Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.490
Filter
1.
PeerJ ; 12: e17606, 2024.
Article in English | MEDLINE | ID: mdl-38952989

ABSTRACT

Objective: To investigate the effects of 12-week weight-bearing dance aerobics (WBDA) on muscle morphology, strength and functional fitness in older women. Methods: This controlled study recruited 37 female participants (66.31y ± 3.83) and divided them into intervention and control groups according to willingness. The intervention group received 90-min WBDA thrice a week for 12 weeks, while the control group maintained normal activities. The groups were then compared by measuring muscle thickness, fiber length and pennation angle by ultrasound, muscle strength using an isokinetic multi-joint module and functional fitness, such as 2-min step test, 30-s chair stand, chair sit-and-reach, TUG and single-legged closed-eyed standing test. The morphology, strength, and functional fitness were compared using ANCOVA or Mann-Whitney U test to study the effects of 12 weeks WBDA. Results: Among all recruited participants, 33 completed all tests. After 12 weeks, the thickness of the vastus intermedius (F = 17.85, P < 0.01) and quadriceps (F = 15.62, P < 0.01) was significantly increased in the intervention group compared to the control group, along with a significant increase in the torque/weight of the knee flexor muscles (F = 4.47, P = 0.04). Similarly, the intervention group revealed a significant improvement in the single-legged closed-eyed standing test (z = -2.16, P = 0.03) compared to the control group. Conclusion: The study concluded that compared to the non-exercising control group, 12-week WBDA was shown to thicken vastus intermedius, increase muscle strength, and improve physical function in older women. In addition, this study provides a reference exercise program for older women.


Subject(s)
Dancing , Muscle Strength , Weight-Bearing , Humans , Female , Muscle Strength/physiology , Aged , Dancing/physiology , Weight-Bearing/physiology , Physical Fitness/physiology , Lower Extremity/physiology , Lower Extremity/diagnostic imaging , Middle Aged , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/diagnostic imaging , Exercise/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/anatomy & histology
2.
Eur J Sport Sci ; 24(7): 938-949, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956794

ABSTRACT

Knee osteoarthritis is associated with deficits in muscle strength, muscle mass, and physical functioning. These muscle-related deficits are acutely exacerbated following total knee arthroplasty (TKA) and persist long after surgery, despite the application of standardized rehabilitation programs that include physical/functional training. Resistance exercise training (RET) has been shown to be a highly effective strategy to improve muscle-related outcomes in healthy as well as clinical populations. However, the use of RET in traditional rehabilitation programs after TKA is limited. In this narrative review, we provide an updated view on whether adding RET to the standard rehabilitation (SR) in the recovery period (up to 1 year) after TKA leads to greater improvements in muscle-related outcomes when compared to SR alone. Overall, research findings clearly indicate that both muscle strength and muscle mass can be improved to a greater extent with RET-based rehabilitation compared to SR. Additionally, measures of physical functioning that rely on quadriceps strength and balance (e.g., stair climbing, chair standing, etc.) also appear to benefit more from a RET-based program compared to SR, especially in patients with low levels of physical functioning. Importantly though, for RET to be optimally effective, it should be performed at 70%-80% of the one-repetition maximum, with 3-4 sets per exercise, with a minimum of 3 times per week for 8 weeks. Based upon this narrative review, we recommend that such high-intensity progressive RET should be incorporated into standard programs during rehabilitation after TKA.


Subject(s)
Arthroplasty, Replacement, Knee , Muscle Strength , Osteoarthritis, Knee , Resistance Training , Humans , Arthroplasty, Replacement, Knee/rehabilitation , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/rehabilitation , Quadriceps Muscle/physiology , Postural Balance
3.
Eur J Sport Sci ; 24(7): 878-888, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956795

