Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.081
Filter
1.
Proc Natl Acad Sci U S A ; 121(25): e2403273121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865266

ABSTRACT

In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.


Subject(s)
Quaternary Ammonium Compounds , Substrate Specificity , Quaternary Ammonium Compounds/metabolism , Quaternary Ammonium Compounds/chemistry , Crystallography, X-Ray , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Biological Transport , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Anti-Infective Agents, Local/metabolism , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/chemistry , Models, Molecular
2.
J Hazard Mater ; 475: 134924, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880045

ABSTRACT

Nanofiltration (NF) is a promising technology in the treatment of microelectronic wastewater. However, the treatment of concentrate derived from NF system remains a substantial technical challenge, impeding the achievement of the zero liquid discharge (ZLD) goal in microelectronic wastewater industries. Herein, a ZLD system, coupling a two-stage NF technology with anaerobic biotechnology was proposed for the treatment of tetramethylammonium hydroxide (TMAH)-contained microelectronic wastewater. The two-stage NF system exhibited favorable efficacy in the removal of conductivity (96 %), total organic carbon (TOC, 90 %), and TMAH (96 %) from microelectronic wastewater. The membrane fouling of this system was dominated by organic fouling, with the second stage NF membrane experiencing a more serious fouling compared to the first stage membrane. The anaerobic biotechnology achieved a near-complete removal of TMAH and an 80 % reduction in TOC for the first stage NF concentrate. Methyloversatilis was the key genus involved in the anaerobic treatment of the microelectronic wastewater concentrate. Specific genes, including dmd-tmd, mtbA, mttB and mttC were identified as significant players in mediating the dehydrogenase and methyl transfer pathways during the process of TMAH biodegradation. This study highlights the potential of anaerobic biodegradation to achieve ZLD in the treatment of TMAH-contained microelectronic wastewater by NF system.


Subject(s)
Biodegradation, Environmental , Filtration , Quaternary Ammonium Compounds , Wastewater , Wastewater/chemistry , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/metabolism , Anaerobiosis , Waste Disposal, Fluid/methods , Membranes, Artificial , Water Purification/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Bioreactors , Electronic Waste , Nanotechnology
3.
ACS Nano ; 18(26): 16589-16609, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38885198

ABSTRACT

Adjuvants are effective tools to enhance vaccine efficacy and control the type of immune responses such as antibody and T helper 1 (Th1)- or Th2-type responses. Several studies suggest that interferon (IFN)-γ-producing Th1 cells play a significant role against infections caused by intracellular bacteria and viruses; however, only a few adjuvants can induce a strong Th1-type immune response. Recently, several studies have shown that lipid nanoparticles (LNPs) can be used as vaccine adjuvants and that each LNP has a different adjuvant activity. In this study, we screened LNPs to develop an adjuvant that can induce Th1 cells and antibodies using a conventional influenza split vaccine (SV) as an antigen in mice. We observed that LNP with 1,2-di-O-octadecenyl-3-trimethylammonium-propane (DOTMA) as a component lipid (DOTMA-LNP) elicited robust SV-specific IgG1 and IgG2 responses compared with SV alone in mice and was as efficient as SV adjuvanted with other adjuvants in mice. Furthermore, DOTMA-LNPs induced robust IFN-γ-producing Th1 cells without inflammatory responses compared to those of other adjuvants, which conferred strong cross-protection in mice. We also demonstrated the high versatility of DOTMA-LNP as a Th1 cell-inducing vaccine adjuvant using vaccine antigens derived from severe acute respiratory syndrome coronavirus 2 and Streptococcus pneumoniae. Our findings suggest the potential of DOTMA-LNP as a safe and effective Th1 cell-inducing adjuvant and show that LNP formulations are potentially potent adjuvants to enhance the effectiveness of other subunit vaccines.


