPS combined with ATP is a classic inflammatory induction method, often used to study pyroptosis, but apoptosis and necroptosis also respond to stimulation by LPS/ATP. Under normal circumstances, phosphatidylserine is only localized in the inner leaflet of the plasma membrane. However, in the early stages of pyroptosis, apoptosis, and necroptosis, the cell membrane remains intact and exposed to phosphatidylserine, and in the later stages, the cell membrane loses its integrity. Here, flow cytometry was used to analyze Annexin V and 7-Aminoactinomycin D (AAD) double staining to detect the cell death from the whole cells. The results show that substantial cells died after stimulation with LPS/ATP. Using scanning electron microscopy, we observe the possible forms of cell death in individual cells. The results indicate that cells may undergo pyroptosis, apoptosis, or necroptosis after stimulation with LPS/ATP. This protocol focuses on observing the death of macrophages after stimulation with LPS/ATP. The results showed that cell death after LPS and ATP stimulation is not limited to pyroptosis and that apoptosis and necrotic apoptosis can also occur, helping researchers better understand cell death after LPS and ATP stimulation and choose a better experimental method.


Subject(s)
Adenosine Triphosphate , Lipopolysaccharides , Macrophages , Humans , Macrophages/drug effects , Macrophages/cytology , Adenosine Triphosphate/metabolism , Lipopolysaccharides/pharmacology , THP-1 Cells , Tetradecanoylphorbol Acetate/pharmacology , Cell Death/drug effects , Pyroptosis/drug effects , Pyroptosis/physiology , Flow Cytometry/methods , Cell Differentiation/drug effects
20.
Braz J Med Biol Res ; 57: e13299, 2024.
Article in English | MEDLINE | ID: mdl-38716981

ABSTRACT

25-hydroxycholesterol (25-HC) plays a role in the regulation of cell survival and immunity. However, the effect of 25-HC on myocardial ischemia/reperfusion (MI/R) injury remains unknown. Our present study aimed to investigate whether 25-HC aggravated MI/R injury through NLRP3 inflammasome-mediated pyroptosis. The overlapping differentially expressed genes (DEGs) in MI/R were identified from the GSE775, GSE45818, GSE58486, and GSE46395 datasets in Gene Expression Omnibus (GEO) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using the database of Annotation, Visualization and Integration Discovery (DAVID). The protein-protein interaction (PPI) network of the overlapping DEGs was established using the Search Tool for the Retrieval of Interacting Genes (STRING) database. These bioinformatics analyses indicated that cholesterol 25-hydroxylase (CH25H) was one of the crucial genes in MI/R injury. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was established to simulate MI/R injury. Western blot and RT-qPCR analysis demonstrated that CH25H was significantly upregulated in OGD/R-stimulated H9C2 cardiomyocytes. Moreover, knockdown of CH25H inhibited the OGD/R-induced pyroptosis and nod-like receptor protein 3 (NLRP3) inflammasome activation, as demonstrated by cell counting kit-8 (CCK8), lactate dehydrogenase (LDH), RT-qPCR, and western blotting assays. Conversely, 25-HC, which is synthesized by CH25H, promoted activation of NLRP3 inflammasome in OGD/R-stimulated H9C2 cardiomyocytes. In addition, the NLRP3 inhibitor BAY11-7082 attenuated 25-HC-induced H9C2 cell injury and pyroptosis under OGD/R condition. In conclusion, 25-HC could aggravate OGD/R-induced pyroptosis through promoting activation of NLRP3 inflammasome in H9C2 cells.


Subject(s)
Glucose , Hydroxycholesterols , Inflammasomes , Myocardial Reperfusion Injury , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Rats , Blotting, Western , Glucose/metabolism , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Inflammasomes/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxygen/metabolism , Pyroptosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL