Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.401
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 206-211, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097873

ABSTRACT

The objective of this study was to investigate the impact of ethyl pyruvate (EP), an HMGB1 inhibitor, on ESCC cells both in vitro and in vivo. The viability of ESCC cells was assessed using the MTT method to evaluate the correlation between EP and cell viability. A scratch test was used to investigate the relationship between EP and cell migration and invasion. The effects of EP on tumor growth and survival in cancerous nude mice were examined using a tumor formation model. Immunohistochemical staining was performed to evaluate the expression levels of HMGB1, TLR4, and MyD88 in tumor tissues. EP, an anti-HMGB1 inhibitor, inhibited ESCC cell proliferation and metastasis in vitro and in vivo. Furthermore, compared with the control treatment, EP improved the activity, diet, and drinking behaviour of nude mice; inhibited tumour growth; and led to lower protein expression levels of HMGB1, TLR4, and MyD88. EP has the potential to regulate the HMGB1/TLR4-MyD88 signaling pathway, thereby inhibiting the proliferation and metastasis of ESCC, suppressing tumor growth, improving quality of life, and serving as an effective drug for ESCC treatment.


Subject(s)
Carcinoma, Squamous Cell , Cell Proliferation , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , HMGB1 Protein , Mice, Nude , Myeloid Differentiation Factor 88 , Pyruvates , Toll-Like Receptor 4 , Animals , Pyruvates/pharmacology , Humans , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Cell Proliferation/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Xenograft Model Antitumor Assays , Cell Movement/drug effects , Mice , Signal Transduction/drug effects , Mice, Inbred BALB C , Cell Survival/drug effects , Male
2.
J Appl Biomed ; 22(2): 107-114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912866

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) stands out as the most common type of malignant cancer, representing the majority of cases of non-Hodgkin's lymphoma. Ethyl pyruvate (EP) is a derivative of pyruvic acid and found to have potent anti-tumor properties. Despite its potential benefits, the impact of EP on DLBCL remains ambiguous. Our objective is to elucidate the role of EP in modulating the development of DLBCL. Analysis of cholecystokinin-8 (CCK-8) revealed that treatment with EP significantly diminished the viability of DLBCL cells. Furthermore, EP administration suppressed colony formation and hindered cell adhesion and invasion in DLBCL cells. Examination of cell cycle progression showed that EP treatment induced arrest at the G1 phase and subsequently reduced the S phase population in DLBCL cells. EP treatment consistently exhibited apoptosis-inducing properties in Annexin-V assays, and notably downregulated the expression of Bcl-2 while increasing levels of proapoptotic cleaved caspase 3 and BAX in DLBCL cells. Additionally, EP treatment decreased the overexpression of c-Jun in c-Jun-transfected DLBCL cells. Further, EP demonstrated DNA-damaging effects in TUNEL assays. In vivo, xenograft animal models revealed that EP treatment significantly mitigated DLBCL tumor growth and suppressed DLBCL cell adhesion to bone marrow stromal cells. In summary, these findings suggest that EP mitigates DLBCL progression by inducing apoptosis, inducing cell cycle arrest, and promoting DNA damage.


Subject(s)
Cell Adhesion , Cell Proliferation , Lymphoma, Large B-Cell, Diffuse , Pyruvates , Pyruvates/pharmacology , Pyruvates/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Humans , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Mice , Apoptosis/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-jun/genetics , Xenograft Model Antitumor Assays
3.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892032

ABSTRACT

Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-ß1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-ß1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-ß, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.


Subject(s)
Fibroblasts , Keloid , Pyruvates , Spheroids, Cellular , Humans , Keloid/metabolism , Keloid/pathology , Fibroblasts/metabolism , Fibroblasts/drug effects , Pyruvates/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Transforming Growth Factor beta1/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Collagen/metabolism , Collagen/biosynthesis , Cell Proliferation/drug effects , Cells, Cultured , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Collagen Type I/metabolism , Collagen Type I/genetics , Smad2 Protein/metabolism , Smad2 Protein/genetics , Smad3 Protein/metabolism , Up-Regulation/drug effects , Male
4.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892383

ABSTRACT

Ethyl pyruvate (EP) is a redox-active compound that has been previously shown to be effective in restraining immune hyperactivity in animal models of various autoimmune and chronic inflammatory diseases. Importantly, EP has also been proven to have a potent tolerogenic effect on dendritic cells (DCs). Here, the influence of EP on the signaling pathways in DCs relevant for their tolerogenicity, including anti-inflammatory NRF2 and pro-inflammatory NF-κB, was explored. Specifically, the effects of EP on DCs obtained by GM-CSF-directed differentiation of murine bone marrow precursor cells and matured under the influence of lipopolysaccharide (LPS) were examined via immunocytochemistry and RT-PCR. EP counteracted LPS-imposed morphological changes and down-regulated the LPS-induced expression of pro-inflammatory mediators in DCs. While it reduced the activation of NF-κB, EP potentiated NRF2 and downstream antioxidative molecules, thus implying the regulation of NRF2 signaling pathways as the major reason for the tolerizing effects of EP on DCs.


Subject(s)
Dendritic Cells , Lipopolysaccharides , NF-E2-Related Factor 2 , NF-kappa B , Pyruvates , Signal Transduction , NF-E2-Related Factor 2/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dendritic Cells/immunology , Pyruvates/pharmacology , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction/drug effects , Cell Differentiation/drug effects , Mice, Inbred C57BL , Immune Tolerance/drug effects , Cells, Cultured
5.
Biochim Biophys Acta Gen Subj ; 1868(9): 130650, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38830560

ABSTRACT

Glioblastoma (GBM), a highly aggressive malignant tumor of the central nervous system, is mainly treated with radiotherapy. However, since irradiation may lead to the acquisition of migration ability by cancer cells, thereby promoting tumor metastasis and invasion, it is important to understand the mechanism of cell migration enhancement in order to prevent recurrence of GBM. The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor activated by high mobility group box 1 (HMGB1). In this study, we found that RAGE plays a role in the enhancement of cell migration by γ-irradiation in human GBM A172 cells. γ-Irradiation induced actin remodeling, a marker of motility acquisition, and enhancement of cell migration in A172 cells. Both phenotypes were suppressed by specific inhibitors of RAGE (FPS-ZM1 and TTP488) or by knockdown of RAGE. The HMGB1 inhibitor ethyl pyruvate similarly suppressed γ-irradiation-induced enhancement of cell migration. In addition, γ-irradiation-induced phosphorylation of STAT3 was suppressed by RAGE inhibitors, and a STAT3 inhibitor suppressed γ-irradiation-induced enhancement of cell migration, indicating that STAT3 is involved in the migration enhancement downstream of RAGE. Our results suggest that HMGB1-RAGE-STAT3 signaling is involved in radiation-induced enhancement of GBM cell migration, and may contribute to GBM recurrence by promoting metastasis and invasion.


Subject(s)
Cell Movement , Gamma Rays , Glioblastoma , HMGB1 Protein , Phenotype , Receptor for Advanced Glycation End Products , STAT3 Transcription Factor , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/radiotherapy , Cell Movement/radiation effects , Receptor for Advanced Glycation End Products/metabolism , HMGB1 Protein/metabolism , Cell Line, Tumor , STAT3 Transcription Factor/metabolism , Signal Transduction , Phosphorylation/radiation effects , Pyruvates/pharmacology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Benzamides
6.
Angew Chem Int Ed Engl ; 63(37): e202410241, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38924645

ABSTRACT

Abnormal cancer metabolism causes hypoxic and immunosuppressive tumor microenvironment (TME), which limits the antitumor efficacy of photodynamic therapy (PDT). Herein, we report a photosensitizing nanoscale metal-organic layer (MOL) with anchored 3-bromopyruvate (BrP), BrP@MOL, as a metabolic reprogramming agent to enhance PDT and antitumor immunity. BrP@MOL inhibited mitochondrial respiration and glycolysis to oxygenate tumors and reduce lactate production. This metabolic reprogramming enhanced reactive oxygen species generation during PDT and reshaped the immunosuppressive TME to enhance antitumor immunity. BrP@MOL-mediated PDT inhibited tumor growth by >90 % with 40 % of mice being tumor-free, rejected tumor re-challenge, and prevented lung metastasis. Further combination with immune checkpoint blockade potently regressed the tumors with >98 % tumor inhibition and 80 % of mice being tumor-free.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Pyruvates , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Pyruvates/chemistry , Pyruvates/pharmacology , Humans , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Nanoparticles/chemistry
7.
Signal Transduct Target Ther ; 9(1): 158, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862461

ABSTRACT

Cell membrane-camouflaged nanoparticles possess inherent advantages derived from their membrane structure and surface antigens, including prolonged circulation in the bloodstream, specific cell recognition and targeting capabilities, and potential for immunotherapy. Herein, we introduce a cell membrane biomimetic nanodrug platform termed MPB-3BP@CM NPs. Comprising microporous Prussian blue nanoparticles (MPB NPs) serving as both a photothermal sensitizer and carrier for 3-bromopyruvate (3BP), these nanoparticles are cloaked in a genetically programmable cell membrane displaying variants of signal regulatory protein α (SIRPα) with enhanced affinity to CD47. As a result, MPB-3BP@CM NPs inherit the characteristics of the original cell membrane, exhibiting an extended circulation time in the bloodstream and effectively targeting CD47 on the cytomembrane of colorectal cancer (CRC) cells. Notably, blocking CD47 with MPB-3BP@CM NPs enhances the phagocytosis of CRC cells by macrophages. Additionally, 3BP, an inhibitor of hexokinase II (HK2), suppresses glycolysis, leading to a reduction in adenosine triphosphate (ATP) levels and lactate production. Besides, it promotes the polarization of tumor-associated macrophages (TAMs) towards an anti-tumor M1 phenotype. Furthermore, integration with MPB NPs-mediated photothermal therapy (PTT) enhances the therapeutic efficacy against tumors. These advantages make MPB-3BP@CM NPs an attractive platform for the future development of innovative therapeutic approaches for CRC. Concurrently, it introduces a universal approach for engineering disease-tailored cell membranes for tumor therapy.


Subject(s)
CD47 Antigen , Cell Membrane , Colorectal Neoplasms , Nanoparticles , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Nanoparticles/chemistry , Humans , CD47 Antigen/genetics , Mice , Cell Membrane/metabolism , Cell Membrane/genetics , Animals , Pyruvates/chemistry , Pyruvates/pharmacology , Hexokinase/genetics , Cell Line, Tumor , Macrophages/metabolism , Macrophages/drug effects , Ferrocyanides
8.
Reprod Biol ; 24(2): 100861, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663253

ABSTRACT

Gestational diabetes mellitus (GDM) is recognized as one of the most common diseases among pregnant women and inflammatory responses can be a major reason for its induction and development. T helper 17 (Th17)/regulatory T cells (Tregs) imbalance resulting in the increased levels of pro-inflammatory and decreased levels of anti-inflammatory cytokines has been showed as major mechanisms involved in the pathogenesis of GDM. There are various treatment options, but none of them are completely therapeutic. Ethyl pyruvate (EP) is a stable derivate of pyruvate that showed anti-oxidant and anti-inflammatory properties in an in-vivo and in-vitro models. To examine the therapeutic efficacy of EP in GDM, mice were mated and EP (100 mg/kg) was administered intraperitoneally to C57BL/6 mice. EP-treated mice exhibited improved symptoms of GDM by decreased blood glucose levels and body-weight and increased insulin levels and insulin sensitivity. Furthermore, EP could significantly attenuate the impairments to offspring, including birth size and birth weight. The inflammatory responses were also decreased by EP through regulating the production of Th17-related cytokines, such as interleukin (IL)- 17 and IL-21. The levels of other inflammatory cytokines were also inhibited, including IL-1ß, IL-6, and tumor necrosis factor (TNF)-α. In addition, it was found that EP increased the population of Tregs and Treg-related cytokines, IL-10 and transforming Growth Factor-ß TGF-ß, in GDM mice. In conclusion, EP could modulate GDM in mice and might be a potential therapeutic strategy candidate for the treatment of patients with GDM.


Subject(s)
Diabetes, Gestational , Mice, Inbred C57BL , Pyruvates , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Pregnancy , Female , Diabetes, Gestational/drug therapy , Diabetes, Gestational/immunology , Pyruvates/pharmacology , Pyruvates/therapeutic use , Th17 Cells/drug effects , T-Lymphocytes, Regulatory/drug effects , Mice , Cytokines/metabolism , Immunomodulation/drug effects , Blood Glucose/drug effects , Blood Glucose/metabolism
9.
J Am Heart Assoc ; 13(7): e033676, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38533937

ABSTRACT

BACKGROUND: Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS: To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS: Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.