Subject(s)
Nanoparticles , Quaternary Ammonium Compounds , Th1 Cells , Animals , Th1 Cells/immunology , Th1 Cells/drug effects , Nanoparticles/chemistry , Mice , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Female , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Lipids/chemistry , Mice, Inbred BALB C , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Adjuvants, Vaccine/chemistry , Adjuvants, Vaccine/pharmacology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/chemistry , COVID-19/prevention & control , COVID-19/immunology , Liposomes
4.
Anal Chem ; 96(26): 10765-10771, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904303

ABSTRACT

The nuclear pore complex (NPC) is a proteinaceous nanopore that solely and selectively regulates the molecular transport between the cytoplasm and nucleus of a eukaryotic cell. The ∼50 nm-diameter pore of the NPC perforates the double-membrane nuclear envelope to mediate both passive and facilitated molecular transport, thereby playing paramount biological and biomedical roles. Herein, we visualize single NPCs by scanning electrochemical microscopy (SECM). The high spatial resolution is accomplished by employing ∼25 nm-diameter ion-selective nanopipets to monitor the passive transport of tetrabutylammonium at individual NPCs. SECM images are quantitatively analyzed by employing the finite element method to confirm that this work represents the highest-resolution nanoscale SECM imaging of biological samples. Significantly, we apply the powerful imaging technique to address the long-debated origin of the central plug of the NPC. Nanoscale SECM imaging demonstrates that unplugged NPCs are more permeable to the small probe ion than are plugged NPCs. This result supports the hypothesis that the central plug is not an intrinsic transporter, but is an impermeable macromolecule, e.g., a ribonucleoprotein, trapped in the nanopore. Moreover, this result also supports the transport mechanism where the NPC is divided into the central pathway for RNA export and the peripheral pathway for protein import to efficiently mediate the bidirectional traffic.


Subject(s)
Microscopy, Electrochemical, Scanning , Nuclear Pore , Nuclear Pore/metabolism , Nuclear Pore/chemistry , Quaternary Ammonium Compounds/chemistry , Nanopores
5.
Int J Biol Macromol ; 273(Pt 2): 133158, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878937

ABSTRACT

Enhancing the flame retardancy and durability of cellulose fibers, particularly environmentally friendly regenerated cellulose fibers types like Lyocell fibers, is essential for advancing their broader application. This study introduced a novel approach to address this challenge. Cationic-modified Lyocell fibers (Lyocell@CAT) were prepared by introducing quaternary ammonium structures into the molecular chain of Lyocell fibers. Simultaneously, a flame retardant, APA, containing -COO-NH4+ and -P=O(O-NH4+)2 groups was synthesized. APA was then covalently bonded to Lyocell@CAT to prepare Lyocell@CAT@APA. Even after undergoing 30 laundering cycles (LCs), Lyocell@CAT@APA maintained a LOI value of 37.2 %, exhibiting outstanding flame retardant durability. The quaternary ammonium structure within Lyocell@CAT@APA formed asymmetric ionic bonds with the phosphate and carboxylate groups in APA, effectively shielding the binding of Na+ ions with phosphate groups during laundering, thereby enhancing the durability. Additionally, the consumption of Na+ ions by carboxylate groups further prevented their binding to phosphate groups, which contributed to enhance the durability properties. Flame retardant mechanism analysis revealed that both gas and condensed phase synergistically endowed excellent flame retardancy to Lyocell fibers. Overall, this innovative strategy presented a promising prospect for developing bio-safe, durable, and flame retardant cellulose textiles.