ABSTRACT

To investigate the effects of 8-week hiking bench training on cardiorespiratory and muscular responses of highly trained sailors during hiking emulation. Twenty-four sailors were assigned into two groups: the hiking bench training group (HTG, n = 12) and the control group (CG, n = 12). Both groups maintained their regular training with the HTG performed two additional hiking bench training sessions per week for 8 weeks, while the CG performed an equivalent duration of on-water sailing training. Physiological responses were assessed by performing four successive 3-min hiking bouts on a sailing emulation ergometer before and after the 8-week training period. Comparing the pretest, both groups exhibited a significant decrease (p < 0.05) in the percentage of maximal oxygen uptake (%VO2max) and maximal heart rate (%HRmax); the HTG experienced a greater decrease in %VO2max in bouts 2 and 3. The root mean square (RMS) of rectus femoris (RF), vastus lateralis (VL), rectus abdominis (RA), and external oblique decreased significantly (p < 0.05), whereas the mean power frequency (MPF) of RF, VL, and RA exhibited an increasing trend. The RMS of RF and RA in HTG were lower than those in CG in the initial three bouts; VL and EA in HTG were lower than those in CG in bouts 1 and 2 (p < 0.05). The MPF of RA in HTG was significantly increased in bouts 2, 3, and 4 (p < 0.05). Eight-week hiking bench training could improve hiking economy and the activation of lower limb and trunk muscles delaying the onset of fatigue in sailors.


Subject(s)
Heart Rate , Oxygen Consumption , Ships , Water Sports , Humans , Water Sports/physiology , Oxygen Consumption/physiology , Heart Rate/physiology , Male , Young Adult , Adult , Physical Conditioning, Human/methods , Physical Conditioning, Human/physiology , Muscle, Skeletal/physiology , Cardiorespiratory Fitness/physiology , Quadriceps Muscle/physiology
4.
BMC Musculoskelet Disord ; 25(1): 511, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961407

ABSTRACT

BACKGROUND: Decreased strength and increased stiffness of the quadriceps have been associated with a higher risk of developing knee osteoarthritis (OA) in elders. Dynamic joint stiffness (DJS) represents collective resistance from active and passive knee structures for dynamic knee motions. Elevated sagittal knee DJS has been associated with worsening of cartilage loss in knee OA patients. Altered quadriceps properties may affect DJS, which could be a mediator for associations between quadriceps properties and knee OA. Hence, this study aimed to examine whether DJS and quadriceps properties would be associated with the development of clinical knee OA over 24 months, and to explore the mediation role of DJS in associations between quadriceps properties and knee OA. METHODS: This was a prospective cohort study with 162 healthy community-dwelling elders. Gait analysis was conducted to compute DJS during the loading response phase. Quadriceps strength and stiffness were evaluated using a Cybex dynamometer and shear-wave ultrasound elastography, respectively. Knee OA was defined based on clinical criteria 24 months later. Logistic regression with generalized estimating equations was used to examine the association between quadriceps properties and DJS and incident knee OA. Mediation analysis was performed to explore the mediation role of DJS in associations between quadriceps properties and the incidence of knee OA. RESULTS: A total of 125 participants (65.6 ± 4.0 years, 58.4% females) completed the 24-month follow-up, with 36 out of 250 knees identified as clinical knee OA. Higher DJS (OR = 1.86, 95%CI: 1.33-2.62), lower quadriceps strength (1.85, 1.05-3.23), and greater quadriceps stiffness (1.56, 1.10-2.21) were significantly associated with a higher risk of clinical knee OA. Mediation analysis showed that the DJS was not a significant mediator for the associations between quadriceps properties and knee OA. CONCLUSIONS: Higher sagittal knee dynamic joint stiffness, lower quadriceps strength, and greater quadriceps stiffness are potential risk factors for developing clinical knee OA in asymptomatic elders. Associations between quadriceps properties and knee OA may not be mediated by dynamic joint stiffness. Interventions for reducing increased passive properties of the quadriceps and knee joint stiffness may be beneficial for maintaining healthy knees in the aging population.


Subject(s)
Gait , Muscle Strength , Osteoarthritis, Knee , Quadriceps Muscle , Humans , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/epidemiology , Female , Male , Quadriceps Muscle/physiopathology , Quadriceps Muscle/diagnostic imaging , Aged , Prospective Studies , Incidence , Gait/physiology , Mediation Analysis , Knee Joint/physiopathology , Middle Aged , Cohort Studies , Elasticity Imaging Techniques
5.
Sci Rep ; 14(1): 14847, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937524

ABSTRACT

Muscle morphological architecture, a crucial determinant of muscle function, has fascinated researchers since the Renaissance. Imaging techniques enable the assessment of parameters such as muscle thickness (MT), pennation angle (PA), and fascicle length (FL), which may vary with growth, sex, and physical activity. Despite known interrelationships, robust mathematical models like causal mediation analysis have not been extensively applied to large population samples. We recruited 109 males and females, measuring knee flexor and extensor, and plantar flexor MT, PA, and FL using real-time ultrasound imaging at rest. A mixed-effects model explored sex, leg (dominant vs. non-dominant), and muscle region differences. Males exhibited greater MT in all muscles (0.1 to 2.1 cm, p < 0.01), with no sex differences in FL. Dominant legs showed greater rectus femoris (RF) MT (0.1 cm, p = 0.01) and PA (1.5°, p = 0.01), while vastus lateralis (VL) had greater FL (1.2 cm, p < 0.001) and PA (0.6°, p = 0.02). Regional differences were observed in VL, RF, and biceps femoris long head (BFlh). Causal mediation analyses highlighted MT's influence on PA, mediated by FL. Moderated mediation occurred in BFlh, with FL differences. Gastrocnemius medialis and lateralis exhibited FL-mediated MT and PA relationships. This study unveils the intricate interplay of MT, FL, and PA in muscle architecture.


Subject(s)
Lower Extremity , Muscle, Skeletal , Ultrasonography , Humans , Male , Female , Adult , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Ultrasonography/methods , Lower Extremity/diagnostic imaging , Lower Extremity/physiology , Lower Extremity/anatomy & histology , Young Adult , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/anatomy & histology , Quadriceps Muscle/physiology
6.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 228-236, 2024.
Article in English | MEDLINE | ID: mdl-38945888

ABSTRACT

Alaska pollack protein (APP), has been reported as a protein source that can enhance muscle hypertrophy more than other protein sources in animal studies. This study aimed to examine the effects of APP ingestion on muscle quantity and quality in young adults. Fifty-five young college students were assigned to two groups: APP and placebo (whey protein: WP) groups, and instructed to ingest 4.5 g of each protein in addition to daily meals, and to maintain their usual daily physical activities for 3 mo. Twenty-one and 23 students completed the intervention and were analyzed in APP and WP groups, respectively. The maximum knee extension torque significantly increased in both groups during the intervention. The motor unit discharge rate, which is an indicator of activation, for a given force level significantly decreased in both groups during the intervention, but its decrease in the APP group was significantly greater than in the WP group. Echo intensity of the vastus lateralis evaluated by ultrasound images significantly decreased in both groups. The muscle thickness and skeletal muscle mass did not change. Small amount of additional APP intake induces greater effects on neural activation than WP, suggesting the greater neural economy of generation of force.


Subject(s)
Dietary Proteins , Muscle, Skeletal , Humans , Young Adult , Male , Female , Muscle, Skeletal/physiology , Dietary Proteins/administration & dosage , Dietary Proteins/pharmacology , Adult , Adaptation, Physiological , Gadiformes , Torque , Quadriceps Muscle/physiology , Quadriceps Muscle/metabolism , Muscle Strength/drug effects , Double-Blind Method
7.
Front Public Health ; 12: 1398424, 2024.
Article in English | MEDLINE | ID: mdl-38912264

ABSTRACT

Background and objective: Factors related to muscle architecture may lead to functional limitations in activities of daily living in the older adults. This study aimed to investigate the relationship between quadriceps femoris (QF) architecture and physical function in older adults community-dwelling people. Methods: The study included 25 community-dwelling older adults participants aged over 60 years (14 women and 11 men) who were not engaged in regular physical activity. The rectus femoris (RF) and vastus intermedius (VI) muscle thicknesses as well as the RF cross-sectional area (CSA) were assessed using 2D ultrasonography. The 30 Seconds Chair Stand test (30sCST) and Timed Up and Go Test (TUG) were used to assess lower body muscle power and functional mobility, respectively. Results: The QF muscle architecture showed moderate and large correlations with the 30sCST (r range = 0.45-0.67, p < 0.05) and TUG (r range = 0.480-0.60, p < 0.05). RF thickness was a significant (p < 0.01) independent predictor of 30sCST (R 2 = 0.45) and TUG (R 2 = 0.36). VI thickness was a significant (p < 0.05) independent predictor of 30sCST (R 2 = 0.20) and TUG (R 2 = 0.231). RF CSA was a significant independent predictor of the 30sCST (R 2 = 0.250, p < 0.05) and TUG (R 2 = 0.27, p < 0.01). Multiple linear regression models explained 38% of the 30sCST variance and 30% of the TUG variance in the older adults group. Conclusion: Quadriceps muscle group directly affects basic activities of daily living in the older adults. Ultrasound measurements, which are non-invasive tools, are extremely valuable for understanding the limitations of activities of daily living in the older adults.


Subject(s)
Independent Living , Lower Extremity , Muscle Strength , Quadriceps Muscle , Ultrasonography , Humans , Female , Quadriceps Muscle/physiology , Quadriceps Muscle/diagnostic imaging , Male , Cross-Sectional Studies , Aged , Muscle Strength/physiology , Lower Extremity/physiology , Middle Aged , Activities of Daily Living , Aged, 80 and over
8.
Endocrinol Metab (Seoul) ; 39(3): 521-530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858821

ABSTRACT

BACKGRUOUND: Aging leads to sarcopenia, which is characterized by reduced muscle mass and strength. Many factors, including altered muscle protein turnover, diminished neuromuscular function, hormonal changes, systemic inflammation, and the structure and composition of muscle fibers, play a crucial role in age-related muscle decline. This study explored differences in muscle fiber types contributing to overall muscle function decline in aging, focusing on individuals with hip fractures from falls. METHODS: A pilot study at Chungnam National University Hospital collected muscle biopsies from hip fracture patients aged 20 to 80 undergoing surgical treatment. Muscle biopsies from the vastus lateralis and gluteus maximus were obtained during hip arthroplasty or internal fixation. Handgrip strength, calf and thigh circumference, and bone mineral density were evaluated in individuals with hip fractures from falls. We analyzed the relationships between each clinical characteristic and muscle fiber type. RESULTS: In total, 26 participants (mean age 67.9 years, 69.2% male) were included in this study. The prevalence of sarcopenia was 53.8%, and that of femoral and lumbar osteoporosis was 19.2% and 11.5%, respectively. Vastus lateralis analysis revealed an age-related decrease in type IIx fibers, a higher proportion of type IIa fibers in women, and an association between handgrip strength and type IIx fibers in men. The gluteus maximus showed no significant correlations with clinical parameters. CONCLUSION: This study identified complex associations between age, sex, handgrip strength, and muscle fiber composition in hip fracture patients, offering insights crucial for targeted interventions combating age-related muscle decline and improving musculoskeletal health.


Subject(s)
Hip Fractures , Quadriceps Muscle , Sarcopenia , Humans , Male , Female , Aged , Hip Fractures/pathology , Sarcopenia/pathology , Quadriceps Muscle/pathology , Middle Aged , Pilot Projects , Aged, 80 and over , Hand Strength , Adult , Bone Density , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Young Adult , Aging/physiology , Aging/pathology , Muscle Fibers, Fast-Twitch/pathology , Muscle Fibers, Fast-Twitch/metabolism
11.
J Sports Sci Med ; 23(2): 425-435, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841632

ABSTRACT

Non-local muscle fatigue (NLMF) refers to a transient decline in the functioning of a non-exercised muscle following the fatigue of a different muscle group. Most studies examining NLMF conducted post-tests immediately after the fatiguing protocols, leaving the duration of these effects uncertain. The aim of this study was to investigate the duration of NLMF (1-, 3-, and 5-minutes). In this randomized crossover study, 17 recreationally trained participants (four females) were tested for the acute effects of unilateral knee extensor (KE) muscle fatigue on the contralateral homologous muscle strength, and activation. Each of the four sessions included testing at either 1-, 3-, or 5-minutes post-test, as well as a control condition for non-dominant KE peak force, instantaneous strength (force produced within the first 100-ms), and vastus lateralis and biceps femoris electromyography (EMG). The dominant KE fatigue intervention protocol involved two sets of 100-seconds maximal voluntary isometric contractions (MVIC) separated by 1-minute of rest. Non-dominant KE MVIC forces showed moderate and small magnitude reductions at 1-min (p < 0.0001, d = 0.72) and 3-min (p = 0.005, d = 0.30) post-test respectively. The KE MVIC instantaneous strength revealed large magnitude, significant reductions between 1-min (p = 0.021, d = 1.33), and 3-min (p = 0.041, d = 1.13) compared with the control. In addition, EMG data revealed large magnitude increases with the 1-minute versus control condition (p = 0.03, d = 1.10). In summary, impairments of the non-exercised leg were apparent up to 3-minutes post-exercise with no significant deficits at 5-minutes. Recovery duration plays a crucial role in the manifestation of NLMF.


Subject(s)
Cross-Over Studies , Electromyography , Isometric Contraction , Knee , Muscle Fatigue , Muscle Strength , Humans , Muscle Fatigue/physiology , Female , Male , Isometric Contraction/physiology , Muscle Strength/physiology , Young Adult , Knee/physiology , Time Factors , Adult , Quadriceps Muscle/physiology , Muscle, Skeletal/physiology , Hamstring Muscles/physiology
12.
J Bodyw Mov Ther ; 39: 251-257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876635

ABSTRACT

OBJECTIVES: To verify the effectiveness of the use of a modified position of the Copenhagen Adduction (CA) stage 1 compared to the original position. DESIGN: Cross-sectional study. SETTING: Laboratory. PARTICIPANTS: 31 healthy men aged 23.7 ± 1.9 years with no recent or chronic general pathology. MAIN OUTCOME MEASURES: Differences between EMG amplitudes for the adductor longus (AL), rectus femoris (RF) and semi tendinous (ST) during dynamic contractions and adductor maximal isometric voluntary contraction (MIVC) force values between CA stage 1 standard and modified positions were assessed with either Wilcoxon or paired t-test. RESULTS: No significant differences were observed for EMG amplitudes of the AL (p-value = 0.724) and for the RF muscle (p-value = 0.337) and for the adductor force (p-value = 0.361) between the two positions. A significant difference was obtained for the ST (p-value<0.001) mainly explained by the adapted position of the non-dominant leg which unlocked the hip joint and generated less muscle activity in the hamstrings. CONCLUSIONS: Muscle activity of the AL muscle and adductor force being similar in both positions, the CA stage 1 modified position could be of interest for rehabilitation after adductor injury or strengthening of the adductors in elite athletes.


Subject(s)
Electromyography , Isometric Contraction , Muscle Strength Dynamometer , Muscle, Skeletal , Humans , Male , Electromyography/methods , Cross-Sectional Studies , Young Adult , Adult , Isometric Contraction/physiology , Muscle, Skeletal/physiology , Posture/physiology , Hip Joint/physiology , Quadriceps Muscle/physiology
13.
J Bodyw Mov Ther ; 39: 390-397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876657

ABSTRACT

INTRODUCTION: Patellofemoral Pain (PFP) is a common dysfunction that can compromise the performance of daily activities. Neuromuscular electrical stimulation (NMES) has been proposed as a complementary tool in the therapeutic approach. OBJECTIVE: To analyze the effects of adding NMES to therapeutic exercises in women with PFP. METHODS: Randomized controlled trial involving 34 women with PFP (mean age 23.8 ± 4.1), randomly assigned to two groups: exercises combined with NMES (ESG) and exercises only (ExG). The ExG followed an exercise protocol, while the ESG performed the same exercises combined with NMES. Interventions were performed twice a week for eight weeks. Primary outcome measures included pain and functional disability, while secondary outcomes encompassed electromyographic activity of the quadriceps and hip abductors, along with isokinetic performance. Assessments were performed before the intervention, after 4 and 8 weeks from the start of the protocol and 8 weeks after the conclusion of the treatment. RESULTS: We did not observe difference between the groups in any of the analyzed variables. Both groups showed a reduction in pain and an improvement in functional disability during intragroup comparisons. CONCLUSION: A reduction in pain and an improvement in functional disability were observed; however, there was no additional effect of NMES. TRIAL REGISTRATION: NCT03918863.


Subject(s)
Electric Stimulation Therapy , Exercise Therapy , Patellofemoral Pain Syndrome , Humans , Female , Electric Stimulation Therapy/methods , Adult , Patellofemoral Pain Syndrome/therapy , Patellofemoral Pain Syndrome/physiopathology , Young Adult , Exercise Therapy/methods , Electromyography , Quadriceps Muscle/physiology , Quadriceps Muscle/physiopathology , Pain Measurement
14.
J Bodyw Mov Ther ; 39: 57-62, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876687

ABSTRACT

BACKGROUND: Knee joint injuries may result from compromised quadriceps muscle strength or diminished knee joint proprioception. The application of Kinesio tape (KT) on the quadriceps muscle from origin to insertion (OTI-KT) or insertion to origin (ITO-KT) could impact knee joint proprioception and quadriceps muscle strength. This study aims to assess the effects of different tensions and directions of KT application on active and passive knee joint repositioning errors (AJRE and PJRE) and peak concentric and eccentric peak torque (CPT and EPT) of the quadriceps muscles in healthy males. METHOD: Twenty-one healthy males participated in this repeated-measures study design. CPT, EPT, AJRE, and PJRE of the dominant limb were measured by a Biodex dynamometer before and after applying OTI-KT with 0%, 15%, and 40% extra tensions and ITO-KT with 0% tension. RESULTS: ITO-KT demonstrated a significant reduction in AJRE (p < 0.05). Meanwhile, for OTI-KT, a statistically significant difference was observed in both AJRE and PJRE concerning time (F1,126 = 19.74, p < 0.05 for AJRE; F1,126 = 9.96, p < 0.05 for PJRE) and tension (F2,126 = 22.14, p < 0.05 for AJRE; F2,126 = 20.67, p < 0.05 for PJRE). CONCLUSION: Applying KT, especially OTI KT with 40% and 15% extra tension, shows potential in enhancing knee proprioception without immediate impacts on quadriceps muscle torque. This suggests applications in sports performance and knee injury rehabilitation.


Subject(s)
Athletic Tape , Knee Joint , Muscle Strength , Proprioception , Quadriceps Muscle , Torque , Humans , Male , Quadriceps Muscle/physiology , Knee Joint/physiology , Adult , Young Adult , Proprioception/physiology , Muscle Strength/physiology
15.
Scand J Med Sci Sports ; 34(6): e14681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881390

ABSTRACT

BACKGROUND: Neuromuscular function is considered as a determinant factor of endurance performance during adulthood. However, whether endurance training triggers further neuromuscular adaptations exceeding those of growth and maturation alone over the rapid adolescent growth period is yet to be determined. OBJECTIVE: The present study investigated the concurrent role of growth, maturation, and endurance training on neuromuscular function through a 9-month training period in adolescent triathletes. METHODS: Thirty-eight 13- to 15-year-old males (23 triathletes [~6 h/week endurance training] and 15 untrained [<2 h/week endurance activity]) were evaluated before and after a 9-month triathlon training season. Maximal oxygen uptake (V̇O2max) and power at V̇O2max were assessed during incremental cycling. Knee extensor maximal voluntary isometric contraction torque (MVCISO) was measured and the voluntary activation level (VAL) was determined using the twitch interpolation technique. Knee extensor doublet peak torque (T100Hz) and normalized vastus lateralis (VL) electromyographic activity (EMG/M-wave) were also determined. VL and rectus femoris (RF) muscle architecture was assessed using ultrasonography. RESULTS: Absolute V̇O2max increased similarly in both groups but power at V̇O2max only significantly increased in triathletes (+13.8%). MVCISO (+14.4%), VL (+4.4%), and RF (+15.8%) muscle thicknesses and RF pennation angle (+22.1%) increased over the 9-month period in both groups similarly (p < 0.01), although no changes were observed in T100Hz, VAL, or VL EMG/M-wave. No changes were detected in any neuromuscular variables, except for coactivation. CONCLUSION: Endurance training did not induce detectible, additional neuromuscular adaptations. However, the training-specific cycling power improvement in triathletes may reflect continued skill enhancement over the training period.


Subject(s)
Adaptation, Physiological , Electromyography , Endurance Training , Isometric Contraction , Oxygen Consumption , Torque , Humans , Male , Adolescent , Longitudinal Studies , Oxygen Consumption/physiology , Isometric Contraction/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/diagnostic imaging , Physical Endurance/physiology , Bicycling/physiology , Muscle, Skeletal/physiology , Knee/physiology , Ultrasonography , Muscle Strength/physiology , Athletes , Swimming/physiology
16.
Nutrients ; 16(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38892486