Subject(s)
Myocytes, Cardiac , Phosphofructokinase-2 , Animals , Mice , Glucose/metabolism , Insulin/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Proteomics , Pyruvates/metabolism
10.
Neurochem Res ; 49(5): 1322-1330, 2024 May.
Article in English | MEDLINE | ID: mdl-38478218

ABSTRACT

Microdialysis is applied in neurointensive care to monitor cerebral glucose metabolism. If recoverable, macromolecules may also serve as biomarkers in brain disease and provide clues to their passage across the blood-brain barrier. Our study aimed to investigate the in vitro recovery of human micro- and macromolecules using microdialysis catheters and perfusion fluids approved for clinical use. In vitro microdialysis of a bulk solution containing physiological or supraphysiological concentrations of glucose, lactate, pyruvate, human IgG, serum albumin, and hemoglobin was performed using two different catheters and perfusion fluids. One had a membrane cut-off of 20 kDa and was used with a standard CNS perfusion fluid, and the other had a membrane cut-off of 100 kDa and was perfused with the same solution supplemented with dextran. The flow rate was 0.3 µl/min. We used both push and push-pull methods. Dialysate samples were collected at 2-h intervals for 6 h and analyzed for relative recovery of each substance. The mean relative recovery of glucose, pyruvate, and lactate was > 90% in all but two sets of experiments. In contrast, the relative recovery of human IgG, serum albumin, and hemoglobin from both bulk solutions was below the lower limit of quantification (LLOQ). Using a push-pull method, recovery of human IgG, serum albumin, and hemoglobin from a bulk solution with supraphysiological concentrations were above LLOQ but with low relative recovery (range 0.9%-1.6%). In summary, exchanging the microdialysis setup from a 20 kDa catheter with a standard perfusion fluid for a 100 kDa catheter with a perfusion solution containing dextran did not affect the relative recovery of glucose and its metabolites. However, it did not result in any useful recovery of the investigated macromolecules at physiological levels, either with or without a push-pull pump system.


Subject(s)
Brain Injuries , Dextrans , Humans , Brain Injuries/metabolism , Microdialysis/methods , Perfusion/methods , Glucose/metabolism , Lactates , Pyruvates , Serum Albumin , Hemoglobins , Immunoglobulin G
11.
Sci Transl Med ; 16(737): eabm2090, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38446901

ABSTRACT

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Adolescent , Adult , Humans , Female , Male , Animals , Mice , Sex Characteristics , Pyruvates , Glucose , Kidney
12.
Science ; 383(6690): 1484-1492, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547260

ABSTRACT

Cellular purines, particularly adenosine 5'-triphosphate (ATP), fuel many metabolic reactions, but less is known about the direct effects of pyrimidines on cellular metabolism. We found that pyrimidines, but not purines, maintain pyruvate oxidation and the tricarboxylic citric acid (TCA) cycle by regulating pyruvate dehydrogenase (PDH) activity. PDH activity requires sufficient substrates and cofactors, including thiamine pyrophosphate (TPP). Depletion of cellular pyrimidines decreased TPP synthesis, a reaction carried out by TPP kinase 1 (TPK1), which reportedly uses ATP to phosphorylate thiamine (vitamin B1). We found that uridine 5'-triphosphate (UTP) acts as the preferred substrate for TPK1, enabling cellular TPP synthesis, PDH activity, TCA-cycle activity, lipogenesis, and adipocyte differentiation. Thus, UTP is required for vitamin B1 utilization to maintain pyruvate oxidation and lipogenesis.


Subject(s)
Citric Acid Cycle , Lipogenesis , Pyrimidines , Pyruvate Dehydrogenase Complex , Pyruvates , Adenosine Triphosphate/metabolism , Pyrimidines/metabolism , Pyruvates/metabolism , Thiamine/metabolism , Thiamine Pyrophosphate/metabolism , Uridine Triphosphate/metabolism , Oxidation-Reduction , Protein Kinases/metabolism , Humans , HeLa Cells , Pyruvate Dehydrogenase Complex/metabolism
13.
Neurol India ; 72(1): 78-82, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38443006

ABSTRACT

BACKGROUND: In traumatic brain injuries (TBI), cerebral microdialysis (CMD)-derived parameters, especially the lactate to pyruvate ratio (LP ratio), have been utilized for cerebral perfusion optimization. The objectives were to identify cerebral ischemia as measured by CMD in TBI patients requiring decompressive craniectomy and to observe the correlation between cerebral perfusion pressure (CPP), intracranial pressure (ICP), and CMD variables in these patients. Our secondary aim was to observe the effect of CPP augmentation on ischemia biomarkers. METHODS: After the Institute Ethics Committee approvals, seven adult patients requiring decompressive craniectomy following TBI were enrolled and CMD data were obtained prospectively for 72 h. CPP was augmented by 20% with noradrenaline infusion if LP ratio >40. Correlations were done with bootstrapping (n = 500) to obtain the confidence intervals (CI) due to the small sample size. RESULTS: One patient had cerebral ischemia (median LP ratio of 265.5 and median pyruvate of 38 µmol/L), while another patient had non-ischemic mitochondrial dysfunction (median LP ratio 40.7 and median pyruvate 278.5). The coefficients of correlation between the LP ratio with CPP and ICP were r = -0.05 (CI = -0.14-0.03) and r = 0.09 (CI = -0.03-0.24), respectively. The coefficient of correlation between cerebral and blood glucose was r = 0.38, (CI - 0.35-0.14). Only two patients needed CPP augmentation, however, postaugmentation cerebral biochemistry did not change appreciably. CONCLUSION: CMD can identify cerebral ischemia, however, no correlations were observed between the LP ratio and CPP or ICP. CPP augmentation did not improve cerebral biochemistry. More studies are required to understand and treat cerebral metabolism in TBI.


Subject(s)
Brain Injuries, Traumatic , Brain , Adult , Humans , Microdialysis , Brain Injuries, Traumatic/surgery , Cerebral Infarction , Energy Metabolism , Pyruvates
14.
Sci Rep ; 14(1): 5665, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38453992

ABSTRACT

Pyruvate dehydrogenase kinases (PDKs) play a key role in glucose metabolism by exerting negative regulation over pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibition of PDKs holds the potential to enhance PDC activity, prompting cells to adopt a more aerobic metabolic profile. Consequently, PDKs emerge as promising targets for condition rooted in metabolic dysregulation, including malignance and diabetes. However, a comprehensive exploration of the distinct contribution of various PDK family members, particularly PDK3, across diverse tumor types remain incomplete. This study undertakes a systematic investigation of PDK family expression patterns, forging association with clinical parameters, using data from the TCGA and GTEx datasets. Survival analysis of PDKs is executed through both Kaplan-Meier analysis and COX regression analysis. Furthermore, the extent of immune infiltration is assessed by leveraging the CIBERSORT algorithm. Our study uncovers pronounced genetic heterogeneity among PDK family members, coupled with discernible clinical characteristic. Significantly, the study establishes the potential utility of PDK family genes as prognostic indicators and as predictors of therapeutic response. Additionally, our study sheds light on the immune infiltration profile of PDK family. The results showed the intimate involvement of these genes in immune-related metrics, including immune scoring, immune subtypes, tumor-infiltrating lymphocytes, and immune checkpoints expression. In sum, the findings of this study offer insightful strategies to guide the therapeutic direction, aiming at leveraging the impact of PDK family genes in cancer treatment.


Subject(s)
Neoplasms , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Neoplasms/metabolism , Prognosis , Pyruvates , Pyruvate Dehydrogenase Complex/metabolism
15.
PLoS One ; 19(3): e0300150, 2024.
Article in English | MEDLINE | ID: mdl-38457438

ABSTRACT

During hypoxia accumulation of lactate may be a key factor in acidosis-induced tissue damage. Binding of hexokinase (HK) to the outer membrane of mitochondria may have a protective effect under these conditions. We have investigated the regulation of lactate metabolism by hexokinases (HKs), using HEK293 cells in which the endogenous hexokinases have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were also transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown HEK cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. Upon inhibition of the mitochondrial electron transfer chain by NaCN this effect was reversed as a rapid increase in lactate developed which was followed by a slow and sustained increase in the continued presence of the inhibitor. Incubation of the HKI/HKII double knockdown HEK cells with the inhibitor of the malic enzyme, ME1*, blocked the delayed accumulation of lactate evoked by NaCN. With replacement by overexpression of HKI or HKII the accumulation of intracellular lactate evoked by NaCN was prevented. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN) abolished the protective effect of HK expression, with NaCN causing again a sustained increase in lactate. The effect of HK was dependent on HK's catalytic activity and interaction with the mitochondrial outer membrane (MOM). Based on these data we propose that transformation of glucose into G6P by HK activates the pentose phosphate pathway which increases the production of NADPH, which then blocks the activity of the malic enzyme to transform malate into pyruvate and lactate.