Subject(s)
Cellulose , Flame Retardants , Cellulose/chemistry , Metals/chemistry , Carboxylic Acids/chemistry , Ions/chemistry , Quaternary Ammonium Compounds/chemistry
6.
Int J Biol Macromol ; 272(Pt 2): 132933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862322

ABSTRACT

Quaternary-ammonium chitosan (CT-CTA) is a popular water treatment agent, and its electropositivity and cation strength are improved compared with chitosan. The use of CT-CTA is widely advocated to remove suspended particles and organic matter from wastewater. However, the solubility of CT-CTA is an important factor affecting the performance of CT-CTA, which is a neglected problem in previous studies. In the study, CT-CTA with different solubilities were prepared by adjusting pH from 2 to 7 in preparation, and their applications were explored in wastewater. When the pH was 2, 2.5, or 3, the obtained CT-CTA was a dissolved state. The turbidity and color removal were 95 % - 98 % and 60 % - 74 %, respectively. When the pH was 4, 5, 6, or 7, the obtained CT-CTA was a solid state. The turbidity and color removal were 30 % - 63 % and 90 % - 97 %, respectively. For domestic-wastewater treatment, CT-CTA in a dissolved state removed 92 % of turbidity and 50 % of chemical oxygen demand (COD). CT-CTA in a solid state removed 86 % of turbidity and 64 % of COD with poly aluminum chloride (PAC). The results illustrated the performance of CT-CTA with different solubilities, which can broaden its application in wastewater treatment.


Subject(s)
Chitosan , Solubility , Wastewater , Water Purification , Chitosan/chemistry , Wastewater/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Quaternary Ammonium Compounds/chemistry , Biological Oxygen Demand Analysis , Water Pollutants, Chemical/chemistry
7.
Sci Rep ; 14(1): 14110, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898117

ABSTRACT

Newly synthesized gemini quaternary ammonium salts (QAS) with different counterions (bromide, hydrogen chloride, methylcarbonate, acetate, lactate), chain lengths (C12, C14, C16) and methylene linker (3xCH2) were tested. Dihydrochlorides and dibromides with 12 carbon atoms in hydrophobic chains were characterized by the highest biological activity against planktonic forms of yeast and yeast-like fungi. The tested gemini surfactants also inhibited the production of filaments by C. albicans. Moreover, they reduced the adhesion of C. albicans cells to the surfaces of stainless steel, silicone and glass, and slightly to polystyrene. In particular, the gemini compounds with 16-carbon alkyl chains were most effective against biofilms. It was also found that the tested surfactants were not cytotoxic to yeast cells. Moreover, dimethylcarbonate (2xC12MeCO3G3) did not cause hemolysis of sheep erythrocytes. Dihydrochlorides, dilactate and diacetate showed no mutagenic potential.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Quaternary Ammonium Compounds , Biofilms/drug effects , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Candida albicans/drug effects , Animals , Sheep , Surface-Active Agents/pharmacology , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry , Hemolysis/drug effects , Erythrocytes/drug effects , Microbial Sensitivity Tests , Cell Adhesion/drug effects , Stainless Steel/chemistry
8.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891947

ABSTRACT

Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.


Subject(s)
Betaine , Cations , Choline , Betaine/chemistry , Betaine/analogs & derivatives , Choline/chemistry , Choline/analogs & derivatives , Cations/chemistry , Esters/chemistry , Quaternary Ammonium Compounds/chemistry , Humans
9.
ACS Appl Mater Interfaces ; 16(23): 29867-29875, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38825754

ABSTRACT

Antimicrobial surfaces limit the spread of infectious diseases. To date, there is no antimicrobial coating that has widespread use because of short-lived and limited spectrum efficacy, poor resistance to organic material, and/or cost. Here, we present a paint based on waterborne latex particles that is supramolecularly associated with quaternary ammonium compounds (QACs). The optimal supramolecular pairing was first determined by immobilizing selected ions on self-assembled monolayers exposing different groups. The QAC surface loading density was then increased by using polymer brushes. These concepts were adopted to develop inexpensive paints to be applied on many different surfaces. The paint could be employed for healthcare and food production applications. Its slow release of QAC allows for long-lasting antimicrobial action, even in the presence of organic material. Its efficacy lasts for more than 90 washes, and importantly, once lost, it can readily be restored by spraying an aqueous solution of the QAC. We mainly tested cetyltrimethylammonium as QAC as it is already used in consumer care products. Our antimicrobial paint is broad spectrum as it showed excellent antimicrobial efficiency against four bacteria and four viruses.


Subject(s)
Quaternary Ammonium Compounds , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Paint , Surface Properties , Latex/chemistry , Latex/pharmacology , Microbial Sensitivity Tests , Bacteria/drug effects
10.
Pediatr Dent ; 46(3): 204-208, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38822497

ABSTRACT

Purpose: The purpose of this study was to investigate the microleakage of atraumatic glass ionomer restorations with and without silver diammine fluoride (SDF) application. Restorations with SDF are termed silver-modified atraumatic restorations (SMART). Methods: Sixty carious extracted permanent teeth were randomly allocated to two SMART groups and two control groups (n equals 15 per group) for a total of four groups. After selective caries removal, test specimens were treated with 38 percent SDF and polyacrylic acid conditioner was applied and rinsed; teeth were restored with Fuji IX GP® glass ionomer (n equals 15) or with SMART Advantage™ glass ionomer (SAGI; n equals 15). For control groups, specimens were restored with their respective GI material after selective caries removal, both without SDF. Restored teeth were placed in Dulbecco's Phosphate-Buffered Saline solution at 37 degrees Celsius for 24 hours. Teeth were thermocycled between five and 55 degrees Celsius for 1,000 cycles, stained with two percent basic fuchsin, sectioned, and visually inspected for microleakage utilizing stereomicroscopy on a four-point scale. Data were statistically analyzed using Kruskal-Wallis one-way analysis of variance on ranks using Dunn's method (P<0.05). Results: Microleakage between the two SMART restoration groups was insignificant. SAGI alone demonstrated significantly more microleakage than all other groups. There was no statistical significance between the Fuji IX GP® control group and the two SMART restoration groups. Conclusions: This in vitro study indicated that silver diammine fluoride placed before glass ionomer restoration does not increase microleakage. Polyacrylic acid may be used after SDF placement without increasing microleakage.


Subject(s)
Dental Atraumatic Restorative Treatment , Dental Caries , Dental Leakage , Fluorides, Topical , Glass Ionomer Cements , Silver Compounds , Dental Leakage/prevention & control , Humans , Silver Compounds/chemistry , Glass Ionomer Cements/chemistry , Dental Atraumatic Restorative Treatment/methods , Fluorides, Topical/chemistry , Dental Caries/prevention & control , Cariostatic Agents/chemistry , Quaternary Ammonium Compounds/chemistry , Viscosity , Acrylic Resins/chemistry , Dental Restoration, Permanent/methods
11.
Pediatr Dent ; 46(3): 192-198, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38822501

ABSTRACT

Purpose: The purposes of this study were to evaluate the effect of silver diammine fluoride (SDF) on the shear bond strength (SBS) of pink opaquer (PO) compared to resin-modified glass ionomer (RMGI) and conventional composite (COMP) on demineralized dentin, and also to investigate the mode of failure (MOF). Methods: Sixty extracted third molars were prepared, demineralized for 14 days, and divided into four groups: (1) COMP; (2) SDF+PO; (3) SDF+RMGI; and (4) SDF+COMP (restoration size: two by two mm). SBS, MOF, modified adhesive remnant index (MARI), and remnant adhesive volume (RAV) were evaluated using an Instron® machine, light microscopy, 3D digital scanner ( 3Shape©), and GeoMagic Wrap© software. Results: There was no significant difference in SBS (MPa) among the COMP mean??standard deviation (2.5±1.59), SDF+COMP (2.28±1.05), SDF+PO (3.31±2.63), and SDF+RMGI groups (3.74±2.34). There was no significant difference in MOF and MARI among the four groups (P>0.05). There was no significant difference in RAV (mm3) among the COMP (0.5±0.33), SDF+COMP (0.39±0.44), SDF+PO (0.42±0.38), and SDF+RMGI groups (0.42±0.38; P>0.05). A significant correlation existed between MOF and RAV (R equals 0.721; P<0.001). MOF, MARI, and RAV did not show any correlations with SBS (P>0.05). Conclusions: Silver diammine fluoride does not affect shear bond strength between carious dentinal surface and tooth color restorative materials. The amount of material left on the interface is not related to the amount of shear force needed to break the restoration.


Subject(s)
Composite Resins , Dental Bonding , Dentin , Fluorides, Topical , Shear Strength , Silver Compounds , Humans , Silver Compounds/chemistry , Dentin/drug effects , Composite Resins/chemistry , Glass Ionomer Cements/chemistry , Quaternary Ammonium Compounds/chemistry , Materials Testing , Dental Restoration, Permanent/methods , Dental Materials/chemistry , Dental Stress Analysis , Tooth Demineralization/prevention & control , In Vitro Techniques , Acrylic Resins/chemistry , Color
12.
Environ Sci Technol ; 58(26): 11707-11717, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38871667

ABSTRACT

Antimicrobial resistance (AMR) undermines the United Nations Sustainable Development Goals of good health and well-being. Antibiotics are known to exacerbate AMR, but nonantibiotic antimicrobials, such as quaternary ammonium compounds (QACs), are now emerging as another significant driver of AMR. However, assessing the AMR risks of QACs in complex environmental matrices remains challenging due to the ambiguity in their chemical structures and antibacterial activity. By machine learning prediction and high-resolution mass spectrometric analysis, a list of antibacterial QACs (n = 856) from industrial chemical inventories is compiled, and it leads to the identification of 50 structurally diverse antibacterial QACs in sediments, including traditional hydrocarbon-based compounds and new subclasses that bear additional functional groups, such as choline, ester, betaine, aryl ether, and pyridine. Urban wastewater, aquaculture, and hospital discharges are the main factors influencing QAC distribution patterns in estuarine sediments. Toxic unit calculations and metagenomic analysis revealed that these QACs can influence antibiotic resistance genes (particularly sulfonamide resistance genes) through cross- and coresistances. The potential to influence the AMR is related to their environmental persistence. These results suggest that controlling the source, preventing the co-use of QACs and sulfonamides, and prioritizing control of highly persistent molecules will lead to global stewardship and sustainable use of QACs.


Subject(s)
Anti-Bacterial Agents , Estuaries , Machine Learning , Quaternary Ammonium Compounds , Anti-Bacterial Agents/pharmacology , Quaternary Ammonium Compounds/chemistry , Mass Spectrometry , China , East Asian People
13.
Drug Deliv Transl Res ; 14(8): 2046-2061, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38811465

ABSTRACT

The global emergency of coronavirus disease 2019 (COVID-19) has spurred extensive worldwide efforts to develop vaccines for protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our contribution to this global endeavor involved the development of a diverse library of nanocarriers, as alternatives to lipid nanoparticles (LNPs), including nanoemulsions (NEs) and nanocapsules (NCs), with the aim of protecting and delivering messenger ribonucleic acid (mRNA) for nasal vaccination purposes. A wide range of prototypes underwent rigorous screening through a series of in vitro and in vivo experiments, encompassing assessments of cellular transfection, cytotoxicity, and intramuscular administration of a model mRNA for protein translation. As a result, two promising candidates were identified for nasal administration. One of them was a NE incorporating a combination of an ionizable lipid (C12-200) and cationic lipid (DOTAP), both intended to condense mRNA, along with DOPE, which is known to facilitate endosomal escape. This NE exhibited a size of 120 nm and a highly positive surface charge (+ 50 mV). Another candidate was an NC formulation comprising the same components and endowed with a dextran sulfate shell. This formulation showed a size of 130 nm and a moderate negative surface charge (-16 mV). Upon intranasal administration of mRNA encoding for ovalbumin (mOVA) associated with optimized versions of the said NE and NCs, a robust antigen-specific CD8 + T cell response was observed. These findings underscore the potential of NEs and polymeric NCs in advancing mRNA vaccine development for combating infectious diseases.


Subject(s)
Administration, Intranasal , COVID-19 Vaccines , Emulsions , Nanocapsules , mRNA Vaccines , Nanocapsules/chemistry , Animals , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Mice , COVID-19/prevention & control , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Humans , SARS-CoV-2/immunology , Female , Quaternary Ammonium Compounds/chemistry , Mice, Inbred BALB C , Fatty Acids, Monounsaturated/chemistry , RNA, Messenger/administration & dosage , Drug Carriers/chemistry , Drug Carriers/administration & dosage
14.
Biomed Mater ; 19(4)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38815598

ABSTRACT

Bacterial infection can lead to various complications, such as inflammations on surrounding tissues, which can prolong wound healing and thus represent a significant clinical and public healthcare problem. Herein, a report on the fabrication of a novel genipin/quaternized chitosan (CS) hydrogel for wound dressing is presented. The hydrogel was prepared by mixing quaternized CS and genipin under 35 °C bath. The hydrogels showed porous structure (250-500 µm) and mechanical properties (3000-6000 Pa). In addition, the hydrogels displayed self-healing ability and adhesion performance on different substrates. Genipin crosslinked quaternized CS hydrogels showed antibacterial activities againstE. coliandS. aureus. The CCK-8 and fluorescent images confirmed the cytocompatibility of hydrogels by seeding with NIH-3T3 cells. The present study showed that the prepared hydrogel has the potential to be used as wound dressing.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Cross-Linking Reagents , Escherichia coli , Hydrogels , Iridoids , Quaternary Ammonium Compounds , Staphylococcus aureus , Wound Healing , Chitosan/chemistry , Iridoids/chemistry , Animals , Mice , Hydrogels/chemistry , Wound Healing/drug effects , NIH 3T3 Cells , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Cross-Linking Reagents/chemistry , Quaternary Ammonium Compounds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Porosity
15.
Biomed Mater ; 19(4)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38810617

ABSTRACT

Dental caries, a chronic infectious disease characterized by tooth mineral loss caused by plaque, is one of the major global public health problems. Silver diamine fluoride (SDF) has been proven to be a highly effective anti-caries drug due to its high bacterial inhibition and remineralization ability. However, the SDF solution is unstable, which immensely limits its clinical application. Therefore, new silver-load clay named AgF@Hec was designed by replacing the NH3with hectorite in this study. Fourier transform infrared spectroscopy and x-ray diffraction spectroscopy were employed to confirm the structure of AgF@Hec. Dynamic light scattering analysis was used to reveal the effect of different hectorite concentrations on the stability of AgF@Hec. Moreover, AgF@Hec exhibits significant remineralization and hardness recovery of the initial carious lesions. Bacteriostatic experiments also proved that it has a significant inhibitory effect onA. Viscosus, S. mutans, S. sanguinis, S. salivarius, Lactobacillus sp.and both gram-positive and gram-negative bacteria. We therefore believed that AgF@Hec should be a promising biomaterial that can be applied in the prevention of dental caries.


Subject(s)
Clay , Dental Caries , Quaternary Ammonium Compounds , Silver Compounds , Silver , X-Ray Diffraction , Dental Caries/prevention & control , Clay/chemistry , Silver Compounds/chemistry , Silver Compounds/pharmacology , Spectroscopy, Fourier Transform Infrared , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Silver/chemistry , Silver/pharmacology , Fluorides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tooth Remineralization/methods , Streptococcus mutans/drug effects , Humans , Hardness , Materials Testing , Animals , Microbial Sensitivity Tests , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Fluorides, Topical
16.
Talanta ; 276: 126290, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38805755

ABSTRACT

A very sensitive electrochemical biosensor, with haemoglobin (Hb) as its basis, has been created to quantify hydrogen peroxide (H2O2), an essential marker in environmental monitoring, food safety, and medical diagnosis. The sensor uses a simple, eco-friendly preparation method. Hb was immobilised on manganese dioxide nanostructure/gold nanoparticles/poly-diallydimethylammonium chloride-functionalised multiwalled carbon nanotubes (PDDA-MWCNT/AuNP/MnO2), characterised using various techniques: amperometry, voltammetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Nafion was used as a binder membrane to preserve the biological and electrochemical properties of the protein on the modified electrode. In comparison to earlier research, the novel biosensor had a lower detection limit (1.83 µM) and a limit of quantification (6.11 µM) (S/N = 3) for H2O2. It also exhibited notable reproducibility, long-term stability, and repeatability. It was effectively used to measure the amount of H2O2 in cow milk and orange juice, yielding recoveries in the order of 98.90-99.53 % with RSDs less than 5.0 %, which makes it a promising biosensor for food control.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gold , Hemoglobins , Hydrogen Peroxide , Manganese Compounds , Metal Nanoparticles , Milk , Nanotubes, Carbon , Oxides , Quaternary Ammonium Compounds , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Gold/chemistry , Hemoglobins/analysis , Hemoglobins/chemistry , Biosensing Techniques/methods , Manganese Compounds/chemistry , Metal Nanoparticles/chemistry , Quaternary Ammonium Compounds/chemistry , Nanotubes, Carbon/chemistry , Oxides/chemistry , Electrochemical Techniques/methods , Milk/chemistry , Animals , Polyethylenes/chemistry , Cattle , Fruit and Vegetable Juices/analysis , Limit of Detection , Electrodes
17.
Biomacromolecules ; 25(6): 3731-3740, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38712827

ABSTRACT

Interface engineering is essential for cellulosic fiber-reinforced polymer composites to achieve high strength and toughness. In this study, carboxymethyl cellulose (CMC) functionalized with hydrophobic quaternary ammonium ions (QAs) were utilized to modify the interface between holocellulose fibers (HF) and acrylic resin. The wet HF/CMC papers were prepared by vacuum filtration, akin to papermaking, followed by cationic ion exchange with different hydrophobic QAs. Subsequently, the modified papers were dried, impregnated with an acrylic resin monomer, and cured to produce transparent composite films. The effect of the hydrophobic QA moieties on the structure and optical and mechanical properties of the HF/CMC/acrylic resin composites were investigated. The composite film with cetyltrimethylammonium (CTA)-functionalized CMC showed high optical transmittance (87%) with low haze (43%), while the composite film with phenyltrimethylammonium (PTMA)-functionalized CMC demonstrated high Young's modulus of 7.6 GPa and high tensile strength of 180 MPa. These properties are higher than those of the composites prepared through covalent interfacial modification strategies. The results highlighted the crucial role of hydrophobic functionalized CMCs in facilitating homogeneous resin impregnation in the HF fiber network, producing a composite with enhanced interfacial adhesion strength, increased optical transparency, and mechanical strength. This facile use of hydrophobic CMCs as interfacial compatibilizers provides an energy-efficient route for preparing transparent, thin, and flexible composite films favorable in optoelectronic applications.


Subject(s)
Acrylic Resins , Carboxymethylcellulose Sodium , Hydrophobic and Hydrophilic Interactions , Tensile Strength , Carboxymethylcellulose Sodium/chemistry , Acrylic Resins/chemistry , Quaternary Ammonium Compounds/chemistry , Cellulose/chemistry , Elastic Modulus
18.
Int J Biol Macromol ; 271(Pt 2): 132345, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750848

ABSTRACT

As an important source of green cleaning flame retardants, bio-based materials have been widely studied by researchers. However, the development of efficient biobased flame retardants and convenient finishing methods was of great significance for the functional finishing of materials. Herein, a convenient and efficient flame retardant cotton fabric was prepared via layer by layer self-assembly (LbL) by alternating precipitation of a novel bio-based flame retardant phosphorylated sodium alginate (PSA) and alkylammonium functionalized siloxane (A-POSS). The effect of coating number on flame retardancy and thermal properties of coated cotton fabric was systematically studied. Thermogravimetric analysis (TGA) results showed that residual char contents of AP/PS-15BL under air and N2 atmospheres increased by 252.0% and 225.2%, respectively, compared with control cotton. In vertical flammability tests, both the AP/PS-10BL and AP/PS-15BL showed self-extinguishing behavior and successfully passed the UL-94 V-0 rating. More importantly, the LOI value of AP/PS-15BL was significantly increased to 35.0% from 20.0% of pure cotton fabric. Additionally, coated samples showed good mechanical properties and washable resistance. In CONE test, the peak heat release rate (PHRR) and total heat release rate (THR) of AP/PS-15BL decreased by 89.3% and 49.3% respectively, compared with control cotton. Therefore, this green and convenient flame-retardant finishing method has great application potential in the multi-functional finishing of cotton fabrics.


Subject(s)
Alginates , Cotton Fiber , Flame Retardants , Alginates/chemistry , Phosphorylation , Organosilicon Compounds/chemistry , Textiles , Thermogravimetry , Quaternary Ammonium Compounds/chemistry
19.
Int J Biol Macromol ; 271(Pt 2): 132672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810855

ABSTRACT

Wound infection not only hinders the time sequence of tissue repair, but also may lead to serious complications. Multifunctional wound dressings with biocompatibility, excellent mechanical properties and antibacterial properties can promote wound healing during skin infection and reduce the use of antibiotics. In this study, a multifunctional dual-network antibacterial hydrogel was constructed based on the electrostatic interaction of two polyelectrolytes, hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and sodium alginate (SA). Attributing to the suitable physical crosslinking between HACC and SA, the hydrogel not only has good biocompatibility, mechanical property, but also has broad-spectrum antibacterial properties. In vivo results showed that the hydrogel could regulate M2 polarization, promote early vascular regeneration, and create a good microenvironment for wound healing. Therefore, this hydrogel is an effective multifunctional wound dressing. Consequently, we propose a novel hydrogel with combined elements to expedite the intricate repair of wound infection.


Subject(s)
Alginates , Anti-Bacterial Agents , Chitosan , Hydrogels , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Animals , Alginates/chemistry , Alginates/pharmacology , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Bacterial Infections/drug therapy , Male , Bandages , Staphylococcus aureus/drug effects
20.
Colloids Surf B Biointerfaces ; 239: 113932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749165

ABSTRACT

Quaternary ammonium salts (QAS) are widely used in medicine, industry and agriculture as disinfectants, biocides, and fungicides. QAS have the ability to coat various surfaces, prevent adhesion of microorganisms to them and inhibit the formation of biofilm. A group of surfactants derived from benzoic acid with different chemical structures was tested: monomeric QAS with different alkyl chain lengths (C12, C14, C16), gemini QAS containing 12-carbon alkyl chains and linkers of various lengths (3,4,6 methylene groups), as well as multifunctional QAS. Among the tested surfactants, monomeric QAS showed the highest bactericidal and fungicidal activity. All three groups of tested compounds inhibited the filamentation of C. albicans. The best antimicrobial activity was demonstrated by the monomeric surfactant C12AA, while the multifunctional equivalent (2xC12AA) was characterized by good anti-adhesive activity. All tested compounds are non-mutagenic and cause low hemolysis of sheep erythrocytes. Multifunctional and gemini surfactants are also non-toxic.


Subject(s)
Candida albicans , Hemolysis , Microbial Sensitivity Tests , Surface-Active Agents , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Sheep , Animals , Candida albicans/drug effects , Hemolysis/drug effects , Erythrocytes/drug effects , Biofilms/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...