ABSTRACT

BACKGROUND: A nationwide, prospective, multicenter, cohort study (the Disease-Related caloric-protein malnutrition EChOgraphy (DRECO) study) was designed to assess the usefulness of ultrasound of the rectus femoris for detecting sarcopenia in hospitalized patients at risk of malnutrition and to define cut-off values of ultrasound measures. METHODS: Patients at risk of malnutrition according to the Malnutrition Universal Screening Tool (MUST) underwent handgrip dynamometry, bioelectrical impedance analysis (BIA), a Timed Up and Go (TUG) test, and rectus femoris ultrasound studies. European Working Group on Sarcopenia in Older People (EWGSOP2) criteria were used to define categories of sarcopenia (at risk, probable, confirmed, severe). Receiver operating characteristic (ROC) and area under the curve (AUC) analyses were used to determine the optimal diagnostic sensitivity, specificity, and predictive values of cut-off points of the ultrasound measures for the detection of risk of sarcopenia and probable, confirmed, and severe sarcopenia. RESULTS: A total of 1000 subjects were included and 991 of them (58.9% men, mean age 58.5 years) were evaluated. Risk of sarcopenia was detected in 9.6% patients, probable sarcopenia in 14%, confirmed sarcopenia in 9.7%, and severe sarcopenia in 3.9%, with significant differences in the distribution of groups between men and women (p < 0.0001). The cross-sectional area (CSA) of the rectus femoris showed a significantly positive correlation with body cell mass of BIA and handgrip strength, and a significant negative correlation with TUG. Cut-off values were similar within each category of sarcopenia, ranging between 2.40 cm2 and 3.66 cm2 for CSA, 32.57 mm and 40.21 mm for the X-axis, and 7.85 mm and 10.4 mm for the Y-axis. In general, these cut-off values showed high sensitivities, particularly for the categories of confirmed and severe sarcopenia, with male patients also showing better sensitivities than women. CONCLUSIONS: Sarcopenia in hospitalized patients at risk of malnutrition was high. Cut-off values for the better sensitivities and specificities of ultrasound measures of the rectus femoris are established. The use of ultrasound of the rectus femoris could be used for the prediction of sarcopenia and be useful to integrate nutritional study into real clinical practice.


Subject(s)
Malnutrition , Quadriceps Muscle , Sarcopenia , Ultrasonography , Humans , Male , Sarcopenia/diagnostic imaging , Sarcopenia/diagnosis , Sarcopenia/etiology , Female , Ultrasonography/methods , Middle Aged , Prospective Studies , Aged , Quadriceps Muscle/diagnostic imaging , Malnutrition/diagnosis , Nutritional Status , Hand Strength , Nutrition Assessment , Electric Impedance , ROC Curve , Sensitivity and Specificity , Risk Factors , Geriatric Assessment/methods
17.
J Bodyw Mov Ther ; 39: 270-278, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876638

ABSTRACT

OBJECTIVE: The present study aimed to determine the magnitude and intervention time of resistance training required to generate adaptations in the muscle thickness of the quadriceps muscle obtained by ultrasound in healthy adults. METHOD: A systematic review with meta-analysis was conducted on studies recovered from Pubmed, Web of Science, and Scopus databases up to March 2022. The study selection process was carried out by two independent researchers, with the presence of a third researcher in case of disagreements. The methodological quality of the studies was determined with the TESTEX scale, and the risk of bias analysis was determined using Cochrane's RoB 2.0 tool. The meta-analysis used the inverse of the variance with a fixed model, and the effect size was reported by the standardized mean difference (SMD) with a confidence interval of 95%. RESULTS: Ten studies were included in a meta-analysis. The overall analysis of the studies demonstrated an SMD = 0.35 [95% CI: 0.13-0.56] (P = 0.002), with a low heterogeneity of I2 = 0% (P = 0.52). No publication bias was detected using a funnel plot followed by Egger's test (P = 0.06). The degree of certainty of the meta-analysis was high using the GRADE tool. CONCLUSION: We found that resistance training can generate significant average increases of 16.6% in muscle thickness obtained by ultrasound in the quadriceps femoris muscles of healthy adults. However, the subgroup analysis showed that significant effect sizes were only observed after eight weeks of training.


Subject(s)
Quadriceps Muscle , Resistance Training , Ultrasonography , Humans , Resistance Training/methods , Quadriceps Muscle/physiology , Quadriceps Muscle/diagnostic imaging , Ultrasonography/methods , Muscle Strength/physiology
18.
Sultan Qaboos Univ Med J ; 24(2): 268-271, 2024 May.
Article in English | MEDLINE | ID: mdl-38828237

ABSTRACT

This technical note aimed to present a straigthforward method for harvesting quadriceps tendon autografts with the use of a simple vaginal speculum and direct visualisation of a scope. Anterior cruciate ligament reconstruction with quadriceps tendon autografts has gained popularity in recent years, with many harvesting techniques that use different harvesting systems available on the market. These techniques vary from transverse to longitudinal skin incisions and from open to minimally invasive approaches and have a learning curve, as with the majority of surgical procedures. The technique proposed in this technical note is minimally invasive, can be easily reproduced by any surgeon irrespective of their experience, has a short learning curve, requires no additional cost or technical support during the procedure and creates a stable working space that allows for freedom of manipulation of surgical instruments and the arthroscope.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Humans , Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament Reconstruction/instrumentation , Female , Autografts , Tissue and Organ Harvesting/methods , Tissue and Organ Harvesting/instrumentation , Tendons , Quadriceps Muscle , Transplantation, Autologous/methods , Surgical Instruments
19.
Sci Rep ; 14(1): 12776, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834760

ABSTRACT

Muscle mass depletion is associated with mortality and morbidity in various conditions including sepsis. However, few studies have evaluated muscle mass using point-of-care ultrasound in patients with sepsis. This study aimed to evaluate the association between thigh muscle mass, evaluated using point-of-care ultrasound with panoramic view in patients with sepsis in the emergency department, and mortality. From March 2021 to October 2022, this prospective observational study used sepsis registry. Adult patients who were diagnosed with sepsis at the emergency department and who underwent point-of-care ultrasounds for lower extremities were included. The thigh muscle mass was evaluated by the cross-sectional area of the quadriceps femoris (CSA-QF) on point-of-care ultrasound using panoramic view. The primary outcome was 28 day mortality. Multivariable Cox proportional hazard model was performed. Of 112 included patients with sepsis, mean CSA-QF was significantly lower in the non-surviving group than surviving group (49.6 [34.3-56.5] vs. 63.2 [46.9-79.6] cm2, p = 0.002). Each cm2 increase of mean CSA-QF was independently associated with decreased 28 day mortality (adjusted hazard ratio 0.961, 95% CI 0.928-0.995, p = 0.026) after adjustment for potential confounders. The result of other measurements of CSA-QF were similar. The muscle mass of the quadriceps femoris evaluated using point-of-care ultrasound with panoramic view was associated with mortality in patients with sepsis. It might be a promising tool for determining risk factors for mortality in sepsis patients in the early stages of emergency department.


Subject(s)
Emergency Service, Hospital , Point-of-Care Systems , Quadriceps Muscle , Sepsis , Thigh , Ultrasonography , Humans , Sepsis/mortality , Sepsis/diagnostic imaging , Male , Female , Ultrasonography/methods , Aged , Middle Aged , Prospective Studies , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/pathology , Thigh/diagnostic imaging , Thigh/pathology
20.
Sci Rep ; 14(1): 14798, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926427

ABSTRACT

Muscle ultrasound has been shown to be a valid and safe imaging modality to assess muscle wasting in critically ill patients in the intensive care unit (ICU). This typically involves manual delineation to measure the rectus femoris cross-sectional area (RFCSA), which is a subjective, time-consuming, and laborious task that requires significant expertise. We aimed to develop and evaluate an AI tool that performs automated recognition and measurement of RFCSA to support non-expert operators in measurement of the RFCSA using muscle ultrasound. Twenty patients were recruited between Feb 2023 and July 2023 and were randomized sequentially to operators using AI (n = 10) or non-AI (n = 10). Muscle loss during ICU stay was similar for both methods: 26 ± 15% for AI and 23 ± 11% for the non-AI, respectively (p = 0.13). In total 59 ultrasound examinations were carried out (30 without AI and 29 with AI). When assisted by our AI tool, the operators showed less variability between measurements with higher intraclass correlation coefficients (ICCs 0.999 95% CI 0.998-0.999 vs. 0.982 95% CI 0.962-0.993) and lower Bland Altman limits of agreement (± 1.9% vs. ± 6.6%) compared to not using the AI tool. The time spent on scans reduced significantly from a median of 19.6 min (IQR 16.9-21.7) to 9.4 min (IQR 7.2-11.7) compared to when using the AI tool (p < 0.001). AI-assisted muscle ultrasound removes the need for manual tracing, increases reproducibility and saves time. This system may aid monitoring muscle size in ICU patients assisting rehabilitation programmes.


Subject(s)
Critical Illness , Intensive Care Units , Muscular Atrophy , Ultrasonography , Humans , Male , Ultrasonography/methods , Female , Middle Aged , Aged , Muscular Atrophy/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , Quadriceps Muscle/diagnostic imaging , Artificial Intelligence , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...