Subject(s)
Hexokinase , Lactic Acid , Humans , Hexokinase/genetics , Hexokinase/metabolism , Lactic Acid/metabolism , HEK293 Cells , Mitochondria/metabolism , Pyruvates/metabolism
16.
Environ Microbiol ; 26(3): e16608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38504412

ABSTRACT

Rhodopseudomonas palustris TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether R. palustris TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated R. palustris TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO2 . We found that in the absence of CO2 , only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO2 was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). 57 Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.


Subject(s)
Carbon Dioxide , Ferric Compounds , Rhodopseudomonas , Oxidation-Reduction , Lactic Acid , Ferrous Compounds , Pyruvates , Acetates , Glucose
17.
Arch Biochem Biophys ; 754: 109962, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499055

ABSTRACT

Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.


Subject(s)
Acetolactate Synthase , Escherichia coli , Acetolactate Synthase/chemistry , Glycogen Synthase , Hydroxybutyrates , Pyruvates , Holoenzymes
18.
Eur J Pharmacol ; 971: 176509, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38493914

ABSTRACT

Acute respiratory distress syndrome (ARDS) became a focus of intensive research due to its death toll during the Covid-19 pandemic. An uncontrolled and excessive inflammatory response mediated by proinflammatory molecules such as high mobility group box protein 1 (HMGB1), IL-6, and TNF mounts as a response to infection. In this study, ethyl pyruvate (EP), a known inhibitor of HMGB1, was tested in the model of murine ARDS induced in C57BL/6 mice by intranasal administration of polyinosinic:polycytidylic acid (poly(I:C)). Intraperitoneal administration of EP ameliorated the ARDS-related histopathological changes in the lungs of poly(I:C)-induced ARDS and decreased numbers of immune cells in the lungs, broncho-alveolar lavage fluid and draining lymph nodes (DLN). Specifically, fewer CD8+ T cells and less activated CD4+ T cells were observed in DLN. Consequently, the lungs of EP-treated animals had fewer damage-inflicting CD8+ cells and macrophages. Additionally, the expression and production of proinflammatory cytokines, IL-17, IFN-γ and IL-6 were downregulated in the lungs. The expression of chemokine CCL5 which recruits immune cells into the lungs was also reduced. Finally, EP downregulated the expression of HMGB1 in the lungs. Our results imply that EP should be further evaluated as a potential candidate for ARDS therapy.


Subject(s)
HMGB1 Protein , Pyruvates , Respiratory Distress Syndrome , Humans , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , HMGB1 Protein/metabolism , Interleukin-6 , Pandemics , Disease Models, Animal , Mice, Inbred C57BL , Respiratory Distress Syndrome/drug therapy
19.
Curr Microbiol ; 81(5): 120, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528188

ABSTRACT

Terrestrial mud volcanoes (TMVs), surface expressions of a deep-subterranean sedimentary volcanism, are widespread throughout the world. The methane and sulfur cycles are recognized as the most important biogeochemical cycles in these environments. Only few anaerobic bacterial strains were recovered from TMVs. We have isolated a novel sulfate-reducing bacterium (strain SB368T) from TMV located at Taman Peninsula, Russia. Optimum growth of strain SB368T was observed at 30 °C, pH 8.0 and 1% NaCl. Strain SB368T utilized lactate, pyruvate and fumarate in the presence of sulfate, sulfite or thiosulfate. Growth with molecular hydrogen was observed only in the presence of acetate. Fermentative growth occurred on pyruvate. Phylogenetic analysis revealed that strain SB368T belongs to the genus Pseudodesulfovibrio but is distinct from all described species. Based on its genomic and phenotypic properties, a new species, Pseudodesulfovibrio pelocollis sp. nov. is proposed with strain SB368T (= DSM 111087 T = VKM B-3585 T) as a type strain.


Subject(s)
Bacteria , Sulfates , Phylogeny , Bacterial Typing Techniques , Bacteria/genetics , Pyruvates , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Sequence Analysis, DNA , Fatty Acids/chemistry
20.
J Physiol ; 602(7): 1313-1340, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513062

ABSTRACT

High-intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high-intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high-intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase - the rate-limiting enzyme in the TCA cycle - and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high-intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. KEY POINTS: We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high-intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high-intensity exercise. Pairing MCT4 deficiency with high-intensity interval training (HIIT) results in a synergistic boost in high-intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.


Subject(s)
High-Intensity Interval Training , Monocarboxylic Acid Transporters , Muscle, Skeletal , Animals , Mice , Lactates , Mice, Inbred ICR , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Pyruvates/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL